Faculty & Research

Pia Vogel

Biological Sciences

Pia Vogel, Ph.D.


Ph.D. University of Kaiserlautern
DLSB 233

Lab: DLSB 221
Tel: 214-768-1785

Email: pvogel@smu.edu

Research Interests

Structure, Molecular Dynamics and Protein-Protein Interactions of Nucleotide Binding Proteins

F1Fo -ATP-Synthase
Multidrug Resistance Proteins
Ryanodine Receptor

ATP Synthase: Protein-Protein Interactions

The intriguing mechanism of ATP formation or hydrolysis by the FoF1-ATP synthase, Nature’s most powerful and efficient rotary motor, has challenged a great number of scientists worldwide over the last three decades. The importance of this type of basic research was shown when the Nobel Prize in Chemistry 1997 was awarded to two outstanding scientists of the field, Paul D. Boyer and John E. Walker, for their accomplishments in studying this enzyme. 

I have studied F1-ATPase for more than 20 years using a number of different approaches. Since a structure for the mitochondrial F1-ATPase was solved in 1994 by John Walker's laboratory and the rotational motion of the internal γ-subunit of the enzyme can be observed in real time in the experiments from Masasuke Yoshida's laboratory, the questions that are still intriguing and unresolved center around the mechanism of energy-transduction during proton translocation and ATP synthesis or hydrolysis.

My group is focusing on the interactions and the structure of the so-called external stalk of the ATPsynthase that is thought to stabilize the enzyme complex and may be involved in elastic energy coupling between the proton-driven rotation of membrane embedded subunits of the enzyme and the rotation of the internal γ-subunit that causes the binding and release of substrate (ADP) and product (ATP).

Using the powerful Electron Spin Resonance Spectroscopy (ESR), we employ site-specific spin labeling of either the whole enzyme or the potential "stator-subunit" b to elucidate structural and dynamic information. Heavy use is made of state-of-the-art molecular modeling techniques. The data collected in the lab are used to validate structural models created on our two Linux computer clusters.


Multi-Drug Resistance: Regulation, Structure and Function

The family of ABC-type ATPases performs a wide variety of transport processes across cellular membranes. Transport substrates range from import-substrates like nutrients, e.g. sugars, ions and amino acids, to export-substrates like drugs and other hydrophobic, mostly cell-toxic substances. Some members of this family, like the first discovered member MDR1 or P-glycoprotein, are especially problematic in the treatment of human diseases like cancer and AIDS by conferring multidrug resistance to the respective anti-cancer and anti-AIDS drug.

Although high-resolution structures exist for some of the bacterial transporters, much remains to be learned about their molecular mechanisms and the protein dynamics that are key to the enzyme mechanisms. Such information will be extremely valuable even if an X-ray structural model became available in the near future for the human protein. In our group we perform a variety of highly innovative experiments using ESR spectroscopy combined with spin-labeled nucleotides and site-specific spin labeling to further our understanding of the molecular mechanisms that underlie the function of this medically greatly relevant enzyme. We currently study the human drug resistance proteins MDR1 and the MRPs 2 and 3.


Ryanodine Receptor: Structure and Function

Many fundamental biological processes in cells depend on and function as a response to intracellular calcium concentration. Ca2+-release through specific channels is therefore an important signal transduction pathway. One pharmacologically important group of Ca2+ -release channels are the different subtypes of ryanodine receptors that are found in skeletal and cardiac muscle as well as the brain. 

We have recently discovered a potentially novel pathway for the regulation of calcium channels like the ryanodine sensitive Ca-channel, ryanodine receptor 1 (RyR1), using Electron Spin Resonance spectroscopy (ESR) and spin-labeled ATP. Employing this technique we for the first time unequivocally showed that the homo-tetrameric channel contains a total of eight ATP-binding sites and that the accessibility and affinity of these binding sites is directly regulated by divalent cations like Mg2+ and Ca2+.


Scientific Accomplishments

In the past several years my laboratory group has successfully studied nucleotide-binding proteins and enzymes, such as ATPases from different organisms, members of the important family of chaperones as well as the group of p21ras- like small G-proteins. My group uses ESR spectroscopy as a very powerful technique to study the enzymes and proteins. ESR has the advantage of yielding information about conformational differences or transitions within proteins in solution and therefore allows the evaluation of protein dynamics. In addition we are able to obtain structural information upon evaluation of dipolar interaction of bound radicals as well as information about nucleotide binding characteristics of the proteins, such as substrate binding stoichiometries and affinities. In addition to being able to generate mutants, express, isolate and characterize desired proteins, my group also chemically synthesizes some of the needed reporters (spin labels and spin-labeled nucleotides). We also perform our biophysical investigations in our own lab. We are active in a number of very productive collaborative projects that broaden our research spectrum.


