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Identification of surface characteristics from large

samples

R Kovacevic, BS, MS, PhD, SME and Y M Zhang,* BS, MS, PhD
Centre for Robotics and Manufacturing Systems and Department of Mechanical Engineering, University of Kentucky, USA

Surface roughness characteristics have been modelled by autoregressive moving average (ARMA) models. Frequently, extra-large
samples from the surface are available. Due to the non-linearity and the computational burden dependence on sample size, the available
data can not be sufficiently utilized to fit ARMA models in most cases. In an attempt to sufficiently employ the available data, an
innovative ARM A identification approach is presented. The computational burden of this approach is nearly independent of the sample
size. The accuracy ratio between the present approach and the non-linear least squares algorithm is determined. Both simulation and

application have been conducted to confirm its effectiveness.

1 INTRODUCTION

The characterization of engineering surfaces has been
an important issue of research in mechanical engineer-
ing (1-5). In general, to adequately describe the surface,
the sampling interval should be sufficiently small
However, if the sampling interval is too small, the
sample size will be too large and a long processing time
will be required (1). Therefore, a study has been per-
formed to select an optimum sampling in accordance
with the error requirement (1). This optimum interval is
only determined for R,, the centre-line average rough-
ness. When other descriptions of surface roughness are
concerned, alternative optimum intervals must be
acquired according to the corresponding accuracy
requirements.

The autoregressive moving average (ARMA) model
has been acknowledged as an effective description for
characterization of various types of engineering surfaces
(6-11). However, there is a lack of approach to select an
optimum interval for ARMA characterization. Further-
more, the accuracy requirement varies from case to
case. Hence, more data are expected to be processed for
more accurate results. The problem is that the computa-
tional burden prevents extensive data from being select-
ed. In fact, since the parameter estimation of ARMA
models is non-linear and since the computational
burden of the conventional methods [for example the
non-linear least squares (NLS) method (12) and the
maximum likelihood (ML) method (13)] are pro-
portional to the sample size, the identification of large
samples will be time consuming. Therefore, alternative
algorithms for identifying ARMA models are preferred.

If the computational burden is not considered, the
NLS and ML associated with some well-known criteria
of order selection [for instance Akaike’s information cri-
terion (14) and the F-test (12)] could provide adequate
tools for ARMA identification. However, since their
non-linearities have made the computational burden
too extensive, it has been one of the aim’s of research to
find effective approaches to make the computational
burden more manageable in the area of time series
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analysis during the past two decades. These approaches
are usually constructed using a method based on a least
squares error criterion and require solutions of linear
equations. The autoregressive (AR) and moving average
(MA) parameters are estimated separately. Kay and
Marple concluded in 1981 (15) that ARMA parameter
estimation continued to be an active area of research.
This conclusion was based on the performance and/or
computational complexity associated with the existing
approaches. In the 1980s, several approaches have been
proposed based on the extended Yule-Walker equa-
tions (16-19). However, it is known that the per-
formance of the extended Yule-Walker equation

‘estimator is poor (20). Recently, Fassois presented a fast

ARMA approach to parametric spectral estimation (21)
which offers a low computational and storage require-
ment. However, much more overspecified models are
obtained that are not suitable for the present case. An
LD? ARMA identifier (22) combined an order selection
scheme with a linear, dual, decoupled algorithm to es-
timate the AR and MA components. In this work, some
unavailable quantities (the successively increasing order
prediction and innovation filter coefficients) are substi-
tuted by their estimates. These quantities are essential
to produce the AR and MA parameters. More examples
of recent presentations concerning ARMA identification
can be found in references (23) to (25), a number of
which have been devoted to linearization primarily to
decrease the computational burden.

Although numerous approaches have been proposed
to eliminate the non-linearity, the most widely used
approaches are still the NLS and ML, especially in
mechanical engineering (6-8, 10, 26). This is caused by
the complexity that seems to be a common feature of
the aforementioned approaches. Also, the lack of feas-
ible performance evaluation prevents users from under-
standing the modelling accuracy. Therefore, a novel
approach that can decrease the computational burden
with less complexity and reliable accuracy evaluation is
strongly preferred.

