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REVIEW ARTICLE

Ground deformation mapping by fusion of multi-temporal
interferometric synthetic aperture radar images: a review

Lei Zhanga*, Xiaoli Dinga and Zhong Lub

aLand Surveying and Geoinformatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong;
bRoy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas, USA

(Received 9 December 2014; accepted 19 June 2015)

Interferometric synthetic aperture radar (InSAR) has emerged as a powerful geodetic
imaging technique in the past two decades, focused on the retrieval of deformation,
topography and even meteorological measurements by the analysis of phase compo-
nents of complex-valued radar data. The strength of this technique lies in its abilities of
all-weather, day and night data acquisition, high measurement accuracy and wide
spatial scale. Although vast successful applications have been achieved, conventional
InSAR technique possesses several limitations (e.g. decorrelation, phase unwrapping
error and atmospheric artefacts), which, in turn, have motivated the development of
advanced multi-temporal InSAR (MTInSAR) analysis techniques. Fusion of
MTInSAR imagery of the same area has led to a marked improvement in the reliability
and accuracy of derived products (e.g. deformation) and has also been important for
gleaning dynamic signals of deformation over a wide range of temporal scales. This
paper is intended to introduce the development of MTInSAR and provide a practical
guidance to the users of the technique. Specially, cross-comparison among approaches
employed by different MTInSAR techniques is conducted using either simulated or
real datasets. We have addressed the weakness of each approach and highlighted the
potential technical improvement.

Keywords: InSAR; deformation monitoring; multi-temporal analysis

1. Introduction

Interferometric synthetic aperture radar (InSAR) can provide measurements of deforma-
tion along the radar line of sight (LOS) with centimetre to millimetre level of accuracy and
paramount resolution by exploiting the phase differences between two temporally sepa-
rated synthetic aperture radar (SAR) images over an area of interest (Gabriel et al. 1989).
The past two decades have witnessed InSAR’s unique abilities in addressing the needs and
answering the questions that classic optical remote sensing techniques have been unable
or difficult to tackle. Vast applications have been achieved in studying and monitoring
natural and anthropological hazards ranging from volcano (e.g. Hooper et al. 2007, Lu
et al. 2010), earthquake (e.g. Simons et al. 2002, Feng et al. 2010, Hu et al. 2012),
landslide (e.g. Hilley et al. 2004, Zhao et al. 2012, Sun et al. 2015), urban ground
deformation (e.g. Fruneau and Sarti 2000; Zhang et al. 2012), to infrastructure monitoring
(e.g. Thiele et al. 2007, Reale et al. 2011, Chang and Hanssen 2014). However, onerous
challenges imposed by spatial–temporal decorrelation of radar signals, atmospheric arte-
facts and aliasing of long-wavelength deformation and orbit ramps have demanded the
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improvement on the performance of conventional InSAR method. Since Usai and
Hanssen (1997) first suggested that useful information can be retrieved from pixels that
keep high coherence for a long period, it has been demonstrated that the enhancement can
be achieved by the fusion of multi-temporal SAR data, which makes full exploitation of
the inherent information from radar returns. Over the years, abundant techniques invol-
ving the joint analysis of a set of SAR images have been proposed and denoted by
different names, for example permanent scatterer InSAR (PSInSAR) (Ferretti et al. 2001),
persistent scatterer interferometry (PSI) (e.g. Adam et al. 2009, Crosetto et al. 2010),
small baseline subset (SBAS) technique (Berardino et al. 2002, Lanari et al. 2004),
Stanford method for persistent scatterers (StaMPS) (Hooper et al. 2004), spatial–temporal
unwarpping network (STUN) algorithm (Kampes 2006), coherent point target (CPT)
technique (Mora et al. 2003), interferometric point target analysis (IPTA) (Werner et al.
2003) and temporarily coherent point InSAR (TCPInSAR) (Zhang et al. 2011). All these
techniques have the ability to overcome (at least partially) the weaknesses of conventional
InSAR.

Although the detailed implementations of these multi-temporal InSAR (MTInSAR)
techniques vary from one to the other, their technical innovations mainly lie in three
common aspects: observation selection, modelling and parameter estimation. High-quality
observations are always desired for any MTInSAR technique, which leads to an emphasis
on identifying points (pixels in the SAR imagery) with little decorrelation from the
interferogram stacks generated based on the framework of either single-master or multi-
ple-master approach. Taking these points as observations can significantly reduce the
noise term of interferometric phase, and by differencing among neighbouring points, a
point network consisting of numerous arcs is constructed, where the spatially correlated
atmospheric component can be further reduced. Once the observations (either the phases
at points or the phase differences at arcs) have been fixed, modelling, that is construction
of observation function that reflects the relationship between the observation and para-
meters is closely followed. Parameters that can be modelled include the topography
residuals, look angle error, the orbit inaccuracy, height-related atmospheric artefacts and
deformation time series. Provided that linear deformation is assumed, the deformation rate
can also be modelled. It is worth noting that although it is possible to simultaneously
model all parameters, efficient and reliable solver for such an underdetermined observa-
tion system might not be available. Therefore among current MTInSAR techniques, one
strategy that has been widely adopted is to separate the deformation term from other
parameters first and then retrieve the full resolution deformation time series. Once the
observation function is built up, the following step is to estimate the parameters. In this
step, whether the observations contain phase ambiguities determines the complexity of
solvers. For the unwrapped observations, the least squares method (Usai 2003) or mini-
mum-norm least squares (Berardino et al. 2002, Casu et al. 2006) is sufficient to serve as
a parameter solver. Instead of using the minimum-norm criteria, Laplacian smoothing can
also be used for an observation system with rank deficiency (Schmidt and Bürgmann
2003, Wang et al. 2012). To suppress the effect of unwrapping error, robust L-1 norm
solver (Lauknes et al. 2011) has been recently suggested. However, for the wrapped
observations, direct solution is usually obscure. In fact there have been a huge flurry of
efforts on this over the years. Methods such as ensemble coherence maximisation (Ferretti
et al. 2001, Colesanti et al. 2003), integer least squares (Kampes and Hanssen 2004), 3D
phase unwrapping (Hooper et al. 2004, 2007) and least squares with ambiguity detector
(Zhang et al. 2011, 2012, 2014) have been proposed and achieved with many successful
applications. With the solvers, deformation signal can be retrieved form either wrapped or
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unwrapped interferometric phases, however there is an intractable error hindering an
accurate estimation of deformation time series. This error is caused by atmospheric turbu-
lence, which has a varying spatial correlation and a similar temporal behaviour to the non-
linear deformation in some cases (Hanssen 2001, Li et al. 2005, Ding et al. 2008, Jolivet
et al. 2014). Spatial–temporal filtering (Ferretti et al. 2001, Berardino et al. 2002, Hooper
et al. 2004, Gong et al. 2015) whose performance largely depends on the operators’
experience, although not robust enough, has been widely used to eliminate this kind of error.

