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requirements, such as frequential ones and hence to derive new algo-
rithms. Also, we can use the reduced-order formulation to consider
the expansion of the positively invariant set when the saturations
are applied [19] and to evaluate some performance requirements in
the interior of the extended set. Investigations in these directions, as
well as in the integration of reduced-order observers in the control
schemes, are being developed.
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observer Parameterization for simultaneous observation

R. Kovacevic, Y. X. Yao, and y. M. Zhans.

Abstract-The stable inverse approach is used to obtain the observers
for the simultaneous observation of a given set of ptants. A parameter-
ization in terms of a stable ihverse and a stable null space ii proposed
for aII simultaneous observers. To verify the effectivenesi of the proposed
method, a design example is also given.

I. INrnooucnon

The problem of simultaneous observation was first introduced
in [l] and can be stated in the following way: given a set of
plants Go(s), Gr("),  . . . ,G,(s), f ind a common observer which
can observe the states of each of these plants. The simultaneous
observation can be regarded as a dual problem of the simultaneous
stabilization in [2]-[a].

The simultaneous observation problem arises from the practical
observation problem. An application of simultaneous observation
is reliable observation, where the plant has known discrete per-
turbations which arise from sensor, actuator, or component faults.
In this case, Gs (s) can be regarded as a nominal plant model,
representing the transfer matrix of the plant when no faults occur
and Gt("),"',G,.(") as transfer maffices of the same plant in
the presence of different faults. It is desired to observe the states
of the nominal plant and the perturbed plants, that is, the states
of Go(s),Gr(")," ' ,G,(s), using a single observer. The second
application is the design of a fixed observer for a nonlinear plant
having multiple operating conditions. The nonlinear plant can be lin-
eaized in these operating conditions. Thus Go ("), G, ("), . . . , G,^(s)
represent linearized models of the plant at various operating points,
and a common observer needs to be designed for all of the linearized
models. Another important application is the robust observer design
problem, where the objective is to design an observer for a given
set of plants that represent all continuous perturbations of a nominal
plant.

In the previous work [1], the mathematical formulation for the
simultaneous observation problem was obtained. The coprime factor-
ization technique was used to solve the proposed problem. Necessary
and sufficient conditions for the existence of a simultaneous obser-
vation has been given. In particular, these conditions showed that
simultaneously observing r f 1 plants is equivalent to simultaneously
observing r auxiliary plants using a common observer. The simulta-
neous observer can be computed for two plants using the proposed
design method. However, the simultaneous observer design for r ) 2
has not been solved yet.

In this paper, our main objective is to study the parameterization
problem of all simultaneous observers for a given set of plants. The
result can give the general form of simultaneous observers through
a computational algorithm in the form of state space. The resultant
parameterization can be used to obtain a simultaneous observer for r
plants (, > 2) when certain conditions are satisfied.

when disturbances exist in a given set of plants, estimation errors
are caused. with the aid of the simultaneous observer parameter-
ization achieved here, the estimation error dynamics can also be
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parameterized. This will extend the result for the case of a single
plant in [5] and t6l.

The proposed approach is based on the fact that a nonsquare
matrix of stable rational functions generally possesses a stable one-
side inverse. The stable inverse approach [7] has been applied to
obtain the controller parameterization for simultaneous stabilization
t8l-tlll. In the present paper, motivated by the approach for the
simultaneous stabilization which is developed recently in [9]-[11],
we treat its dual problem using the same technique. It wiu be seen
that the parameterization of a simultaneous observer presents a dual
result to the parameterization of simultaneous stabilizing controllers.

The following notations will be used throughout this paper. ̂B(s)
denotes real rational functions. .R.F"" denotes stable and proper
rational functions with real coefficients. XPx- denotes p x rn
matrices with their elements in X, where X = E("), RHoo, etc.
The state-space realizations of the transfer function matrix G(s) are
represented by

G ( s ) -  C ( s I - A ) - ' B * D :

II. PRonleiu DrscnrrrtoN AND PRrulvrrrlRrues

Consider a set of linear time-invariant multi-input-multi-output
(MIMO) plants described by

b(t )=A;n( t )*B. ;u( t )

v(t) =c;a(t) * Dru(t)
z( t )  : ,  E; t ( t ) , ,  i  =  1,2, . . .  , r

where r(t) € R" is the state vector, u(t) e.R- is the input vector,
y(t) e .Rp is the measured ouput vector, z(t) e ft& is the state
to be estimated, and Al, B;,C;, Di, and E; are constant matrices
of the fth system with appropriate dimensions. The Eansfer function

, description of (lH3) is given by
\,
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Introducing the partial state {(s), we can rewrite (4) with the
factorization (9) as

M,(s)€(")  -u(s)

Ir,(")€(") =s(s).