Selected Publications

“Subunit b dimer of the Escherichia coli ATP synthase can form left-handed coiled coils”, John G. Wise and Pia D. Vogel, (2007) submitted

“Structure of the Cytosolic Part of the Subunit b-Dimer of Escherichia coli FoF1-ATP Synthase”, Tassilo Hornung, Oleg A. Volkov, Tarek M. A. Zaida, Sabine Delannoy, John G. Wise and Pia D. Vogel, (2007) submitted

“Insights into the Regulation of the Ryanodine Receptor: Differential Effects of Mg2+ and Ca2+ on Nucleotide Binding”, Dias, J.M., Szegedi, C, Jóna, I., and Vogel, P.D. (2006) Biochemistry 45, 9408 – 9415

“Mammalian Sprouty Proteins Assemble into Large, Monodisperse Particles Having the Properties of Intracellular Nanobatteries”, Wu, X., , Alexander, P., He Y., Kikkawa,M, Vogel, P.D. and McKnight, S.L (2005) Proc. Natl. Acad. Sci. USA, 102, 14058-14062

“Novel Immunotoxin: A Fusion Protein Consisting of Gelonin and an Acetylcholine Receptor Fragment as a Potential Immunotherapeutic Agent for the Treatment of Myasthenia Gravis”, Hossann, M., Li, Z., Shi, Y., Kreilinger, U., Buettner, J., Vogel, P.D., Yuan, Y., Wise. J.G., and Trommer, W.E. (2005) Protein Expression and Purification, 46, 73-84.

“Nucleotide-Binding to the Multidrug Resistance P-glycoprotein”, Delannoy, S., Urbatsch, I.L., Tombline, G., Senior, A.E and Vogel, P.D. (2005), Biochemistry 44, 14010-14019

“The Subunit b Dimer of the FoF1-ATPase Synthase: Interactions with F1-ATPase as Deduced by Site-Specific Spin-Labeling", Motz, C., Hornung, T., Kersten, M., McLachlin, D.T., Dunn, S.D., Wise, J.G., and Vogel, P.D. (2004) J. Biol. Chem. 279, 49074-49081

“Association of α-subunits with nucleotide-modified β-subunits induces asymmetry in the catalytic sites of the F1-ATPase α3β3-hexamer”, Burgard, S., Harada, M., Kagawa, Y., Trommer, W.E., and Vogel, P.D. (2003) Cell Biochem. Biophys. 39, 157-181

“New Aspects on the Mechanism of GroEL-Assisted Protein Folding”, Guhr. P., Neuhofen, S., Coan, C., Wise, J.G., and Vogel, P.D., (2002) Biochim.Biophys. Acta 1596, 326-335

“ESR and fluorescence studies of the bound-state conformation of a model protein substrate to the chaperone SecB”, Panse, V.G., Trommer, W.E., Vogel, P.D and Varadarajan, R. (2001) J. Biol. Chem. 276, 33681-33688

“A thermodynamic coupling mechanism for the disaggregation of a model peptide substrate by chaperone SecB”, Panse, V.G., Vogel, P.D., Trommer, W.E., and Varadarajan, R., (2000) J. Biol. Chem. 25, 18698-18703

“Site-Directed Spin-Labeling of the Catalytic Sites Yields Insight into the Structure of the FoF1-ATP Synthase of Escherichia coli”, Kersten, M.V., Dunn, S.D., Wise, J.G., and Vogel, P.D. (2000) Biochemistry 39, 3856-3860



“Nature’s Design of Nanomotors”, Vogel, P.D. (2005) Eur. J. Pharm. Biopharm 60, 267-277

“Nanomotor F1-ATPase” Vogel, P.D. (2004) Encyclopedia of Nanoscience and Nanotechnology (Nalwa, H.S., Editor) American Scientific Publishers, 83-89

“Insights into ATP Synthase Structure and Function Using Affinity and Site-Specific Spin-Labeling”, Vogel, P.D. (2000) J. Bioenergetics and Biomembranes, 32, 413-421