The purpose of this paper is to provide a comprehensive overview to understanding
the essential features of approaches used in the aforementioned three aspects. It is
organised as follows. We begin with a brief introduction of limitations associated with
conventional InSAR technique (Section 2), which actually motivated the development of
MTInSAR techniques. We then focus on the analysis of the advantages and disadvantages
of observations employed by current MTInSAR techniques. The modelling that links the
unknowns and phase observations is described in Section 3. The parameter estimators are
introduced in Section 4 where a comparison between four estimators using Environmental
Satellite (Envisat)/advanced synthetic aperture radar (ASAR) data over east coastal zone
of Taiwan is also conducted. Finally in Section 5 we summarise the development of
current MTInSAR techniques and suggest some directions for future research.

2. Inherent limitations of conventional InSAR

To understand the development of MTInSAR and appreciate its unique advantages, it is
imperative to understand limitations associated with conventional InSAR and how these
limitations affect the accuracy of the retrieved deformation. It should be noted that these
limitations do not undermine the importance of conventional InSAR method which is still
being used to retrieve large and sudden deformation signals such as those associated with
large earthquakes, volcano eruptions and landslides.

Let us start from a stack of differential InSAR images where the phase contribution
raised by topography has been largely eliminated by external digital elevation model
(DEM) (e.g. shuttle radar topography mission (SRTM) and advanced space-borne thermal
emission and reflection radiometer (ASTER) DEM). Given a pixel with the location index
(x) in the ith interferogram, the wrapped differential phase (ϕidint;x) usually includes five
contributions, that is

ϕidint;x ¼ W � 4π
λ

dilos;xþ
Bi

?;x
hres;x

Rx sin θx

 !
þ ϕiatm;x þ ϕiorb;x þ ϕin;x

( )
(1)

where λ is the radar wavelength, Rx the slant range distance, θx the radar look angle, Bi
?;x

the perpendicular baseline, dilos;x the surface deformation projected to the radar LOS

direction, hres;x the topographic inaccuracy, ϕiatm;x the phase artefact due to the difference

in atmospheric retardation between passes, ϕiorb;x the phase residual raised by orbit errors,

ϕin;x a noise term resulting from temporal/geometry decorrelation and other noise sources

and W �f g the wrapping operator. If the deformation (dilos;x ) is the signal of our interest, the
remaining terms are then the error sources. These errors limit the accuracy of conventional
InSAR-derived deformation. The main purpose of MTInSAR techniques is to eliminate or
reduce these errors, therefore understanding the spatial and temporal characteristics of
these errors is vital. Among these errors, topographic error is caused by DEM inaccuracy,
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which could be spatially correlated or more likely uncorrelated. Equation (1) indicates that
this error term has a definitive relationship with interferometric phase via the perpendi-
cular baseline at a given pixel. Figure 1(a) and (b) show two phase images under different
perpendicular baseline lengths, clearly indicating that the main phase anomalies in the
circled areas in Figure 1(a) come from topographic error. However, when only one

Figure 1. Error sources associated with conventional InSAR measurements: (a) interferogram
over a mountainous area with a relatively longer spatial baseline; (b) interferogram with a
shorter spatial baseline. The comparison between (a) and (b) clearly indicates the effect of DEM
error on InSAR measurements (e.g. the areas enclosed by circles in (a)). (c) Interferogram for
the period of July–September 2009; (d) interferogram for the period of July–October 2009. By
comparing (c) and (d), we can conclude patterns in circles in (c) are caused by atmospheric
artefacts (i.e. TAA). (e) Interferogram containing patterns raised by SAA which is related to
topography height; (f) orbit error in interferogram; (g) interferogram with heavy noise; (h)
phases at HPQ points isolated from (g).
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interferogram is available, the topographic phase residual can be easily mistaken as
deformation signal.

Atmospheric artefact is another error source that has not been well tackled in conven-
tional InSAR technique and actually is also challenging for MTInSAR techniques. The
atmospheric artefact is generated when radar microwave propagates twice through the
atmosphere from SAR satellite to ground and back again. The variations in the refractive
index along the propagation path inevitably introduce errors to InSAR measurements
(Massonnet et al. 1994, Zebker et al. 1997, Lu and Dzurisin 2014). It is well known that
the atmospheric artefact constitutes of phase variations caused by both ionosphere and
troposphere. Compared with the ionosphere artefact, the troposphere anomaly is rather
thornier due to its complicated spatial–temporal variations (Hanssen 2001, Lu and
Dzurisin 2014). Troposphere artefacts in the InSAR measurements can further be decom-
posed into turbulent and stratified components (Hanssen 2001). Turbulent atmospheric
artefact (TAA) is mainly induced by the high variability of water vapour contained in the
near-ground troposphere, where a strong turbulent mixing process occurs. Localised phase
gradient can be caused by TAA in both flat and mountainous regions, which usually mimics
the surface deformation associated with, for example groundwater and landslides (Lu and
Dzurisin 2014). Stratified atmospheric artefact (SAA) is the additional phase delay in
mountainous regions induced by stratification of the atmosphere into different vertical
refractivity layers. High correlation between SAA and topographic height can always be
found (e.g. Remy et al. 2003, Biggs et al. 2007). Figure 1(c)–(e) give examples of these two
typical artefacts. The comparison between Figure 1(c) and (e) indicates that the effect of
TAA can behave very like deformation signals, raising risks for the application of conven-
tional InSAR. TAA usually appears to be spatially correlated, with the correlation dimension
ranging from metres to kilometres. On the other hand, TAA generally appears to be
temporally uncorrelated, while in some cases it could also be seasonally variable (Hooper
et al. 2007). TAA’s unique spatial–temporal characteristics cause difficulties in an effective
elimination. The essential gist is that it is difficult to separate the temporal fluctuation of
TAA from non-linear deformation. InSAR is vulnerable to serious atmospheric artefacts,
and this rather than phase decorrelation is its major technical handicap.