Correspondingly, the variable "(s) - E*(s) in (5) can be expressed
bv [l]

z(s) = P;(s)€(s) (13)

with

It is known that E;s can be observed using (7) if and only if the
following condition holds [5], [2]:

F (s) Mi(") + Ir(s)N; (s) - Pi (s).

( t  1)
(r2)

That is

(15)

(16)

Define

M(,)= [#lf;i K:[:] :::
(r7)

P(s) = [pt(") &(s) P,"(")] e RHY''". (18)

From (9), the state-space realization of M(s) can be given by

lr(')

Then (16) can be written as

''(")rttr;i3] = nr"r

f:,91] e nag*p)xmr

uG) = G;(s)t l(s)

z(s) - E;x(s)

with

G;(s)  -  Q; (s I  -  A, i ) -L  B;  *  Dr  €  R(s)Px- .

The simultaneous observer for (1F(3) can be described by

( l )

(2)
(3)

(4)

(s)

(6)

(7)

( le)

(20)

r(s) - r(s)z(s) + //(s)s(s)

where .F (s) € RH::'" and If (s) e RH$n. The estimation error
for z(t) using the observer (7) should satisfy

,La(a '1 t ) - r ( t ) )=6
for al l  u(t).  I f  (7) exists, i t  is said that Go(s), Gr("), . .  . ,  G,(s) are
simultaneously observable []. The goal of this paper is to seek the set
of all simultaneous observers, e.g., to parameterize all simultaneous
observers.

A stable right coprime factorization of the fth plant Gr(s) can be
written as

G;(s) - Irr @)M; 
'(s) (9)

where /V,(") € RHg^,Mi(s) € RH}"*.The state-space
realization of the factors M(s) and lfi(s) ue [2J

The objective is to find the set of all simultaneous observers which
satisfies (20). The stable inverse approach will be used to solve this
problem.

m. Srenlr Lerr-INvTRSE oF Mnrnx

Consider a class of planrs with M(s) e Rilg+p)xnr having a
stable left inverse, that is, there exists a matrix ,(s) € Ril$rx(m+n)
such that

L(s)M(s)  =  f^ , .

(8)

lr(") E(s)lM(s) = P(s).

( * * p ) > m r

rank(D-) --rnr.

(2r)
It is known [7] that for the existence of such a L(s), it is necessary
that

(22)
(23)

When (23) is satisfied, one can always find a nonsingular matrix
? such that

(24)

The stable left null space of M(s) is also used in the study of
parameterization. It is known that the condition of M(t) having a
stable inverse and stable null space is equivalent to M(s) having

_ fM,-(s)l- 
1n",(s) J'

]  
, ' ,

where the matrices K;'s
(.4; * B;Ir;)'s are stable.

are chosen such that
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no right half-plane zeros [11]. We will assume that this condition is
satisfied. The following lemma solves the computation problem of
stable left inverse and stable left null-space for matrix M(t).

I-emma I: For every M(t) e Rilg+p)xmt satisfying (22) nd
(23) and having no right half-plane transmission zeros, there exists
a stable left inverse .t(q) g RH3"{'n+o) and a left null space
S(") g pg@+n-mr)x(rnfP) such that

has the following realization

F(s) - [P(s)r(s) - Q(s)fi '(s)]
E^r/(") - [P(s)x(s) + QG)M(s)]
Q(s) e RH$Q"+P-''')

rP(") o(")tl3[;l] = rrr"r E(")l

where rank (D,,") = *r. Then Lemma I can be used to find a
stable left inverse matrix and a left null space of M(s)V(s). Note
that the generalized derivative matrix lz(s) is nonunique.

tV. Melx Rrsur

Theorem I: Given (lH3), the set of all simultaneous observers
for z(t) is parameterized by

(35)

L(s)M(s) = f,n,

S(s)M(s)  =  0  7 , ' ' sp  - ,nr )  x  mr .

