Establishing a Stopping Rule for an Instructionally Informative Diagnostic Assessment of Algebra Readiness

Deni Basaraba, Paul Yovanoff, & Leanne Ketterlin-Geller
Research in Mathematics Education
Southern Methodist University
Overview of the Presentation

• Rationale for diagnostic assessment of algebra readiness
• What are stopping rules and why are they important?
 – Rationale for stopping rules
• How do you establish a stopping rule?
 – Our definition of a stopping rule and criteria used to evaluate
• Methods
• Results
Rationale for Diagnostic Assessment of Algebra Readiness

• Recent student performance data indicate that 27% of 8th students are considered *Proficient* and only 9% are considered *Advanced* on the most recent NAEP (NCES, 2013)

• More states, districts, and schools are implementing multi-tiered integrated models of instruction and assessment to help identify students who may struggle to reach grade-level proficiency standards

• Successfully supporting these students requires access to theoretically-grounded, technically adequate diagnostic assessments to help teachers pinpoint *why* students may struggle with the content
What are Stopping Rules?

• Stopping rules typically specify a number of items that can be missed within a set of given items before administration of an assessment is discontinued
 – Premise: If items are ordered from least to greatest difficulty, stopping administration of the assessment after a child misses a certain number of items is unlikely to result in a loss of information
 – Employed on a number of achievement tests and, more recently, on formative mathematics assessments
 – Important because they are designed to provide an accurate estimation of student ability without requiring students to take all of the items on the assessment
Why are Stopping Rules Important?

• Rationale for including a stopping rule in an assessment is fourfold
 – Minimize test-taking burden placed on students and any fatigue they might experience
 – Maximize test-taking time efficiency
 – Obtain accurate estimates of students’ current level of knowledge, skills, and understanding of the assessed content
 – May support the instructional utility of the results for teachers
How do you establish a stopping rule?

• Our definition of a stopping rule
 – The point at which administration of an assessment is discontinues that provides teachers with a reliable estimate of understanding about the assessed content and sufficient information to help him/her target instruction to meet students’ learning needs
How do you establish a stopping rule?

• Consider the type of information about student errors you wish to collect
 – Slips: Random errors in students’ procedural and declarative knowledge
 • Focus on mastery of content within the domain
 – Bugs: Persistent misconceptions about domain-specific knowledge or skills that consistently interfere with students’ ability to demonstrate their understanding of the content
How do you establish a stopping rule?

- Potential criteria to consider
 - Efficiency
 - Administering only as many items as necessary to estimate ability reliably
 - Reliability
 - Administering enough items to have reasonable degree of confidence in estimation of ability
 - Relevance
 - Is information obtained from the assessment instructionally relevant for teachers?
Method

Participants

• Full Sample: 270 students in Grades 5-8 from 3 middle schools
• Analytic Sample: 55 students
 – 18 5th grade students
 – 20 6th grade students
 – 11 7th grade students
 – 6 8th grade students

Measure

• Diagnostic assessment of algebra readiness designed using mathematical learning progressions as the cognitive model
• Complex structure
 – Learning Progression (target learning goal)
 – Learning Progression Level (progress variables)
 – Level (intermediate level of achievement)
 – Sublevel (learning performances)
• Stopping rule: 3 consecutive items incorrect within a Level
Structure of MSTAR Learning Progression

- **Learning Progression (Target Learning Goal)**
- **Learning Progression Level (Progress Variables)**
- **Level (Intermediate Levels of Achievement)**
- **Sublevel (Learning Performances)**

Items within a test form (LP Level) are ordered across Levels by item difficulty from easiest to hardest.

Items are also ordered within Levels and Sublevels from easiest to hardest.

2 Learning Progressions

One test for each of 5 LP Levels

Multiple Levels comprise each LP Level

Multiple Sublevels comprise each Level
• Two types of stopping rules are proposed
 – Comparing three consecutive incorrect responses to two- and four consecutive incorrect responses
 – Comparing 80% proficiency to other, less stringent percent proficiency criteria
Analyses

• Efficiency
 - Use 2 PL item parameters to estimate (a) student ability and (b) probability that student will respond correctly to next item (conditional on the ability estimate and known item parameters)
 - Use logistic regression to treat correct responses on the next item as a dichotomous DV and number of sequential incorrect responses (e.g., 1, 2, 3) as IV

• Reliability
 - Use 2 PL item parameters, estimate student ability and overall measurement reliability after each item response
Results - Efficiency

Probabilities of responding incorrectly to the next test item conditional on a sequence (1, 2, 3) of incorrect responses

<table>
<thead>
<tr>
<th>Level</th>
<th>Observed Probability</th>
<th>Logistic Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
<td>0.52</td>
</tr>
<tr>
<td>5</td>
<td>0.39</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>0.29</td>
<td>0.53</td>
</tr>
<tr>
<td>7</td>
<td>0.47</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Apart from Level 5, the probability of selecting an incorrect response is greater than the probability of selecting a correct response after 2 consecutive incorrect responses.

Stopping rule of 2 or 3 consecutive incorrect responses may be defensible.
Results - Efficiency

Probabilities of responding incorrectly to the next test item conditional on meeting a set percent proficiency criterion for all items in the Level (e.g., 80% of items within a Level correct)

<table>
<thead>
<tr>
<th>Level</th>
<th>80% or higher</th>
<th>70% - 80%</th>
<th>60 – 70%</th>
<th>Less than 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.31</td>
<td>0.40</td>
<td>0.37</td>
<td>0.47</td>
</tr>
<tr>
<td>5</td>
<td>0.31</td>
<td>0.40</td>
<td>0.34</td>
<td>0.44</td>
</tr>
<tr>
<td>6</td>
<td>0.21</td>
<td>0.26</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>7</td>
<td>0.68</td>
<td>0.48</td>
<td>0.51</td>
<td>0.54</td>
</tr>
</tbody>
</table>

For Levels 4, 5, and 6, probability of selecting an incorrect response was relatively low (~0.30) when students were held to an 80% proficiency criteria.

As the percent proficiency decreases (e.g., 60%) the probability of selecting an incorrect response increases.
Results - Reliability

Using 2 PL item parameters and computer-adaptive testing (CAT) psychometric modeling, estimated ability and overall measurement reliability

Optimal stopping rule will be response at which neither ability nor reliability change by some specified amount

<table>
<thead>
<tr>
<th>Level</th>
<th>Number of Consecutive Incorrect Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0.72</td>
</tr>
<tr>
<td>5</td>
<td>0.23</td>
</tr>
<tr>
<td>6</td>
<td>0.39</td>
</tr>
<tr>
<td>7</td>
<td>0.45</td>
</tr>
</tbody>
</table>