Orbit error is caused by inaccurate determination of satellite state vectors, behaving as
long wavelength signal in interferograms. Figure 1(f) provides an example of orbit error.
The phase related to orbit error can often be modelled and removed using a polynomial
after the interferogram is successfully unwrapped. However this practice also has a risk, as
a part of long-wavelength deformation signal might also be removed (Zhang et al. 2014).
The noise error is mainly due to spatial–temporal decorrelation (Zebker and Villasenor
1992). Large deformation gradient can also introduce decorrelation. As an example,
Figure 2 shows several interferograms over a reclaimed area in Hong Kong with increas-
ing temporal intervals, where the decorrelation caused by rapid ground subsidence can be
clearly observed. To reduce the noise term, one natural way is only selecting high phase
quality (HPQ) points. The last error rests on the success rate of phase unwrapping
associated with the conventional InSAR processing, which is mainly due to heavy
decorrelation, large magnitude of deformation or unoptimised phase unwrapping strategy.

3. Observations of MTInSAR

We start the introduction of MTInSAR techniques from their observations, that is the
interferogram stack by differencing multi-temporal SAR phase images. Interferograms
can be formed by two different strategies. One is single-master approach where all
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interferograms are formed with respect to a single master (reference) image. The other
is multi-master approach where interferograms consist of SAR pairs meeting certain
spatial and/or temporal baseline thresholds. Both strategies are adopted by current
MTInSAR techniques, while each possesses its own advantages and disadvantages.
Single-master interferograms are generally considered to be optimal for DEM refine-
ment since the length of perpendicular baselines has a large variance. However, long
baseline raised by single-master construction strategy can introduce serious decorrela-
tion, which can significantly reduce the number of HPQ points, and in extreme cases
makes the deformation estimation impossible. Let us take Figure 2 again as an
example. It shows a typical single-master interferogram stack. With the increase of
temporal baseline, the fringe gradient is getting precipitous, finally resulting in serious
decorrelation which hinders the retrieval of ground deformation. The multiple-master
interferogram strategy appears to be rather flexible. By narrowing the baseline tube, the
decorrelation can be well reduced, resulting in abundant HPQ points. However, the
retrieved DEM error is not accurate and reliable as multiple-master interferograms are
often constructed from short-baseline image pairs. For instance, Figure 3 depicts an
accuracy comparison between the estimated DEM errors from four stacks of interfer-
ograms with different baselines. In these two cases, the DEM error is estimated together
with coefficients of a predefined deformation model (i.e. a second-order polynomial),
which is a typical routine of SBAS technique. In the case where the “true” (simulated)
deformation is periodic (Figure 3(a)), we set 100 m and 745 days as the baseline
thresholds to select a set of interferograms. From the selected interferograms, we then
estimate the parameters mentioned above. Figure 3(b) shows the histogram of differ-
ences between the estimated DEM error and the “true” DEM error. We then extend the
perpendicular baseline threshold to 220 m to include more interferograms as observa-
tions. The DEM error and deformation are resolved again from these observations. The
differences with true DEM error are shown in Figure 3(c). Similarly, for the deforma-
tion having a fluctuant pattern (Figure 3(d)), we estimate the parameters from two sets
of interferograms selected according to thresholds of 160 m/745 days and 220 m/745

Figure 2. Interferograms with increasing temporal baselines. It is clear that rapid deformation can
introduce serious decorrelation and make deformation retrieval impossible for single-master strategy.
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days, respectively. The corresponding histograms of residuals of DEM error are shown
in Figure 3(e) and (f). The comparison among the residual histograms clearly indicates
that an improper deformation model and unsuitable baseline threshold can introduce
significant inaccuracy to the estimated DEM error. This is actually one of the inherent
weaknesses of SBAS technique that we noticed and has recently been pointed out by
Fattahi and Amelung (2013). In short, both the single-master and multiple-master
strategies possess their own advantages and disadvantages; however, we prefer multi-
ple-master strategy, especially in the cases where the decorrelation is serious and the
deformation is rapid. Once the interferogram stack has been generated, the HPQ points
should be identified. In this section, we will introduce several methods that are widely
used in current MTInSAR techniques with an emphasis on their weaknesses.

3.1. Interferogram stack

The observations of MTInSAR techniques are interferograms generated from a set of co-
registered radar images. To co-register the images acquired over the area of interest on different
dates with slightly different looking positions, one image should be selected as a reference that is
also known as a master image. One general requirement on the selection of master image is to
maximise the total coherence of the stacked interferograms. To this end, the decorrelation due to

Figure 3. The effect of baseline threshold on the accuracy of the estimated DEM error: (a)
simulated periodical deformation signal; (b) histogram of residuals of DEM error estimated from
a set of simulated C-band interferograms with baseline thresholds of 100 m and 745 days; (c)
histogram of residuals of DEM error with baseline thresholds of 220 m and 745 days; (d) simulated
fluctuant deformation signal; (e) histogram of residuals of DEM error with baseline thresholds of
160 m and 745 days; (f) histogram of residuals of DEM error with baseline thresholds of 220 m and
745 days.

International Journal of Image and Data Fusion 7

D
ow

nl
oa

de
d 

by
 [

L
ei

 Z
ha

ng
] 

at
 0

0:
45

 3
1 

Ju
ly

 2
01

5 



the spatial–temporal baselines and Doppler frequency difference need to be considered and the
total coherence (ρtotal) can be modelled by (Hooper et al. 2007)

ρtotal � 1� f
T

T c

� �� �
� 1� f

B?
BC
?

