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Identification of surface characteristics from large
samples

R Kovacevic, BS, MS, PhD, SME and Y M Zhangr* BS, MS, PhD
Centre for Robotics and Manufacturing Systems and Department of Mechanical Engineering, University of Kentucky, USA

Surface roughness characteristics haue been modelled by autoregressioe mouing auglage,(ARMA)-models. Frequently, -extra=
sariples ftom the surface are arsailable. Due to the non-linearity and the computational burden depende-nce on-sample size, the auai
datd cah not be sufficiently utilized tofit ARMA models in most cases. In an attempt to sulficiently ernploy-the auailable datr
innooatiue ARMA-identtfiiatton appro(rch is presented. The computational burden of this approach is nearly inde-pende-nt of the so
size. The accuracy ratio betweenlhe preseni approach and the non-linear least squares algorithm is determined. Both simulation
application haue been conducted to confirm its effectioeness.

1 INTRODUCTION

The characterization of engineering surfaces has been
an important issue of research in mechanical engineer-
ing (1-5). In general, to adequately describe the surface,
the sampling interval should be sufficiently small.
However, if the sampling interval is too small, the
sample size will be too large and a long processing time
will be required (1). Therefore, a study has been per-
formed to select an optimum sampling in accordance
with the error requirement (f). This optimum interval is
only determined for Ro, the centre-line average rough-
ness. When other descriptions of surface roughness are
concerned, alternative optimum intervals must be
acquired according to the corresponding accuracy
requirements.

The autoregressive moving average (ARMA) model
has been acknowledged as an effective description for
characterization of various types of engineering surfaces
(G11). However, there is a lack of approach to select an
optimum interval for ARMA characterization. Further-
more, the accuracy requirement varies from case to
case. Hence, more data are expected to be processed for
more accurate results. The problem is that the computa-
tional burden prevents extensive data from being select-
ed. In fact, since the parameter estimation of ARMA
models is non-linear and since the computational
burden of the conventional methods [for example the
non-linear least squares (NLS) method (f2) and the
maximum likelihood (ML) method (13)l are pro-
portional to the sample size, the identification of large
samples will be time consuming. Therefore, alternative
algorithms for identifying ARMA models are preferred.

If the computational burden is not considered, the
NLS and ML associated with some well-known criteria
of order selection [for instance Akaike's information cri-
terion (14) and the F-rest (12)f could provide adequate
tools for ARMA identification. However, since their
non-linearities have made the computational burden
too extensive, it has been one of the aim's of research to
find effective approaches to make the computational
burden more manageable in the area of time series
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analysis during the past two decades. These approaches
are usually constructed using a method based on a least
squares error criterion and require solutions of linear
equations. The autoregressive (AR) and moving average
(MA) parameters are estimated separately. Kay and
Marple concluded in 1981 (f5) that ARMA parameter
estimation continued to be an active area of research.
This conclusion was based on the perfonnance andlor
computational complexity associated with the existing
approaches. In the 1980s, several approaches have been
proposed based on the extended Yule-Walker equa-
tions (1G19). However, it is known that the per-
formance of the extended Yule-Walker equation
'estimator is poor (20). Recently, Fassois presented a fast
ARMA approach to parametric spectral estimation (21)
which offers a low computational and storage require-
ment. However, much more overspecified models are
obtained that are not suitable for the present case. An
LD2 ARMA identifier (22) combined an order selection
scheme with a linear, dual, decoupled algorithm to es-
timate the AR and MA components. In this work, some
unavailable quantities (the successively increasing order
prediction and innovation filter coeflicients) are substi-
tuted by their estimates. These quantities are essential
to produce the AR and MA parameters. More examples
of recent presentations concerning ARMA identification
can be found in references (23) to (25), a number of
which have been devoted to linearization primarily to
decrease the computational burden.

Although numbrous approaches have been proposed
to eliminate the non-linearity, the most widely used
approaches are still the NLS and ML, especially in
mechanical engineering (G-8, 10,26). This is caused by
the complexity that seems to be a common feature of
the aforementioned approaches. Also, the lack of feas-
ible perfonnance evaluation prevents users from under-
standing the modelling accuracy. Therefore, a novel
approach that can decrease the computational burden
with less complexity and reliable accuracy evaluation is
strongly preferred.