Brn J

(2s)
(26)

Furthermore,let M (s) have the state-space realization (24). Suppose
that (.4, C) = (A," - B,nC^r,C,nt) is a detectable pair and choose
J such that (A - JC) is stable. Then, the above stable left inverse
and left null space are given by

(27)

(28)

Proof: .Consider an auxiliary plant Go(s) = C(sI - A)-L B +
D € RHS+dx'^' with the right and left coprime factoiza-
tion (AIo(s), MoG)),,(/fr(r), MoG)),respectively. Then there exisr
&(") and Yo(s) such that [2]

I rr(s) xo?)1lm,G) I _ Fl
L-,v"r;l rtoG) JLr,i"jl 

= 
Lo.J Qe)

The state-space construction of each factor above is given [2] as

where

P(s) = [Pr(") Pz(s) P"(")] e RHy<'"" (39)

tr(s) = [y(") X(")] is a stable left inverse of M(s) (40)

5(s) = [-fi'(") U(t)] is null spape ot M(s) (4r)

r(s) e RH3"*, x(") e RHT"XP

fi '1"; e pg@+n-'n')x*, u(t) e R7g:+p-rnr)xp.

Proof: Prove necessity first. Select a QG) sarisfying (38). There
exists a simultaneous observerr(s) 

: ;t*i:i Xffls)ra (s)
+ [P(s)x(") + Q@)u(s)]y(s)

or

(42)

Thus

lr(") E(s)lM(s)
= [p(s)r(s) + e(s)S(s)]M(s)
= P(s)^[(s)M(') + O(s)S(s)M(t) = p(s).

It can be seen that this satisfies (20) of the simultaneous observation.
rhen' prove'"T',#iHfflTffi:]"-er is given bv

It is desired to find aQG) e RHY@*p-'nr) such that the observer
can be expressed as (36) and (37), that is

(36)
(37)
(38)

] "

] "O I

lu,(41 -
Llr"(") J 

-

I Yq(E) {o(") I _
L-rb(") MoG) ) 

-

I , t +a r  I  B l

rffil
il

(30)

(31)

lr(") n(")l
= [P(s)r(s) - Q(s)/Q'(s) p(s)x(s) + QG)M(s)l

- [P(s) O(s)r I YI"l {(") I" L-fi(") tw(') t
- [P(s) o(")]13[:l] = r1"lz(") + e(s)s(s).

B - JD

where K and J are matrices such that A-JC and A+BK are stable.
Establish the following equalities using (30) and (24):

A+  B I { .=  A rn rB  =  B ,n , ,K  =  C ,n t rC  =  C ,nz rD  =0 .

Then

B = BrnrK = C^t rC = Crnz, ,A-  A*  -  BrnCra QZ)

*a lff;El i" p+l corresponding ro ff;,fi.| in (30). Using (2e)
and (30), substitute (32) into (30), then (Z?) iioUtained with

^t(s)[r(s) x(")] = [Yo(s) xog)]T (33)

and (28) is obtained with

S(s) = [-fi'(") u(r)]: [-no(" 1 uo1s11r. e4)
Thus

fl!-lt r r,n, l. u
fsi"i l*r4 

= 
lo1-*o- ,n,1x,n, )'

The above proof of Lemma I closely followed the conesponding
proof of the stable right inverse in [8] and [9].

It (23) is satisfied, we can find the left inverse of M(s) directly
using the result of Lemma 1. In general, for strictly proper plants the
full-rank condition is not satisfied and rank(D,n) < mr. In this case,
we can apply a stable derivative procedure to solve this problem [8],
U U. A nonsingular nlr x mr polynomial matrix V(s) with stable
zeros of det(V(s)) can be chosen such that M(s)V(s) is proper and

It is known that a simultaneous observer satisfies

Ir(") H(s)lM(s) :  P(").
A stable left matrix ^D(s) and a stable left null-space matrix 5(s) of

M(t) can be computed. From Lemma 
' fzr"tlt, L;t;il is nonsingular. Let

fll:l1l-'= [M(,) c(")].
LD(9) J

This is a stable matrix [9]. From (42), we obtain

lP(") 8(")l : [r,(s) r/(")] [3[:]]
: [r'(s) H(s)l[M(s) G(")]. (4s)

(43)

(44)

Brn J

I O
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That is

P(s) = [r(") H(s)lM(s),

Thus (43) is satisfied.

