Scott Norris

Associate Professor



Office Location

Clements Hall 239





Ph.D. 2006, Northwestern University


Multi-scale modelling and analysis of continuum equations with applications to nano-scale textured surfaces in materials science. Special focus on the effect of boundary conditions at free surfaces. Techniques include viscous and viscoelastic continuum analysis, thin-film analysis, asymptotic theory, and basic numerical solutions of PDEs.

Professor Norris's research focuses on multi-scale continuum descriptions of problems at small scales in materials science, with an emphasis on thin films dominated by interfacial phenomena. This involves a variety of mathematical techniques, including continuum modeling, asymptotic and perturbation methods, linear and nonlinear stability analysis, various kinds of numerical simulation, and the extraction of meaningful statistics from large data sets. Recent specific topics of interest include the coarsening of faceted crystal films, spontaneous nanoscale pattern formation on ion-irradiated semiconductors, and the growth of nanostructured solids by means of phase separation during deposition.

Professor Norris collaborates with scientists at Harvard University, the University of Helsinki (Finland), the University of Glasgow (Scotland), the Helmholtz Center of Dresden-Rossendorf (Germany), the Ecole Polytechnique (France), and the University of Kentucky. His publications have appeared in Nature Communications, Physical Review Letters, Physical Review B and E, Journal of Applied Physics, Journal of Computational Physics, Acta Materialia, Journal of Crystal Growth, and Nuclear Instruments and Methods in Physics Research B.

scott norris