� �� �
� 1� f

FDC

FC
DC

� �� �
(2)

where f xð Þ ¼ x; for x � 1
1; for x > 1

�
; superscript c denotes the critical values which should be

determined according to the SAR dataset. It is worth noting that the reliability of the
Equation (2) can be affected by ground features. For instant, the coherence of a vegetated
area is much worse in summer than that with the same time span in winter. It means the
temporal baseline itself sometimes cannot well reflect the quality of interferograms.
Therefore, one more reasonable method is to calculate the coherence of all interferograms
first and select either single-master stacked or multiple-master stacked interferograms
according to the calculated coherence. Instead of calculating the coherence of all pixels,
a very small portion of pixels sampled, say, by intensity variation can be used to reduce
the computation burden. For the multiple-master stack, we can use the minimum spanning
tree (MST) to select interferograms that can maximise the total coherence (Refice et al.
2006, Wang et al. 2012). As an example, Figure 4 shows the MST generated from a stack
of TerraSAR-X interferograms over Hong Kong according to the sampled coherence.

Figure 4. The MST graph constructed according to the mean coherence of sampled pixels in each
interferogram. Only the interferograms than can maximise the total coherence are included in the
tree graph.
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3.2. HPQ points

As mentioned before, the HPQ points are the pixels having low decorrelation. There are
basically two types of HPQ points. One type consists of points that can keep HPQ in
interferograms with any baselines. In other words the backscatterer features of these
points are little affected by the spatial–temporal decorrelation. These points are the
main observations of the first generation of MTInSAR techniques and denoted with
different names, for example persistent scatterers, permanent scatterers, PS (Ferretti
et al. 2001, Hooper et al. 2004). Since these points might be involved in interferograms
with extremely long baselines, the conventional coherence map that is widely used for
assessment of interferogram quality is not adequate to identify these points. Instead, the
analysis of intensity variance (Ferretti et al. 2001) or spatial correlation of phases (Hooper
et al. 2004) is proven to be effective. Physical objects that can be classified into this type
are abundant no matter in urban areas (e.g. buildings and lamp-posts) or in nonurban areas
(e.g. rocks, and even dry mud). The other type is composed of points that can only keep
high coherence in interferograms with baselines less than a certain length. The phase noise
at these points is getting serious as the baseline increases. These points occupy a large
portion of observations in multiple-master MTInSAR techniques (e.g. SBAS, CPT and
TCPInSAR). However, the density of these points heavily depends on the baseline criteria
which are mainly determined according to the operator’s experience. The coherence map
can well serve as a selector to isolate these points.

3.3. HPQ point identification methods

3.3.1. Amplitude dispersion index

The amplitude dispersion index (ADI) was first introduced by Ferretti and others (2000,
2001) in their PSInSAR technique, which employs a stack of single-master interferograms
without considering baseline limitations. According to simulation tests the ADI is a
satisfactory approximation for phase dispersion of pixels with high signal-to-noise ratio
(SNR) and is defined as the ratio between the standard deviation (σA) and the mean (mA)
of multi-temporal backscattering intensity variations (Ferretti et al. 2000):

DA ¼ σA
mA

(3)

Figure 5(b) shows an ADI map calculated from a stack of 19 TerraSAR-X SLC
images over west Kowloon of Hong Kong. HPQ points selected with a DA threshold of
0.25 are shown in Figure 5(c). The bright scatterers corresponding to the cargo containers
were not selected as HPQ points due to the temporal variations of their backscattered
intensities, which is in line with our expectations. Although several points in the sea were
mistakenly selected, the performance of ADI is satisfactory. The main limitation is that the
criteria is too tight to select densely enough points over nonurban settings.

3.3.2. Phase stability

In order to identify a sufficient number of coherent points especially in nonurban areas
where scatterers usually have low SNR, Hooper and others (2004) proposed a HPQ point
selection method based on the phase stability of targets. Phase stability is analysed under
the assumption that deformation is spatially correlated. The phase values of neighbouring
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PS candidates are averaged, and those with lowest residual noise (variability) are selected.
Given a set of topographically corrected interferograms, a measure of phase stability can
be defined as (Hooper et al. 2004)

γx ¼
1

N

X
expf jðΦint;x;i � �Φint;x;i � ΔΦ̂ε;x;iÞg

�����
����� (4)

where N is the number of interferograms, Φint;x;i is the differential phase of the xth
interferogram, �Φint;x;i is the mean phase of all PS candidates within a circular patch centred

on pixel x with radius L and ΔΦ̂ε;x;i is the estimated phase component contributed by DEM
errors. To calculate the mean phase of patches efficiently, PS candidates selected using the
ADI method with a high threshold value are taken as initial selections. The threshold
value of γx is selected in a probabilistic fashion. Figure 5(f) presents the location of HPQ
points selected according to phase stability using the same TerraSAR-X datasets. The
density of points is notably higher than that by ADI.

Figure 5. Examples of HPQ point selection by different methods: (a) optical image of the testing
area; (b) ADI map; (c) selected HPQ points by ADI with a threshold of 0.25 where points in the sea
as circled were mistakenly selected; (d) HPQ points selected by conventional coherence map with a
threshold of 0.25; (e) HPQ points selected by improved coherence map with a threshold of 0.25; (f)
HPQ points selected according to phase stability; (g, h) HPQ points selected by SCR method using
thresholds of 0.1 and 0.2, respectively; (i) HPQ points selected by spectral diversity (threshold: 1.2).
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3.3.3. Coherence map

The coherence map method has long been used to select HPQ points from interferograms
with relatively short baselines. After eliminating the phase components related to topography
and flat Earth, the coherence value of each pixel in selected interferograms can be estimated.
Recent years have seen the rapid development of advanced coherence estimation methods
(e.g. Zebker and Chen 2005, Jiang et al. 2015) which can reduce the bias without much loss
of resolution. After the coherence estimation for each pixel in all selected interferograms, the
pixels with minimum coherence value larger than a threshold are identified as HPQ points.
As an example, Figure 5(d) and (e) present selected HPQ points using conventional and
advanced coherence estimation methods (Jiang et al. 2015), respectively. It is clear Figure 5
(d) appears to be not as sharp as that by the improved method (Figure 5(e)). Compared with
ADI method, the coherence map usually can select several times more points.