Q(") = [r(") f(s)]G(s). (46)

n
Theorem I gives the result of parameterization of all simultane-

ous observers. According to this parameterization, the simultaneous
observer design reduces to searching for a suitable parameterization

matrix b RE* set. This provides us with a systematic procedure to
design simultaneous observers.

Theorem I also shows that ttre simultaneous observer can be
designed for r plants. The following corollary is a more intuitive
explanation for Theorem l.

Corollary I: Given any plant G;(s) = N;(s)M1r(s) in (1H3).

Its states can be observed using observer (7) with the form of (36)

and (37), and satisfying

F(s)M;(s) + r(s)ry'(") = &(s). (47)

Proof: This is a direct result from Theorem 1, and

F(s)M;(") + I/(s)N;(s)

= [P(s)r(s) - Q(s)/q'(s)]M.(s)

+ [P(s)X(") + Q$)M(s)]lr,(s)

: rp(") e(")t[_"Ji], f,,(,\] ttr;[;i]
= rP(s) Q(,)r [3[:l] l#;[;i ]
- [P(s)r(s) + e(s)s(")]K;l;i] The

(48)

From (25) nd (26

r(") fy-.!'Jl
' 

'/ 
lrr'(s) I

\-"

s(") fY-'(")l'/ 
lrr(") I

) in Lemma 1, we get

- [ 0  0

= [ 0  0

0 Olt

0 01"

(4e)

(50) 
where

(52)
(53)

I
ith row

0
ith row

Then we have

P (s) L(s) M'i,(") = P, (")

Qg)S(s)M;(s) - o

in (48). Thus (47) is obtained.
Corollary I further indicates that the simultaneous observer in the

form of (36) and (37) can observe the state of any one of the given

plants such that the observation condition for every plant is satisfied.

Thus, this observer can be used to simultaneously observe the states

of r plants.
When M(t) does not satisfy (23), we can apply the stable

derivative procedure UOl, [11] and ensure that M(s)V(s) is proper

with realization (35). Postmultiplying both sides of (17) by V("),

we obtain

l r(") H(s)lM(s)Y(") = P(s)v(s). (51)

Then the following result can be obtained.

Corollary 2: Assume that M(s)V(s) has a stable left inverse and

a stable left null space. Then (36) and (37) in Theorem 1 can be

expressed by

F(s) * [P(s)Ir(s)Y(') - 8(s)fi(s)]
fI(") - [P(s)Iz(s)X(s) + 8(s)M(s)]

where

.D(s) - [y(") X(")] is a stable left inverse

ot M(s)V(s) 64)

S(s) - t-fi'(") U(")l is null space of M(s)v(s). (ss)
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Proof: The corollary can be proven by replacing M(s) by

M(s)V(s) in the proof of Theorem l.
When M(t) has the closed right half-plane transmission zeros

and its stable inverse does not exist, the observer design can be

solved by using the similar procedure provided in [11]. By using

the design freedom Q(s) offered by the observer parameterization, a

stable observer can be obtained.
The following result will give an application for the simultaneous

observer parameterization. When there are disturbances in given
plants, the description for the set of plants in (l) and (2) becomes

b(t) -- A;4t) + B;u(t) + uid(t) (s6)

y(t) = C;a(t) + Diu(t) + W;d(t) (57)

where dQ) e Rq is the unknown disturbance vector' andWt andU;
are constant matrices with appropriate dimensions. Then the transfer
function description is rewritten by

y(s)  =  G,(s)z(s)  *  Gao(s)  d(s) .