“Photoaffinity Spin Labeling”, Trommer, W.E. and Vogel, P. (1992) in Bioactive Spin Labels, Zhdanov, R., Editor, 405-427, Springer, Heidelberg


Textbooks for Distance Education:

“Nanomotors”, Vogel, P.D. (2005) European Distance Education Programme “Nano-Biotechnology”, Zentrum für Fernstudien & Universitäre Weiterbildung, Technische Universität Kaiserslautern

Studienbrief Technik in der Medizin: “Gentechnische Arbeitsmethoden”, Vogel, P.D. and Wise J.G. (1999) Zentrum für Fernstudien & Universitäre Weiterbildung, Universität Kaiserslautern

Studienbrief Technik in der Medizin: “Gentechnik und Biotechnologie in der Medizin”, Vogel, P.D. (Mitarbeit von Eckert, H.-G., Trommer, W.E.) (1999) Zentrum für Fernstudien & Universitäre Weiterbildung, Universität Kaiserslautern

Studienbrief Medizinische Physik und Technik, “Biochemie und Biophysik”, Trommer, W., Hüttermann, J., Vogel, P.D., and Wise, J.G. (1995) Zentrum für Fernstudien & Universitäre Weiterbildung, Universität Kaiserslautern



Provisional US Patent Application: McKnight, S., Wu, X., Vogel, P.D., Alexander, P., Peterson, J.B., Dann, C., and Kikkawa, M., “Nano-batteries comprising Sprouty and SPRED protein modules and complexes.” Priority Date, Jan. 6, 2005

US Patent Application: McKnight, S., Wu, X., Vogel, P.D., Alexander, P., Peterson, J.B., Dann, C., and Kikkawa, M., “Sprouty & SPRED Protein Biosensors” UTSD:1638-1, US Patent Appl. Serial No. 11/327,834, January 6, 2006



1997 University of Kaiserslautern. Habilitation in Biochemistry Investigation of the structure and function of ATP-dependent proteins and enzymes. Studies include ATP synthase, multi-drug resistance protein and the ryanodine receptor.

1987 University of Kaiserslautern. Doctor of Natural Sciences in Biochemistry. Structure and Function of the FoF1-ATPase.


Professional Experience

1987-1988 Post-doctoral fellow with Professor R.L. Cross, Department of Biochemistry, Health Sciences Center, SUNY, Syracuse, New York, USA
1988-1989 Research scientist, Department of Biochemistry, Health Sciences Center, SUNY, Syracuse, New York, USA
1989-3/1991 Senior research scientist, Department of Biochemistry, Health Sciences Center, SUNY, Syracuse, New York, USA
1991-1997 Hochschulassistentin, Universität Kaiserslautern, Department of Chemistry/Biochemistry: to obtain the further qualification needed for a German Professor-position.
7/97 to 5/98 Privat Dozentin of the Universität Kaiserlautern, Department of Chemistry/Biochemistry.
1998-2002 Hochschuldozentin of the Universität Kaiserlautern, Department of Chemistry/Biochemistry.
2002-2007 Assistant Professor for Biochemistry, Southern Methodist University, Dallas, TX
2007 Associate Professor for Biochemistry, Southern Methodist University, Dallas, TX



  • 1987-1989: Post-doctoral fellowship from the Deutsche Forschungsgemeinschaft
  • 1998: Awardee of the Prize for Exceptional Accomplishments from the Kreissparkassen Foundation
  • 2001: Honorary Professor of the Shanxi University in Taiyuan, China


International Collaborations

  • Stanley D. Dunn, Department of Biochemistry, University of Western Ontario, Canada
  • Istvan Jona, Department of Physiology, University Medical School of Debrecen, Hungary
  • John G. Wise, Department of Biological Sciences, Southern Methodist University, Dallas
  • Holger Lill, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
  • David M. Clarke, Canada Research Chair in Membrane Biology, University of Toronto, Toronto, Canada
  • Steven McKnight, UT Southwestern Medical School, Dallas


Research Group

  • Andrea Hoffman: Ph. D. student: Multidrug resistance proteins
  • Oleg Volkov, Ph.D. student: Structure and Function of the F1Fo-ATPase
  • Susan Pandey, Ph.D. student: Structure and Function of the F1Fo-ATPase
  • Undergraduate Researchers: Nabila Choudhury, Jupin Malhi



  • Biochemistry (BIOL 5310)
  • Bio/Nanotechnology (BIOL 4310)