A general solution of this problem is not the objective
of the present paper. The concern of this paper is to
present a novel identification approach for surface mod-
elling that can decrease the computational burden-
accuracy ratio with only a slight additional complexity
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variety of model applications. When prediction is of

primary concern, piiameterl ale frequently estimated

fy the ieast rquui.t method. In this case' those methods

;ild ofon it, one-step-ahead prediction error (for

.*u-prr^ the FPE and lhe cross-validatory criterion)

-uy br the most suitable of the existing methods due to

it.".etationship between the one-step-ahead prediction

error and the iquared sum of residuals. Since the least

;a;;t; algorithm has been selected to estimate AR

pii"-tttti these methods are of interest here'
'Ho*rn.., 

ii has been noted by Gooijer (29) that for the

FPE and its modifications, the ability of predicting one-

' t .p-ut ' 'udvaluesof theprocessismeasuredover the
,u-. data utilized to estlmate the parameters of the

model. In order to overcome this somewhat unrealistic

situation some approaches have been proposed -based
uponaconcept .ofcross.val id i ty . In3 lo;s .va l id i ty ,a
;ffi model splcification in the class of AR (p) is estim-

mated N times, each time deleting one observation from

it. ru-ple (the number of samples is N). This deleted

o*rination is then predicted using the resulting model

estimate. However, it is apparent that this modified

approach may not be appropriate for our problem

where N is extra large.
iecently, the coicept of model distance has been

introduceO'Uy the present authors to proposg a novel

orJ., determination criterion for ARMA models. In this

sub.section,themodeldistanceisf irstbrief lyrecal led.
Thenanorderdeterminationcri terionforARmodelsis
presented.

2.1.1 Model distance

Suppose the sample of y, is produced from

M: 0@)Y, : 0(B)e, (1)

where M is a notation for the model (1), B is the back-

shift operator, e - N(0, o!), and

and a reliable evaluation of the final modelling accur-

".V. ift. procedure for the proposed approach in this

pup.. .onrirtt of two steps: (a) identifyinq .un +I model

i.;; the samples (AR modelling); (b) identifving the

ARMA modei based upon this AR model (ARMA

uppro*i-ation). It will be shown that the modelling

accuracy-romputational burden ratio increases with the

sample size, alihough this ratio in conventional methods

is niarly constant.-However, its computational burden

ir ntatfy independent of the sample srze' This makes it

possible to adequately utilize extra-large samples to

i-pron. the mod^elling accuracy without increasing the

.onlpututional burden. Also, its additional complexity

on.i the NLS is slight and the final accuracy can be

evaluated through a simple equation'
In Section Zl, tne AR modelling and the ARMA

approximation are performed -based upol novel algo-

.iiirms presented in lhis paper. In Section 3, the proper-

ties of ih, pt.r.nt algoiithm and the non-linear least

,quur., estimate are 
-analysed' 

The minimum size of

samplethatcanconfirmthatthepresentedalgorithmis
,up.rio, to the non-linear least squares algorithm in

terms of the ratio of the modelling accuracy to the com-

puiuiionul burden is determined' In Section 4' simula-

iio", are performed to verify the proposed algorithm. In

Section S, ttre proposed algorithm is employed-to iden-

tify ARMR mbOeis from data of the practical surface

prtnr* In the final section, conclusions are provided.

2 ALGORITHMS

As described in the introduction, the present approach

consists of the AR modelling and the ARMA approx-

imation. Parameters of AR models are estimated

lirougr, the least squares algorithm (12) while the order

is determined by un inttonutive order determination cri-

terion, propor.i in this section' It will be shown that

the ordir silected by this criterion is optimal,.assuming

aninf initesizeofsamples.Thus,theresult ingARmodel
mus tbeasu f f i c ien t l yaccura te represen ta t iono f the
samples. By minim izing the distance from an ARMA

moCet to this AR modJ, parameters of ARMA models

can be acquired. From an-order determination criterion

pttt."t.O in this paper for A-RMA models' the order of

an ARMA modei can be selected. Since the computa-

lional burden for AR models may be ignored.and since

itt. to.putational burden for ARMA approximation is

iJ.pt"ient of sample size, the computational burden

will be dramatically decreased. The block diagram of

the approach is presented il -fig' t' The.properties of

;h; ;;;*nted approach will be discussed in the next

section.