A general solution of this problem is not the objective
of the present paper. The concern of this paper is to
present a novel identification approach for surface mod-
elling that can decrease the computational burden—
accuracy ratio with only a slight additional complexity
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and a reliable evaluation of the final modelling accur-
acy. The procedure for the proposed approach in this
paper consists of two steps: (a) identifying an AR model
from the samples (AR modelling); (b) identifying the
ARMA model based upon this AR model (ARMA
approximation). It will be shown that the modelling
accuracy—computational burden ratio increases with the
sample size, although this ratio in conventional methods
is nearly constant. However, its computational burden
is nearly independent of the sample size. This makes it
possible to adequately utilize extra-large samples to
improve the modelling accuracy without increasing the
computational burden. Also, its additional complexity
over the NLS is slight and the final accuracy can be
evaluated through a simple equation.

In Section 2, the AR modelling and the ARMA
approximation are performed based upon novel algo-
rithms presented in this paper. In Section 3, the proper-
ties of the present algorithm and the non-linear least
squares estimate are analysed. The minimum size of
sample that can confirm that the presented algorithm is
superior to the non-linear least squares algorithm in
terms of the ratio of the modelling accuracy to the com-
putational burden is determined. In Section 4, simula-
tions are performed to verify the proposed algorithm. In
Section 5, the proposed algorithm is employed to iden-
tiy ARMA models from data of the practical surface
profile. In the final section, conclusions are provided.

2 ALGORITHMS

As described in the introduction, the present approach
consists of the AR modelling and the ARMA approx-
imation. Parameters of AR models are estimated
through the least squares algorithm (12) while the order
is determined by an innovative order determination cri-
terion, proposed in this section. It will be shown that
the order selected by this criterion is optimal, assuming
an infinite size of samples. Thus, the resulting AR model
must be a sufficiently accurate representation of the
samples. By minimizing the distance from an ARMA
model to this AR model, parameters of ARMA models
can be acquired. From an order determination criterion
presented in this paper for ARMA models, the order of
an ARMA model can be selected. Since the computa-
tional burden for AR models may be ignored and since
the computational burden for ARMA approximation is
independent of sample size, the computational burden
will be dramatically decreased. The block diagram of
the approach is presented in Fig. 1. The properties of
the presented approach will be discussed in the next
section.

2.1 Order determination of AR models

A number of criteria for AR order determination
already exists, such as the F-test (12), Akaike’s final pre-
diction error (FPE) criterion (27, 28), the cross-
validatory criterion (29), Akaike’s information criterion
(AIC) (14) and the weak parameter criterion (WPC) (30),
etc. Also, researchers have studied the behaviour or
validity of some well-known criteria [for instance the
FPE criterion (31, 32) and the AIC (33, 34)]. Although
there are extensive methods available, no one method
can be regarded as the most appropriate for a wide
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variety of model applications. When prediction is of
primary concern, parameters are frequently estimated
by the least squares method. In this case, those methods
based upon the one-step-ahead prediction error (for
example the FPE and the cross-validatory criterion)
may be the most suitable of the existing methods due to
the relationship between the one-step-ahead prediction
error and the squared sum of residuals. Since the least
squares algorithm has been selected to estimate AR
parameters, these methods are of interest here.
However, it has been noted by Gooijer (29) that for the
FPE and its modifications, the ability of predicting one-
step-ahead values of the process is measured over the
same data utilized to estimate the parameters of the
model. In order to overcome this somewhat unrealistic
situation some approaches have been proposed based
upon a concept of cross-validity. In cross-validity, a
given model specification in the class of AR (p) is estim-
mated N times, each time deleting one observation from
the sample (the number of samples is N). This deleted
observation is then predicted using the resulting model
estimate. However, it is apparent that this modified
approach may not be appropriate for our problem
where N is extra large.

Recently, the concept of model distance has been
introduced by the present authors to propose a novel
order determination criterion for ARMA models. In this
sub-section, the model distance is first briefly recalled.
Then an order determination criterion for AR models is
presented.

2.1.1 Model distance
Suppose the sample of y, is produced from

M: ¢(B)y, = O(BJe, (1)
where M is a notation for the model (1), B is the back-
shift operator, ¢ ~ N(0, 67), and

$(B) =1 — i R 11(1 — ;B)

oB)=1- 3 0,8=110-5B)

i=1

‘where ¢; and 0; (j = P STTar T g) are real and

lo;l < 1, 18] < =S pr— 1,:..,q).
Suppose M (ARMA (p, §)) is an estimate of M

M: d;(B)Yt F 9(B)ét V)
where &, is the residual of M and
~ ﬁ ~ 'S ~ q ~ .
dB =1—73Y o;B, 0B =1— ) 6;B
j=1 i=1

where (ﬁj and B.li=t b
l(ij‘ = 1’|Bl| < 1(]'__ 1,"~sﬁ;i

Let us define
\/ {El(m - El(M)}
E,(M)