3.3.4. Signal-to-clutter ratio

The signal-to-clutter ratio (SCR) approach was first suggested by Adam to select point
targets for their PSI processor. With an assumption that a PS observation consists of a
deterministic signal that is disturbed by random circular Gaussian distributed clutter, the
SCR can be estimated by computing the ratio of the power of a PS candidate over that of
its immediate neighbouring pixels. The relationship between the SCR and the phase
standard variance (σϕ) can be defined as (Freeman 1992, Adam 2004)

σϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � SCRp ; SCR ¼ s2

c2
(5)

where s represents the amplitude of the dominant scatterer and c the clutter in the surroundings.
Equation (5) can be used to determine a reasonable threshold of SCR. For example, if a phase
standard variance of 0.5 rad2 is desired, the minimum of SCR value is 2. Since the SCR
estimation can be performed with a single image, the SCR method has less requirement on the
size of datasets compared with ADI. As an example, Figure 5(g) and (h) show the selected HPQ
points by SCR method using the thresholds of 0.1 and 0.2, respectively.

3.3.5. Spectral diversity

According to the fact that the spectral behaviour of well-focused dominating point targets is
different with that of distributed targets, HPQ points can also be selected. The physical basis
for this method is that for point targets almost the same backscattering intensity is found
when processing different looks with fractional azimuth and range bandwidth (Werner et al.
2003). Advantages of this method are that it works for the cases where only a small number
of images are available and it has less requirement on radiometric calibration. Figure 5(i)
shows the selected HPQ points according to spectral diversity using a threshold of 1.2.

Besides the aforementioned methods, there are several other methods that have been
developed and used in MTInSAR processing routines, for example maximum likelihood
estimation (Shanker and Zebker 2007) and DespecKS (Ferretti et al. 2011). More recently,
methods that can identify or predict HPQ points according to land cover maps have also
been proposed (e.g. Cigna et al. 2014).
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3.4. Points VS arcs

Due to the existence of phase ambiguities, phase measurements at a single HPQ point are
meaningless and cannot be directly used for the retrieval of parameters of interest. There are
two strategies to deal with the wrapped phases. One is unwrapping the HPQ points in each
interferogram. Once the ambiguity integers have been eliminated, phases at HPQ points
would reflect obvious contributions of deformation, DEM error, orbit inaccuracy, atmospheric
artefacts and other noise, and can be employed as observations of MTInSAR techniques (e.g.
SBAS). On the other hand, phase differences at arcs construed among neighbouring HPQ
points can also be taken as observations. Actually this strategy has been adopted by most
MTInSAR techniques. Technical innovations lie in how to deal with the integer ambiguities in
phase differences. For instance, ambiguities can be estimated or eliminated by 3D phase
unwrapping (e.g. StaMPS), integer least squares (e.g. STUN) and maximum ensemble
coherence (e.g. PSInSAR, CPT). Arcs having ambiguities can also be detected and removed
by an outlier detector (e.g. TCPInSAR). One advantage of taking arcs as observations which
has long been addressed is that spatial correlated atmospheric artefacts can be largely reduced.
This is generally true for most arcs, although there are unavoidably some arcs at which the
atmospheric components have been enlarged. Figure 6 shows simulated atmospheric phases at
HPQ points and arcs. Arcs in Figure 6(b) and (c) are constructed by Delaunay and phase
gradient–aided method, respectively. It is clear that in Figure 6(b) there are some arcs having
larger phase values than at points. When the phase spatial variations are considered (i.e. Figure
6(c)), the number of those arcs can be significantly reduced.

4. Modelling

The phase values at HPQ points, which are related to several parameters we are seeking
(Equation (1)), are the basis of MTInAR modelling. Considering M interferograms
generated from N SLC images and G arcs constructed from P HPQ points according to
an index matrix C where the column corresponding to the point with known DEM error
and deformation has been removed. For a given pixel x, it has a perpendicular baseline
vector B?;x ¼ � 4π=λð Þ � 1=ρ sin θð Þ B1

?;x � � � Bi
?;x � � � BM

?;x

� �
and a temporal base-

line vector Bt ¼ � 4π=λð Þ B1
t � � � Bi

t � � � BM
t

� �
. In this section, we will introduce the

relationship between phase observations (either wrapped or unwrapped) and parameters.

Figure 6. (a) Simulated atmospheric artefacts at coherent points; (b) atmospheric artefacts at arcs
constructed by Delaunay triangulation; (c) atmospheric artefacts at arcs constructed by gradient-
based networking.
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4.1. Model for topographic error elimination

Recalling Equation (1), for a pixel x having an unwrapped topography-related phase
observation in the ith differential interferogram (ϕidint;x), the contribution of topographic
error can be modelled as

ϕidint;x;topo ¼ � 4π
λ

Bi
?;x
hres;x

Rx sin θx
(6)

Considering a stack of observations in M interferograms, the function model can be
expressed as

ϕdint;x;topo ¼ B?;xhres;x (7)

where ϕdint;x;topo is the observation vector contributed by topographic error, that

is ϕ1dint;x;topo � � � ϕidint;x;topo � � � ϕMdint;x;topo
h iT

:

However, as stated in Section 3, if the phases at HPQ points are wrapped, we have to use
phase difference at arcs as observations. In this case, for a given arc (g) that is constructed by
point x and one of its neighbouring point. The relationship between the phase difference
(Δϕidint;g;topo) and the relative topographic error (Δhres;g) at the arc has an expression as

Δϕidint;g;topo ¼ � 4π
λ

Bi
?;x
Δhres;g

Rx sin θx
(8)

Similarly, we can get the vector form, as

Δϕdint;x;topo ¼ B?;xΔhres;x (9)

If the observation is dominated by the phase component related to topographic error,
Equation (7) or Equation (9) can be used for topographic error estimation. Among current
MTInSAR techniques, only StaMPS estimates the height-error-related component sepa-
rately, while the direct parameter is not the height error but the so-called look angle error
which is caused by the height error and the difference between the phase centre and the
physical centre of the target (Hooper et al. 2004).