2.1 Order determination of AR models

A number of criteria for AR order determination

already exists, such as the F-test (1?). A!{ke's. final pre-

diction error (FPE) criterion (27 z 28)' . the cross-

nuiidutory criterio n 1211, Akaike,s information criterion

tniCitfni and the wiak parameter criterion (WPC) (30)'

etc. Also, researchers h-ave studied the behaviour or

vatidity of some well-known criteria [for instance the

FPE criterion (31, 32) and the AIC (33, 34)l' Although

there are extensive methods available, no one method

can be regarded as the most appropriate for a wide
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where 6,  and 0,  ( i  :1 ,  . ' ' ,  p ;  i  -  l ,  "  "  q)are real  and

t;; i  .  i i t  P,L. 
.t 

("r : r? :. ::.q; i  :  r, " ' ,  q)'
' *'duppori 

,iZ tnnuA (t, 4)is an estimate of M:

fu: 6@)yt : e(B)6,

where 6, is the residual of rfr and

o ^ a
,$@)--1 - i  6 ,8 t ,  f ia1: t - .s ,  6 ' r '

j = r

where 6, and 0, U : ! ,  . . . ,  f ;  i  -  1, " ' ,  Q) arereal and

i t ; i  .  i i l  l . ' l  < 
'1 

(r '  -  r ,  . . . , f  ;  i  :  r ,  " ' ,  a) '
Let us define

D,(fu-M')=l{W\
: l{nn,tfr_- ul\ (3)

\i t o'�, )
as the first-order model distance from fu to M' where

A(4tv4 
'f'nini 

is the variance of the one-step-ahead
pr.Oi.tio"-erroi when the minimum mean squared fore-
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AR modelling ARMA m,

Fig. I Identification procedure of ARMA models from large samples

\-

cast is performed using M (h.Suppose M, fl assume
the following AR model forms:

M :  y r :  I  a ; ! t - i  *  e ,
j = t

It can be shown that

LEJfI - M) : LarRL,a (4)

where La : (Lar, Lor, . . ., La")' : (at - Ar, az - 6z ,
. .., aL - 6")', Rt,r(i, i) 

-- y(l i  - i l) : E(y,-i /,-;) and

L is a positive infinite integer (which can be taken to be

a suffrciently large integer in numerical computations);

il-l) can be calculated based upon both Qi, 0, (i : l, ...,
p i i : 1 , . . . , q )  a n d  o !  1 t 2 7 .

2.1.2 Order determination

Suppose there is a model AR(pt) and a model AR(pr)'
where AR(pt) has less parameters than AR(pr). If the
model distance from AR(pt) to AR(pr) is large, the dif-
ference between these two models is significant. There-
fore, if 63(AR(pr)) [the estimate of the residual variance
associated with AR(pr)l is smaller, the increase in the
number of parameters from AR(pt) to AR(pr) should
produce a better model. In this case, the model distance

@ IMechE 1992

from AR(pr) to AR(pr) can be taken as a measure of the
improvement in modelling accuracy due to the.increase
in the number of parameters. However, if the iccuracy
improvement is not significant so that the model dis-
tance [D(AR(p2))] corresponding to the accuracy estim-
ate of AR(pJ is larger than the model distance from
AR(pr) and AR(p2), then AR(pr) is not a correct selec-
tion. The above is simply the principle of the order
determination criterion for AR models presented in this
section. This criterion can be described as the following:
if D(AR(p)) < D(AR(p,)'AR(pr)) and a|(AR(pr)) <
462(AR(p1)), select AR(pr); otherwise, do not select
AR(pz). Since the model distance is employed, this cri-
terion is of prediction concern corresponding to the
least squares estimation.

Let us discuss the computation of D(AR(pr)). Assume
an AR mode!-!o be described by Qi (i : 1,2, ..., p) and
its estimate AR by 6i (i :1,2, ...-, p). It can be shown
that

AE,(m. - AR) = r : f i LQ,LQiy(lt -il) (s)
i = 1  j = 1

As a result, the corresponding model distance
D(AR. + AR) can be calculated.

f , I ,  yr :  I  a ih- i  *  E1
j =  1

Calculate
D(AR(p-step) *

AR(p))

Dr(AR
(p-step) * AR(p)) )

(AR(p))j

6(p) < 6 (p-step)?

n = n l l

p o @ ) + Q o ( n ) : n

D(n) : D(ARMA(p*(n), q*(n)) -

AR(K)) : min D(ARMA(P0(,)'
qo@)\ - AR(K))

p o @ ) + Q o ( n ) : n

( n - l ) - D 2 6
D2trs(x))J

p: pt@ - I), q: qg(n - I)
ARMA(P, q) = ARMA(P6@ - t),

q6@ - r))

a  ) ) . 1 ?