L / {—’——AE‘(MZ” M)} 3)
O-E

as the ﬁrst—oArder model distance from M to M, where
E,(M) [E{(M)] is the variance of the one-step-ahead
prediction error when the minimum mean squared fore-

, ..., Q) are real and

Dy(M — M)
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Fig. 1 Identification procedure of ARMA models from large samples

cast is performed using M (M). Suppose M, M assume
the following AR model forms:

MZYI=.ZI aj)’t—j'*’eu M:yt=.zl ajyt—j+ét
= =
It can be shown that

AE,(M - M) = Aa"RAa 4)

where Aa = (Aa,, Aa,, ..., Aa))" = (a; — a4y, a, — a,,
cees Ap — ap)’, Rpxpl, j)=v1j—il)= E(Yt—i)’z—j) and
L is a positive infinite integer (which can be taken to be
a sufficiently large integer in numerical computations)
7(j) can be calculated based upon both ¢;, 0, (j = 1, .
p:i=1,...,q) and 62 (12).

2.1.2 Order determination

Suppose there is a model AR(p,) and a model AR(p,),
where AR(p,) has less parameters than AR(p,). If the
model distance from AR(p,) to AR(p,) is large, the dif-
ference between these two models is significant. There-
fore, if 62(AR(p,)) [the estimate of the residual variance
associated with AR(p,)] is smaller, the increase in the
number of parameters from AR(p,) to AR(p,) should
produce a better model. In this case, the model distance
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from AR(p,) to AR(p,) can be taken as a measure of the
1mprovement in modelling accuracy due to the 1ncrease
in the number of parameters. However, if the accuracy
improvement is not significant so that the model dis-
tance [D(AR(pz))] corresponding to the accuracy estim-
ate of AR(p,) is larger than the model distance from
AR(p,) and AR(p,), then AR(p,) is not a correct selec-
tion. The above is simply the principle of the order
determination criterion for AR models presented in this
section. This criterion can be described as the following:
if D(AR(p,)) < D(AR(p;) = AR(p)) and G3(AR(p,)) <
62(AR(p,)), select AR(p,); otherwise, do not select
AR(p,). Since the model distance is employed, this cri-
terion is of prediction concern corresponding to the
least squares estimation.

Let us discuss the computation of D(AR(p,)). Assume
an AR model to be described by ¢, (i=1,12;. .., p)-and
its estimate AR by ¢] (ji=¥15125040: i5:p)Itican be shown
that

AR~ AR =F = 3 ¥ Apiagli=iD) )

i M'“

As_a result, the correspondmg model distance
D(AR — AR) can be calculated.
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Equation (5) is virtually just another form of equation
(4). However, this form will be more convenient for the
derivation of a formula to calculate D(AR(p,)). It can be
seen that equations (5) and (4) calculate AE,(AR — AR)
based upon the given parameters of AR. In these equa-
tions, both ¢; and ¢; values are required. This is impos-
sible during modelling. However, the covariance matrix
V of the parameter estimates can be utilized. As a result,
the following can be obtained:

PN p P
AE(AR) = E(F) = .Zl Zl Vool i1 — j1) (6)
i=1 j=

where V,, is the covariance matrix of the parameter
estimates. The equation for V,,, can be found in reference
(13). It can be seen that AE;(AR) is more practical as
an estimate of the modelling accuracy than is
AE,(AR — AR), since AE(AR) is virtually a statistic
when considering possible AR values, rather than a
special AR. Thus the model distance calculated based on
AE(AR) can be selected as D(AR(p,)).

When AE,(AR) is calculated using equation (6), the
actual parameter values are required to calculate y(i).
Since the actual parameters are not available, an
approximation of AE,(AR) is proposed:

=5 % Vel ili—i1)
%)

AR i=1 j=1
where 7 is calculated based upon AR. The accuracy of
this approximation can now be evaluated. Assume that

f | p() — 70) |
5_nmx{ () }

It can then be illustrated that
AE(AR |
AE(AR)

Assume that D(AR(p,) is calculated through
AE(AR(D2)) | arp») - Thus, the maximum relative error

between D*(AR(p,)) and D*(AR(p,)) [which is calculated
based upon AE(AR(p,))] will be

| DX(AR(p,)) — DXAR@,)| s
D*(AR(p,))

When AR(p,) is a sufficient approximation of AR, o will
be small. In this case, D*(AR(p,)) is a good estimate of
D*(AR(p,)).