4.2. Model for deformation estimation

SAR image pairs with different time span reflect the temporal evolution of deformation
and therefore can be used to retrieve the deformation time series. However, current
MTInSAR techniques seldom estimate the deformation time series directly. Instead, the
direct parameters employed by MTInSAR techniques are the linear deformation rate or
velocity vector. By doing this, the stability and reliability of solution can be improved. For
a given point (x), let �vx be the linear deformation rate and vx be the deformation velocity
vector including both linear and non-linear parts. Their relationships with the correspond-
ing phase component vector are expressed as (Berardino et al. 2002)
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ϕdint;x;lindefo ¼ Bt;sum�vx

ϕdint;x;defo ¼ Btvx
(10)

Similarly, for a given arc (g), the vector of phase differences at the arc has a relation-
ship with the relative deformation rate and deformation rate vector as (Zhang et al. 2011)

Δϕdint;g;lindefo ¼ BtΔ�vg

Δϕdint;g;defo ¼ BtΔvg
(11)

4.3. Model for orbit error estimation

Orbit error in an interferogram can be modelled by a low-order polynomial. Since an
interferogram is a linear combination of two SLC images, the orbit error can also be
mathematically represented by a combination of two polynomials associated with SLC
images. It should be noted that such polynomials do not have any physical meaning
while by doing this the number of parameters to be estimated can be significantly
reduced. Further assuming one reference image that is immune to the orbit error, the
relative orbit error of a pixel x with coordinates (X,Y) with respect to the reference
image is expressed as

Δϕjorb;slc;x ¼ ajX þ bjY þ cjXY ; j ¼ 1; � � � ;N � 1 (12)

where aj, bj and cj are the unknown coefficients. The defined polynomials can be
combined to describe the orbit phase in any interferogram. In the following, we only
consider the case of observations consisting of wrapped phases. The relative orbit
errors at all arcs in an SLC image can be written as

Δϕjorb;slc ¼ ajdX þ bjdY þ cjdXY ; j ¼ 1; . . . ;N � 1 (13)

where dX , dY and dXY are the vectors of pixel coordinate differences. The matrix form of
Equation (12) is

Δϕjorb;slc ¼ DjPj
slc;orb; j ¼ 1; . . . ;N � 1 (14)

where Dj ¼ dX dY dXY½ � and Pj
slc;orb ¼ aj bj cj½ �T . Let A be a matrix for inter-

ferometric operation to generate M interferograms from N SLC images (Zhang et al.
2014). The design matrix linking the observations at arcs and orbit error parameters is

Dorb ¼ A� D (15)

where � denotes the Kronecker tensor product. The phase components due to orbit
errors at all arcs of interferograms can then be defined as

Δϕorb ¼ DorbPorb (16)

14 L. Zhang et al.
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We refer readers who are interested in the details of orbit error modelling to Zhang
et al. (2014).

4.4. Typical MTInSAR models

4.4.1. Point-based model

For the unwrapped phase observations, the contribution of DEM error and linear defor-
mation is expressed as

ϕdint;x;topo þ ϕdint;x;lindefo ¼ B?;x Bt;sum½ � hres;x
�vx

	 

(17)

Provided that the remained terms have a relatively small magnitude and can be safely
taken as noise, the observation model for estimation of DEM error and linear deformation
rate has the following form:

ϕdint;x ¼ B?;x Bt;sum

� � hres;x
�vx

	 

þ ϕnoise (18)

After eliminating the phase contribution of DEM error, the remained phase is mainly
contributed by deformation which can be modelled as

ϕdint;x;defo ¼ Btvx (19)

Although most current MTInSAR techniques employ two steps to separate DEM error
and deformation signal, there is also a promising model proposed by Samsonov et al.
(2011) that can jointly estimate the DEM error and successive deformation rate vector
from a set of unwrapped short baseline interferograms. The model can be expressed as
(Samsonov et al. 2011)

ϕdint;x ¼ B?;x Bt;sum

� � hres;x
vx

	 

þ ϕnoise (20)

Since the number of unknowns in the model is larger than the effective observations whose
number is one less than the amount of SLC images, least squares, as the solver, is enhanced by
minimum-norm criteria that is implemented via singular value decomposition (SVD).

4.4.2. Arc-based model

Arc-based MTInSAR model can be derived similarly as point-based model. We give here
directly the equation for estimation of relative topography error and deformation rate at
arcs (Zhang et al. 2011).

Δϕdint;g ¼ B?;x Bt;sum

� � Δhres;g
Δ�vg

	 

þ Δϕnoise;g (21)

Orbit error can also be jointly modelled together with topographic error and deforma-
tion rate (Zhang et al. 2014). The joint model has the form as
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Δϕall;arcs
ðM�GÞ�1

¼ DP þ W
ðM�GÞ�1

(22)

with

D ¼ Dpar Dorb½ �
P ¼ Ppar Porb½ � (23)

where Dpar is the design matrix relating the observations and deformation rate and
topographic error at each coherent point except for one reference point, that is Ppar.