ARMA modelling
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Equation (5) is virtually just another form of equation
(4). However, this form will be more convenient for the

derivation of a formula to calculate D(AR(p2)[t can be
seen that equations (5) and (4) calculglE AEI(AR - AR)
based upon the given parameters of AR. In these equa-
tions, Uottr 0i and d; values are required. This is impos-
sible during modelliirg. However, the covariance matrix
v of the paiameter estimates can be utilized. As a result,
the following can be obtained:

AE'((R.) : E(F): i i voo|,i)yfl;-il) (6)
i : 1  j : 1

where V& is the covariance matrix of the parameter

estimatei]The equation for Voogln be found in reference

(13). It can be seen that AEI(AR) is more practical as

an estimate of the modg.lling accuracy than is

AE'({R. + AR), since AEI(AA is virtually a statistic

when colrsidering possible AR values, rather than a

soecial (i.. fAr tie model distance calculated based on

AE'(,AR) can bgpelected as D(AR(pt)).
Wh.tt AEI(AR) is calculated using equation- (6), the

actual parameter values are required to calculate y(i).

Since itte actual parg{reters are not available, an

approximation of AEt(AR) is proposed:

MlE,1(Ry : AE'(CR) l ̂  : i i voo|,rio, -i t )
l e n  t = l i : l

(7)

where f is calculated based upon (R.. fn. accuracy of
this approximation can now be evaluated. Assume that

" flv(;) - t(il lld : maxl 
vG) J

It can then be illustrated that

loutB^ l  :  <r+6 (8)
I AE(AR) |

Assume that D(nn(pr)) is calculated through
AEr(AR(p?)) In"rorr. Thgsa .th.e_maximum relative error
between 

-DatAniTt) 
anO D2(AR(,2)) [which is calculated

based upon AE'(AR(P'))I will be

*^_ lD2(AR(p2)) -D2(AR(p2) l - ,  (e)ma*

When AR(pr) is a sufficient approximation of AR, d will
be small. in ittit case, D2lnnpr)) is a good estimate of
D2(AR(p2)).

it is- ipparent that if D(AR(pz)) is employed, the
selected -od.lr are statistically optimal in the sense of

minimizing the prediction error. When Dlnnprl) is util-
ized,itcan be shown that

D2(AR*) < D2(ARonrimar; + D2(ARoptimar)f (10)

where AR* is the model selected based upon D(nn(pr))

and 4pontimar is the selected model based upon

D(AR(pr)) which is optimal. Therefore, the possible

incorrici selections will only cause additional errors

lying within a range of D2(ARoptimar)f. It can be seen

t-traittris is an exceilent result when the accuracy of the

optimal model is suffrcient, especially in this _case of an

eitra-large sample size. Also, in most cases the optimal

model will be selected when the accuracy of the optimal

model is suflicient. As a matter of fact, since the model

order varies discretely, the accuracy of the estimated
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model changes discretely as well. when the optimal
model is suffrciently accurate, the difference between
accuracies of the model may generally be larger than
the additional error. In such circumstances, the optimal
model will be selected. Thus, we can conclude that the
models selected through D1An6r;) are optimal or
nearly optimal in the sense of prediction. The resulting
autoiegressive model is denoted by AR(K}.

2.2 Panmeter estimation and order determination of
ARMA models

Since the AR(K) is an adequate representation of the
samples, parameters of ARMA(p, q) can be acquired
based upon the following criterion:

6*,0*: min D?(6,0) - o)
6 e R o , 6 e R q

= min LEr(6,0) - a) (11)
$ e R e , A e R a

where a is the parameter vector of the AR(K)'

Suppose thit both the autoregressive order and the

moving average order associated with ARMAT are not

larger thun the autoregressive order and the moving

average order associated with ARMAH respectively. It is

apparent that the model from ARMAH to the AR model

is not larger than the distance from ATM],' to the AR

model aJ well, assuming adequately accurate optim-

ization. If the decrease resulting from the increase in

the number of parameters is not significant, the increase

in the number of parameters does not make sense' In

this circumstance, AnMA" is not regarded as being a

better model than AflFA". In order to determine the

significance of the decrease, a comparison between this

dJcrease and the accuracy of the AR model can be per-

formed. Since the parameters of ARMA models are

based upon this AR model, any D?(AflM]', + AR)

- D?(ARlvI-Ao + AR) less than D|(AR) must not be

regaided to 6-e significant. This is the principle of the

orirr determination of ARMA models presented in this

section.
In order to minimize the model distance from

ARMA(p, q) to ARIK), the derivative of the distance

with reJpeci to 6, q is expected. It can be shown [see
equation (4)l that

f ann,(6, 0) ' a)-l fala-l
l -T l : ,1  6 l  RAa
I an n rki,, 0) -- d) I 

"l ano I
tT) 16 1,,*0"'

where 0nar10$ and anarlll are p x L and
matrices respectively. Based upon

/aaat\ r.Lar ou,

\ 6 ) r , : 6 : -aT r '
/alot1 r.Lar oa,

\ 6 ) " , :6 : -6 '