Furthermore, through introducing the partial state {(s)' we have

and

where [5]

FanG) = E,t(sI - A;)-r(I;.

error is described by

Ae(s) : z(s) - r("). (62)

Substituting f'(") and I/(s) of (36) and (37) into (62), we get

Ae(s) = (Tt(")  -  Q(")G(s))  d(s)  (63)

r ' (s )  =  (Far( " )  -  P(s)X(s) )  Ga, ( ' ) ,  Tz(s)  -  n t$)Ga,(s) .

(64)

Equation (63) is the parameterization of estimation elror dynamics. It

gives a straightforward relationship between the estimation error and

disturbance vector. Q(s) is the only unknown parameterization matrix

in (63). Thus when a certain design specification such as -[/oo notm

specification is used for the transfer matrices between the estimation

error and disturbance vector, one can solve this optimal simultaneous

observation problem. It can be seen. that the parameterization of a

simultaneous observer provides a basic tool for this kind of optimal

problem.

V. Dsslcx ExauPlr

Consider the following three plants:

b(t) = -n(t) * u(t),  u$) =

z(t) =

b(t) : -2r(t) * u(t), s(t) =

s(s) = Ir.(s)€(s) * Ga,(s) d(s) (59)

z(s) = R(")€(") * Fa;(s) d(s) (60)

(s8)

(61)

[i]',"

li]',"

li ] ',,, . lB] ",',

li] ',', . li] ",',
z(t) =, (66)
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r) by

til
I

zeros"
m '
o'iL
lon, a

n /  \  " ' + 6 " + 1 0
F  I  C t  -\  /  ( s + 3 ) ( s + a ) ( s + 2 )

-  Q(") ,

(s + 3)(s + a)(s + 2)(s3 * 10s2 1 n;+6
I/(s) =

reous
given
nes

lzs4  +  26s3 +  LZ4s2 *264s+z lz  s4+ 10ss  *82s2 *J4s . �  4
Iztn +26s3 +L24s2 *264s+2r2 s4 + l0s3 *82s2 *B4s -  4
Lz tn  +26s3 +L24s2 *264s+2L2 s4  +  10sr  *82s2 *B4s_ 4

-("n + 16s3 * 8os2 + L62s * LL2)
-("n + 16s3 + 8os2 + L62s * Lr2)
-("n + 16s3 + 8os2 + L62s * lL2)

("t + T"' + 13s * 10) ("t + Tr2 + t9s + 16)1.(s6)
(57)

rd U;
nsfer

(58)

P

(5e)

(62)

where nz = I,p : 3,r = 3, and (m + p) > rnr. Based on the right
coprime factorization for these three plants, the state-space realization
of the M(t) matrix in (19) is

0 0
- 4 0

0 - 2
M(s) - - 2  - 2

- 1  I
1  - 1
1 1

Using the results of Lemma l, we get
and left null space S(s)

stable left inverse .D(s)

- 1
-3
- l

L 2
(6e)

1
0

- 1

S(s) =

I
0
0

0 0
1 0
0 1 (70)

- 1  1  1

existing technique of stable derivative procedure. In systems where a
stable inverse fails to exist, it is suggested to use the method in [l l]
to obtain a stable observer.

This parameterization also provides a useful tool for designing
an optimal simultaneous observer in terms of a certain performance
specification, such as f/oo norm specification. It is also suitable for
the development of other systematic simultaneous observer design
methods.

It should be pointed out that the results presented in this paper are
based on the stable inverse approach under state-space representation,
and therefore, it can be easily rearized and implemented with the aid
of modern computer-aided control system design programs.
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i(t) = -4r(t) * u(t), y(t) : [i]',,,. [i]",,,
z(,) =ii]',,, (67)
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Thus the simultaneous observer is

r ( s ) - P ( s ) u * H ( s ) y

thele the next. equation is shown at the top of the page, and
Q(") e RHy'.

VI. Cotrct ustotrrs

The simultaneous observer parameterization is achieved using the
stable inverse approach. This provides a dual result to the param-
eterization of simultaneous stabilizing controllers [ll] and extends
the applications for the stable inverse approach developed recently
in [8]-[11]. It is also an extension of the observer parameterization
results for a single plant in t5l and [6].

The result of simultaneous observer paftrmeterization here can
also be applied to strictly proper plants in the most practical cases,
where the full rank condition for stable inverse of the matrix is
not satisfied. The required stable inverse can be obtained using the
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