5. Parameter estimation

The advances in MTInSAR techniques have been driven by not only the availability of
abundant SAR data but also the evolving parameter estimation methods. The bulk of
studies of MTInSAR technique actually lie in how to retrieve deformation parameters
from the wrapped phases at these high-quality points selected. The integer ambiguities
associated with the phase measurements hinder a direct estimation, therefore one natural
solution is unwrapping each interferogram first to eliminate the ambiguities, which is a
routine processing of SBAS. This solution is preferred by SBAS simply because success-
ful unwrapping at selected points is only possible for interferograms with relatively short
baselines. However, in some extreme cases the success rate cannot be guaranteed, which
motivated the development of robust parameter estimation methods (e.g. Lauknes et al.
2011) that can well suppress the effects of wrongly unwrapped phases at the cost of low
computing efficiency. When solving deformation time series from these phases without
phase ambiguities (see Equation (18)), it is possible that the number of observations is not
enough for parameter estimation. In other words, the design matrix is rank deficient,
which means there are an infinite number of solutions. To tackle this problem, SVD has
been proposed and used by SBAS (Beradino et al., 2002). The reason why SVD could
result in a reasonable solution in many cases is that by SVD a minimum-norm constraint
has been added to the parameters besides the least squares criterion. This constraint is
reasonable when taking velocities at each temporal intervals rather than deformations as
parameters, an inherent requirement of SBAS. Besides directly unwrapping the observa-
tions, there are several methods that estimate the parameters directly from wrapped
phases. Among them the most widely used one is denoted as temporal coherence max-
imisation (Ferretti et al. 2001, Colesanti et al. 2003, Mora et al. 2003). As a non-linear
inversion problem, the method conducts a search through the solution space to maximise a
temporal coherence index and therefore determine the parameters, typically the DEM
errors and the predefined deformation model (e.g. linear rate). 3D unwrapping implemen-
ted in StamMPS is also an excellent method. Integer phase ambiguities can also be taken
as parameters together with those of our interests as proposed by Kampes and Hanssen
(2004). Integer least squares is then used to resolve the solution. In addition, linear
inversion is also possible for parameter estimation directly from wrapped phases provided
that the observations having phase ambiguities can be well detected and removed. This is
the theoretical basis of methods proposed by Zhang et al. (2011, 2012). In the following,
we will give a brief introduction on these estimation methods.
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5.1. Linear inversion with unwrapped observations

When the observations are the unwrapped phases, the parameters can be retrieved by a
least squares approach from Equation (18).

ĥres;x
�̂vx

	 

¼ ðBx

TBxÞ�1Bx
Tϕdint;x (24)

where Bx ¼ B?;x Bt;sum

� �
. It should be noted that although there are two resolved

parameters, in SBAS only the DEM error term (h) is used for eliminating the phase
component caused by topographic residuals. A re-unwrapping operation at the HPQ
points is closely followed to reduce the unwrapping errors caused by topographic resi-
duals. From the re-unwrapped phases where the deformation-related signal is dominated,
the deformation rates at successive temporal intervals can be resolved by minimum-norm
least squares, which in SBAS technique are implemented by SVD.

5.2. Linear inversion with wrapped observations

5.2.1. Integer least squares

When the observations are the wrapped phase differences at arcs and the parameters are
velocity difference (Δvg), height error difference (Δhg) and integer ambiguities (N) in a
total of M interferograms, Equation (21), can be rewritten as (Kampes 2006)

Δϕdint;g ¼
�2π

�2π
. .
.

�2π

2
664

3
775

N 1

N 2

..

.

NM

2
664

3
775þ Bg

Δhres;g
Δ�vg

	 

þ Δϕnoise (25)

For each arc, M integer ambiguities and two real-valued parameters have to be
estimated from M observed wrapped phase differences. The solution to this system can
only be obtained by using a priori knowledge of the integer nature of the ambiguities
(Kampes and Hanssen 2004). Integer least squares method is used by STUN for parameter
estimation.

5.2.2. Least squares with ambiguity detector

For an MTInSAR system in which multi-master interferograms with short baselines
(spatial and temporal) are involved, there are usually sufficient arcs constructed by
neighbouring coherent pixels that do not have phase ambiguities. If these arcs can be
reliably identified, parameter estimation on these arcs can be greatly simplified. For any
arc regardless of phase ambiguities, the least squares solution of unknowns from Equation
(21) is as follows:

Δhres;g
Δvg

	 

¼ ðBg

TPgBgÞ�1ðBg
TPgΔϕdint;gÞ

R ¼ Δϕdint;g � ðBg
TPgBgÞ�1ðBg

TPgΔϕdint;gÞ
(26)
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where R is the least squares residual vector and Pgis the weight matrix, which can be
obtained by taking the inverse of a prior variance matrix of the double-difference phases
(Zhang et al. 2011). Experience shows that the least squares residuals for an arc with and
without phase ambiguities are quite different, indicating that phase ambiguities can bias
the parameter estimation significantly (Zhang et al. 2011, 2012). Therefore, an ambiguity
detector can be designed by taking account of the least squares residuals. After removing
the arcs with phase ambiguities, parameters for the remaining arcs are integrated to obtain
parameter estimates at all coherent points with respect to a designated reference point.

5.3. Non-linear inversion with wrapped observations

Since observation vector is ambiguous, the parameter estimation from Equation (19) is a
non-linear inversion problem. A temporal coherence index (γg) is commonly used for this
inversion (Ferretti et al. 2001, Mora et al. 2003). Given a total of M interferograms, γgis
defined as

γg ¼
1

M

XM
i¼1

e�jΔϕinoise;g

�����
����� (27)

where j ¼ ffiffiffiffiffiffiffi�1
p

. By setting appropriate variation ranges for the velocity difference (Δvg)
and height error difference (Δhres;g), one can search for the maximum coherence, γg,
within the specified two-dimensional ranges using small sampling intervals. Then the
values for Δvg and Δhres;gcan be found. When Δvg and Δhres;g for all neighbouring pixel
sets are determined, the absolute values of DEM error and linear deformation rate at each
coherent pixel can be derived through spatial integration with respect to an arbitrary
reference point, where the DEM error and linear deformation rate are known or assumed
to be zero. Note that the solution search can only be successfully performed under the

condition of ωk
i;x;y

��� ���<π, which can be met in most cases. The method is applicable to both

single-master and multiple-master InSAR stacks. However, the limitation associated with
this method is that the solution searched cannot be guaranteed to be unique. In other
words, there are several solutions corresponding to the same peak at some arcs. As an
example, Figure 7 shows the coherence map at the solution searching procedure at one arc
where more than one solution pairs can reach the peak of ensemble coherence.