(r2)

q x  L

i  :  I , 2 ,  . . . ,  L ;  k  :  1 , 2 ,  . . . ,  P ;  n  :  1 , 2 ,  " ' ,  Q
and

& i :  6 , -  0 , * t - t '  u , - ,A , ,  i  :  2 ,  3 ,  . . . ,  L
i = r

& t : 6 t - 0 , . , , $ , : W > p ) ,  A i : W > q )

@ IMechE 1992

v



IDENTIFICATION OF SURFACE CHARACTERISTICS FROM LARGE SAMPLES 279

be estimated

(14)

E/2'  (15)

(r7)

(1 8)

\-

uQ^r;, : ,
otPx

- 1

h row llrar l0Ao (k : I, 2, ..., q) in l\,ur 100 is
vely calculated through

v

1La, 0&,: . - -
00o 00o

with initial conditions:

0&, )do_,. n
00o 00r

)do I
a A  

t

ou*

3 PROPERTIES

It can be seen that this approach is not complicated. As
a matter of fact, the second step, from the AR model to
ARMA models, is similar in complexity with the NLS.
AR parameter estimation, which can be performed
using a standard program, is simple. In the computation
concerning the model distance, y(j) (j ) 0) must be cal-
culated based on the model parameters. However, this
calculation can be simply conducted through Green's
functions (12). Thus, the additional complexity is slight.
The discussion now turns to an investigation of the
effectiveness of the proposed approach.

In this section, both the computational burden and
the modelling accuracy have been related to the size of
samples and the number of parameters. In terms of the
ratio of modelling accuracy to sample size, the possible
benefit can be determined.

3.1 Accuracy

From equation (4) the following inequality can be
shown:

----------\ -7-----

AEI(ARMA - M) < tJ{AE,1AnuA -+ AR(rO}

+ J{AE1(AR(r() - M)}f'�
Thus, the final modelling accuracy can be estimated
from the following inequality:

D'(A{MI - M)

- J{lr,(AflMA -' nn(&)} + J{lr,(nn(& - u)}
s

< D,(AflfrI + AR(K)) + DI(AR(K)'-+ M) (13)

In most cases, Dr(Af,m + AR(K)) < D'(AR(K).
Also, it will be illustrated in Section 3.3 that
DrlAnlr)) < D'(AR(K) -- M). Therefore, the accuracy
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v

the recursive equations for \Larl0$ and lLarl00 com-
putations can be obtained:

1. The kth row lLur l0$r (k : l, 2, ..., p) in lLar l0$ is
recursively calculated through

f . L a ,  u + : ' i e % ,  i : k * r , . . . , L- 
6: aeo i7t oer,

0&,,
oQ*

o&r

6r
The kt
recursi

2.

t - l  A i:  &i - r -  D TryH
i = t  d | o '

i : k + 1 , . . . , L

associated with ffiffi may conveniently
in most circumstances through

Dr(AffiA - M)< 2D1(AR(K) + M)

3.2 Computational burden

The procedure of the model-distance based approach
consists of the AR modelling and the ARMA approx-
imation (Fig. 1). It can be shown that the total number
of multiplications for the AR modelling is only approx-
imated to (K + 2)N, where N > K. (Note that the es-
timate of parameters associated with the higher order
model can be recursively calculated.) However, both the
ARMA approximation and the conventional parameter
estimation must be acquired through a number of
iterations. The number of iterations depends on the
accuracy requirement, accuracy of the initial iterative
parameter, the optimization algorithm and the number
of parameters, etc. This number, in general, varies in a
range of (10, 100) and significantly increases with the
number of parameters. It can be shown that

Nr ! @ + q)Lt + (p + q)(p + 2q + l)L +
Nz I (p + q)(p + 3q + 4)N

where N, and N, are the numbers of multiplications in
one iteration for the ARM A(p, q) approximation and
for the ARMA(p, q) non-linear LS estimation respect-
ively. The total numbers must be calculated through
summing N, or N, with respect to possible orders and
corresponding numbers of iteration. Thus, the computa-
tional burden for the AR modelling may be ignored in
the preliminary investigation. Let us compare the com-
putational burden between the non-linear estimation
and the approximation.

Suppose /. is the ratio of the cumulated computa-
tional burden. Then

I I I N '
) : _!_4_ (16)

I I I N ,
P  q i z

where i, and i, correspond to the number of iterations
associated with the ARMA approximation and the non-
linear LS estimation respectively. For the sake of con-
venience, i, and i, are assumed to be two equivalent
constants. Thus, we have

I I n '
) - _PJ-, U - L I N ,

From equations (15) it can be seen that both N, and N,
depend on (p, q). Yet a variety of (p, q) values will be
encountered in order to determine order. Suppose the
DDS order determination procedure of Pandit and Wu
(12) is followed. Thus, ARMA(2, 1), ARMA(4, 3)
ARMA(6, 5), ARMA(5, 3) and ARMA(4, 4) may be
encountered, assuming the final result to be of
ARMA(4, 3). Hence, it can be shown that ), can be es-
timated through

^  - N r ( P * , Q * )a s " * 1  
n 1

where (p*, q*) are the final orders. Thus, from equations
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(15), the following can be emPloYed:

(p* + q\L2 + @* + q*W* + 2q* + l)L + L2l2
( p * + q * W * + 3 q * + 4 ) N

(1e)

This equation can, in a practical situation where
p* + 2q* + 1 < K * 5 : L,beaPProximated as

2r]
1 -

( p * + 3 q * + 4 ) N

Equation (20) will be employed to determine the benefit
of the present algorithm.

In order to demonstrate the decrease in the ratio of
computational burden as the sample size increases,
some computational results are depicted in Fig- 2 where
L is selected to be 45. The computation is performed

R KOVACEVIC AND Y M ZHANG

) , -

based upon equations (17) and (15), assuming the DDS
order determination procedure of Pandit and Wu is fol-
lowed. It can be found that the computational burden
dramatically decreases as the size of the samples
becomes larger.

3.3 Estimation accuracy behaviour

Assume that the least squares estimate of AR(K), als,
can be denoted by

&r,s: [OtO]-lOrY

Thus, the large sample matrix for &"s covariance may be
obtained utilizing

1
voo: [oto] 

-ro? - 
n, 

R-to3

v
(20)

0 . 0 1 I
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Fig. 2 Ratio of cumulated computational burden versus sample size
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It can be seen that the AR modelling error is pro-
portional to the order and inversely proportional to the
sample size in the case where adequately large samples
are addressed.

Equation (21) actaally provides an accuracy estimate
for the case where the actual model is a Kth AR model.
In fact, the actual model in this problem will, in general,
be an infinite-order AR model. For this infinite AR
model, an adequately accurate finite-order AR approx-
imation exists for any given accuracy requirement if the
order of the AR approximation can be sufficiently large,
if invertibility is assumed. For any given order, a corres-
ponding optimum AR approximation exists. The
accuracy estimate provided by equation (21) is simply a
correspondence to the error measurement from the es-
timated AR(K) to the optimum AR(K) approximation.
(Note that the estimated AR(IQ is the optimal or nearly
optimal autoregressive estimate in the case of the given
samples. This model is determined through a total con-
sideration of the sample size and the order.) Thus, if it is
assumed that all the infinite AR models (all M values) of
concern can be suffrciently approximated by AR (K-),
the following can be shown:

Therefore,

K K

AE(AR(r(): I 2 Ur61,,r)yflr-j l)
j : L  j : r

=#.i, i (R-,),.iRii: \*,:
: v  j =  l j =  I

AE(AR(I()- M\* + "3

AE(fffiirr(p, q)) :'#'?

although the actual value will be larger.

is defined as a ratio of modelling accuracy to the com-
putational burden. Hence, the intention is to acquire
large p. Confirmation of the following inequality can
ensure that the present algorithm is superior to the non-
linear least squares estimate:

P,{fiho."""n, > pAffi* (2s)

It can be shown that pffi;rn ir independent of the
sample size because the computational burden is pro-
portional to the sample size. Using equations (20), (21),
(23) and (14), the following inequality can be obtained:

(2r)

\\"

\ t  P :
r lLE

computational burden

N
gK^.c'

Thus,

@ + q ) ( p + 3 q + 4 )

8K^I]
N > (26)

(27)

( p + q ) ( p + 3 q + 4 )

The minimum N that satisfies equation (26) can be
defined as the beneficial sample size No. It is apparent
that if the sample size is larger than No, the presented
algorithm will possess a larger p than the non-linear LS
algorithm. In this computation, L: K * 5. Thus,

N r :
8K-(K + 5)'

( p + q ) ( p + 3 q + 4 )

If DI(ARMA + AR(K)) > D'(AR(K)), No should be cat-
culated through the following equation:

2K^(K+ sy'{r , 
D'([RMA - AR('K))I'

( ' @ t  , A o \
(p + q){,p + 3q + 4) 126)In most circumstances, K- can be taken to be 30 (35).

r. \- In this paper, K- is taken to be 40 for the sake of con-
\Y clusion validity.