5.4. 3D phase unwrapping

There is another popular way to retrieve the deformation parameters, termed 3D phase
unwrapping (Hooper 2006), which is implemented in StaMPS. It is based on the fact that
phase differences at arcs usually appear to have small spatial variations (typically less than
half a cycle) while having large temporal variations. In 3D wrapping, the phase differ-
ences at arcs are first unwrapped in temporal domain under the assumption that the
deformation signal is smooth. The unwrapped results are used to build a probability
density function for the phase differences at arcs in each interferogram and then the
optimisation routines of statistical-cost, network-flow algorithm for phase unwrapping
(SNAPHU) (Chen 2001) are applied to search for the most likely positions of phase
ambiguities. The cost function is derived not only by SNAPHU itself but also by some
additional requirements such as that phase jumps cannot be placed between grid cells
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interpolated from the same sparse value and that the probability of phase jumps between
other cells depends on the evolution of the phase difference between the cells with time
(Sousa et al. 2011).

As a summary, Table 1 shows the estimators used by several current MTInSAR
techniques where the observation type as well as the methods for coherent point selection
are also addressed.

5.5. Deformation estimation over Zhanghua-Yunlin area in Taiwan

We conduct a comparative study over four parameter estimators (i.e. linear inversion with
ambiguity detector used in TCPInSAR, 3D unwrapping used in StaMPS and least squares
used in SBAS and Samsonov’s method) aiming to validate their performance. A total of
14 Envisat/ASAR images acquired from January 2007 to September 2008 over Zhanghua-
Yunlin area (Figure 8) in Taiwan are used as testing data. The HPQ points are selected,
respectively, using phase stability method and improved coherence map method. It is clear

Table 1. Comparison among parameter solvers used by current MTInSAR techniques.

Techniques Interferogram type Observation Point selection Parameter solver

PSInSAR/
PSI

Single master Arc ADI Temporal coherence
maximisation

SBAS Multiple master Point Coherence Minimum-norm least squares
StaMPS Single/multiple

master
Arc Phase stability 3D unwrapping

CPT Multiple master Arc ADI and
coherence

Temporal coherence
maximisation

STUN Single master Arc ADI and SCR Weighted integer least squares
Pi-rate Multiple master Point Coherence Least squares with Laplacian

smoothing
IPTA Single master Arc ADI and SD Temporal coherence

maximisation
Samsonov’s Multiple master Point Coherence Minimum-norm least squares
TCPInSAR Multiple master Arc Coherence Least squares with ambiguity

detector

Figure 7. An example of solution space searching used by PSI where multiple parameters
correspond to the same peak of ensemble coherence, indicating that unique solution cannot be
guaranteed.
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that both methods can select abundant HPQ points in the area of interest. Following the
respective estimation procedure, the deformation signal has been retrieved and the
deformation rates are shown in Figure 9. A comparison among InSAR-derived deforma-
tion time series at five GPS stations is shown in Figure 10. It is observed that the
deformation patterns retrieved by these estimators are generally consistent, while there
are areas having discrepancy. In our opinion, the discrepancy is mainly resulted by
improper selection of parameters (e.g. window size of the filter and threshold) when
implementing these estimators and cannot indicate one method has better performance
than others.

6. Conclusion

TheMTInSAR technique is gainingmore andmore popularity for deformationmonitoring over
the past decade. Compared with the original form, the MTInSAR technique itself has evolved
significantly almost in every step of the processing chain. However, the ultimate goal of
technique remains unchanged. How to accurately retrieve the signals of interests at highest
resolution in a most efficient way is always the central concern of current MTInSAR technical
branches. To this end, abundant advanced algorithms have been developed and some of them
released as open-source software packages have achieved vast applications. The progress in
MTInSAR techniques indeed provides a solid underpinning for its future development. There
are several possible areas for further research including efforts aimed at:

(1) Providing optimal observations for MTInSAR technique. The starting point of
all MTInSAR techniques is the co-registered SAR images. The co-registration

Figure 8. The location of the study area overlapped on SRTM DEM Map. The box outlines the
studied area.
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is designed for the whole image rather than the HPQ points, which could
result in possible phase errors for HPQ points. A HPQ-based co-registration
strategy should be developed to avoid such error. Many thresholds are used in
current MTInSAR techniques for like, HPQ selection, interferogram selection
and also for parameter estimation, while proper selection of these thresholds is
sometimes very challenging and often largely depends operators’ experience. It
actually indicates current techniques should be further optimised. In addition,
there is still room for improvement on network construction for arc-based
MTInSAR techniques, so that the constructed arcs have proper density and can
better suppress the effects of atmospheric artefacts.

(2) Advanced modelling. Joint estimation of several signals together can better utilise
the spatial–temporal features of these signals and therefore better isolate the
interested signals, which has been proved effective by, for example a joint
model for simultaneous estimation of orbit error and deformation. However,
there is no robust model for jointly estimating the DEM error and deformation
time series. Such a model will be particularly helpful for multiple-master-based

Figure 9. Comparison among deformation results retrieved by four MTInSAR methods: (a) SBAS;
(b) Samsonov’s SBAS; (c) StaMPS and (d) TCPInSAR. The black square (gs21) represents the
reference point and the black triangles are the GPS stations for comparison of InSAR-derived
deformation time series.
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MTInSAR techniques where the topography error is often poorly estimated due to
improper assumption of deformation evolution.

(3) Developing a universal parameter estimator. Although many parameter estimators
are available in current MTInSAR techniques, it is quite often to see discrepancies
existing among the results from these estimators. It partially reflects the limita-
tions of these estimators. Actually there is a lack of a universal estimator. When
designing an estimator, we should consider how well it can estimate the phase
ambiguity or avoid the phase unwrapping error and how well it can suppress or
even estimate the atmospheric artefacts. If the estimator can well meet the
aforementioned requirements, its applicability is expected to be universal.

(4) Designing a proper quality assessment method. Quality assessment of InSAR-
derived results is not an easy task. Obviously the comparison with other measure-
ments (e.g. those from levelling and GPS) that are wildly used in publications
owns many limitations and cannot be accepted as an effective method. Variance
and covariance component estimation (VCE) from phase residuals can also not
reliably tell the accuracy of the estimated parameters simply due to the existence
of atmospheric artefacts. Proper quality assessment via VCE could be possible
provided that the atmospheric artefacts can be well isolated.

Figure 10. Deformation time series derived by the four MTInSAR methods at five GPS stations
shown in Figure 9.
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