For non-linear least squares estimates of ARMA
models, the dependence of modelling accuracy on the
sample size and the parameter number can not be as
simple as equation (21). The modelling error will, in
general, be larger than provided by equation (21).
However, for the sake of convenience, it can still be
assumed that

(22\

Nb

3.4 Beneficial sample size

It can be seen that the computational burden for the
ARMA approximation is independent of the sample size
while the computational burden for the non-linear LS
estimation is proportional to the sample size. This
implies that the present algorithm may be preferred
when the sample size is large enough. It will now be
determined which size of sample is sufliciently large.

The concern here is to acquire a more accurate es-
timate using less computational burden. Thus,

It can be seen that if some f; (see Section 2.1) is near to
the unit circle a large K will be produced. In this cir-
cumstance, No will tend to increase as K increases.
However, in this situation, AE(ffM'A ,"@, q)) may not
be estimated by equation (23). A much larger modelling
error will be caused as well (36). From this point of
view, No will be much smaller than the value calculated
through equation (27).

Some examples showing the beneficial sample sizes
may be found in the next section.

3.5 Accuracy ratio

Suppose that the equivalent values of computational
burden are costed to identify ARMA models by means
of the non-linear least squares algorithm and the
present algorithm. The accuracy ratio of the present
algorithm to the non-linear least squares algorithm can
be obtained. This ratio can be calculated through

N l4K^
u : -

N'l@ + q)

where N' represents the size of samples for which the
non-linear least squares modelling will have the same
computational burden cost as that where the present
algorithm has a size of samples N. It is evident that o is
a measure of the accuracy improvement due to the util-
ization of the present algorithm. By equation (20), it can
be shown that

(23)

@ IMechE 1992

(24)

Proc Instn Mech Engrs Vol 206



N
o - N ;

R KOVACEVIC AND Y M ZHANG

(2e)

It is apparent that the accuracy ratio increases with the
sample size utilized to conduct the present algorithm.
Some ratios in simulations and in practical cases may
be found in the following two sections.

4 SIMULATION

The samples are generated from ARMA models:

(1 + 1.4582 + 0.51S^#)y,: (1 - 9B)t,

for 0 - 0.3, 0 : 0.6, 0 : 0.7, I : 0.8 and 0 - 0.9. The
number of samples is 10 000. Simulation results are
listed in Table 1. The details for order determination
can be found in Table 2.

From Table 1, it can be seen that the accuracy ratios
are much larger than one. This reveals that more ac'
curate results are produced using the present approach

than the conventional non-linear least squares algo-
rithm, assuming equivalent computational burden costs.
Also, the correct orders of ARMA models are selected.

In the case of o :0.9, D@A + AR) >
D(nn(& - M).For this case, equation (28) is employed
to calculate No rather than equation (27). This ensures
that the values of No and o in Table 1 ate correct.

5 IDENTIFICATION OF SURFACE PROFILES

Surface profile measurements have been performed on
copper plates cut by an abrasive water jet. In the liter-
ature, only a few hundred data have been employed to
fit the ARMA model. In the present two cases, the
sample sizes are 6400 and 30000 respectively. The meas-
ured data are depicted in Figs 3 and 4. The results are
listed in Table 3 ffor case 2, equation (28) was employed
to calculate No rather than equation (27) to calculate
the accuracy ratio]. It can be seen that the accuracy

t\/.
v

Table I Modelling results of simulation

AR modelling ARMA approximation

D'�(nn(&) D'�(+AR(K)) Nb

-o.29, -1.52, -0.44, -0.62,
-0.17. -0.04

0.0005989 0.0109, -1.436, 0.2991 0.0ffi24127
0.0118, -0.4984

14.20.3

-0.59, -1.79,
-0.38, -0.22,

- 1.06, -1.12, -0.66, 0.0009984
-0.11, -0.05, -0.02

0.0073, -r.438, 0.5932
0.0085, -0.5000

1310 7.630.000429910

12o.7 -0.69, -1.92, -1.35, -1.44, -1.02, 0.0012047
-0.71, -0.50, -0.34, -0.22, -0.13,
-0.05, -0.03

0.0113, - 1.438, 0.7008
0.129, -0.5000

0.0007743 t682 5.95

-0.79, -2.07, -1.65, -1.82, -1.46, 0.0016008
-1.17, -0.95, -0.76, -0.61, -0.49,
-0.38, -0.29, -0.20, -0.13, -0.06,
-0.03

0.0114, -1.437, 0.7941 0.0009197
0.0122, -0.5000

3.90T6

-0.88, -2.22, - 1.98, -2.25, -2.01, 0.0021918
-1.78, -1.58, -1.39, -1.23, -1.07,
-0.94, -0.81, -0.70, -0.59, -0.49,
-0.42, -0.33, -0.29, -0.20, -0.15,
-0.06, -0.03

-0.002, -1.451, 0.8733
-0.000, -0.513

0.006869 2.36 v0.9 22

Table 2 Order determination

AR modelling ARMA approximation

pz D'�1en1p;; D'�(ARMA(p, q) + AR(K)

0.26426
0.08565
0.00024
0.00011

2 l
2 2

x 4 r
4 2

0.3 2
4
6
8

0.39608
0.02778
0.00006

0.00020
0.00040
0.00060
0.00080

t.2024
1.O172
1.0033
1.m.32

0.25391
0.15351
0.00043
0.00027

2 l
4 0

x 4 r
4 2

0.6 6
8

10
t2

0.13451
o.0r177
0.00203
0.00004

0.00060
0.00080
0.00100
0.00120

1.0107
1.0045
1.0033
1.0031

0.26647
0.19846
0.00077
0.00071

2 l
2 2

x 4 1
4 2

0.7 8
t0
l 2
t4

0.02948
0.00921
0.00195
0.00118

0.00080
0.00100
0.00120
0.00141

1.0083
t.w42
1.0034
1.0032

12 0.00716
L4 0.00434
16 0.00198
18 0.00004

0.00120
0.00140
0.00160
0.00180

1.0055
1.0036
1.0028
1.0028

2 l
2 2

x 4 r
5 1

0.28127
0.23r47
0.00092
0.00087

2
2

x 4
. 4

0.9 18
20
22
24

0.00238
o.N226
0.w229
0.00177

0.00180 1.0050
0.00198 1.0039
0.00219 1.0034
0.00241 1.0036

I
2
1
2

0.35614
0.35230
0.00687
0.00577
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\,

ratios of the present algorithm to the non-linear least
squares algorithm are 6.7 and 4.3 respectively; that is
much more accurate ARMA models haue been acquired
by the proposed approach than with the non-linear least
squares methoil with a nearly identical computational
burden in both cases.

6 CONCLUSIONS

An innovative approach has been proposed to identify
{RMA models from large samples in order to improve

modelling accuracy of surface characteristics. The
feature of this approach is that its computational
burden is independent of the sample size while the com-
putational burden of the conventional algorithm is pro-
portional to the sample size. Thus, extra-large available
samples may be utilized sufliciently to improve the
modelling accuracy, without a virtual increase in the
computational burden. When the sample size is beyond
the beneficial sample size, a better accuracy to the com-
putational burden can be produced. It is shown that the

Abrasive type: Garnet (mfd. Barton)
Abrasive size: 80 mesh (0.180 mm)
Mixing nozzle length: 75 mm
Mixing nozzle diameter: 0.75 mm
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Fig. 3 Surface profile measure: case I
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Fig. 4 Surface profile measure: case 2
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Table 3 Identification of surface profiles

AR modelling ARMA modelling

Case
D2Dz Model 6J6'

1.864, - 1.098,
0.2776, -0.04968

(1  -1 .608+0 .60882 )y ,
:(1 + 0.2658)e,

6.7 0.01/0.180.00064 0.000166400

30000 22 -0 .115,
-0.r29,
-0.099,
-0.092,
-0.066,
-0.060,
-0.M1,
-0.034

-0.103, -0.113, 0.00073
-0.106, -0.113,
-0.091, -0.098,
-0.079, -0.061,
-0.073, -0.075,
-0.045, -0.040,
-0.035, -0.038,

(1 - 1.558+ 0.60782 +0.01813)
x(1 -B)zy,

:(1 - 1.678 -0.6981c1

0.003236 4.3 13.2183s

: standard deviation after modelling
: standard deviation before modelling

accuracy ratio, which is a measure of the accuracy
improvement, linearly increases with the sample size. It

wai shown that the proposed approach provided much

more accurate ARMA models for surface character-

ization than did the non-linear squares method without

increasing the computational burden.
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