It is apparent that if D(AR(p,)) is employed, the
selected models are statistically optimal in the sense of
minimizing the prediction error. When D(AR(p,)) is util-
ized, it can be shown that

DZ(AR*) S DZ(ARoptimal) 4o DZ(ARoptimal)5 (10)

where AR* is the model selected based upon D(AR(p,))
and AR°Pma! js the selected model based upon
D(AR(p,)) which is optimal. Therefore, the possible
incorrect selections will only cause additional errors
lying within a range of D*AR®™)5. It can be seen
that this is an excellent result when the accuracy of the
optimal model is sufficient, especially in this case of an
extra-large sample size. Also, in most cases the optimal
model will be selected when the accuracy of the optimal
model is sufficient. As a matter of fact, since the model
order varies discretely, the accuracy of the estimated

AE,(AR) = AE,(AR)

= <146 ®)

©
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model changes discretely as well. When the optimal
model is sufficiently accurate, the difference between
accuracies of the model may generally be larger than
the additional error. In such circumstances, the optimal
model will be selected. Thus, we can conclude that the
models selected through D(AR(p,)) are optimal or
nearly optimal in the sense of prediction. The resulting
autoregressive model is denoted by AR(K):

2.2 Parameter estimation and order determination of
ARMA models

Since the AR(K) is an adequate representation of the
samples, parameters of ARMA(p, ¢) can be acquired
based upon the following criterion:
¢*, 0*: min D, 0)— )
$eR?, OeR”
= min AE( 0o (11)
deR?,0eR

where « is the parameter vector of the AR(K).

Suppose that both the autoregressive /or\der and the
moving average order associated with ARMA,; are not
larger than the autoregressive /oger and the moving
average order associated with @I\AAH respectively. It is
apparent that the model from ARMAy to the AR model
is not larger than the distance from mL to the AR
model as well, assuming adequately accurate optim-
ization. If the decrease resulting from the increase in
the number of parameters is not significant, the increase
in the number of parameters does not make sense. In
this circumstance, ARMA is not regarded as being a
better model than ARMA, . In order to determine the
significance of the decrease, a comparison between this
decrease and the accuracy of the AR model can be per-
formed. Since the parameters of ARMA models are
based upon this AR model, any D*ARMA, — AR)
— D*(ARMAy — AR) less than D3(AR) must not be
regarded to be significant. This is the principle of the
order determination of ARMA models presented in this
section.

In order to minimize the model distance from
ARMA(p, q) to AR(K), the derivative of the distance
with respect to (¢, 0) is expected. It can be shown [see
equation (4)] that

AE\($. O] [0Ax
o9 | %

oAE($, 00| T a0a| R (12
09 69 (p+q) XL

where 0AaT/0¢ and 0A«"/0O are p x L and g x L
matrices respectively. Based upon

<6A<xT) _ 0AdT o;

06 ) 0b 0y
0Aa™\ 0AdT Oy
aé ni_ ad’;n 2 aé\n,

e 1 28 WERR L N TN s D SRS R g

and

A

i—1
= b — 0,- i Z &i—jgja
J=1

5‘1-_-431‘91, ¢3j=OU>P),

=324 3tk L

9j=OU>Q)
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the recursive equations for dAa"/d¢ and dAa"/00 com-
putations can be obtained:

1. The kth row dAa"/0¢, (k=1,2, ...
recursively calculated through

0Aa;  08; iz Ol
0P, 5¢k 6¢k

with initial conditlons.

, p) in 0AaT/0¢ is

i=k+1,...,L

2. The kth row dA«"/d0, (k =1, 2, ..., q) in dAaT/df is

recursively calculated through

04; SN0,

— T = —Al = A._ _ 0 = 7
o, Ol 2 20,

J=i

i=k+1,...,L

3 PROPERTIES

It can be seen that this approach is not complicated. As
a matter of fact, the second step, from the AR model to
ARMA models, is similar in complexity with the NLS.
AR parameter estimation, which can be performed
using a standard program, is simple. In the computation
concerning the model distance, y(j) (j = 0) must be cal-
culated based on the model parameters. However, this
calculation can be simply conducted through Green’s
functions (12). Thus, the additional complexity is slight.
The discussion now turns to an investigation of the
effectiveness of the proposed approach.

In this section, both the computational burden and
the modelling accuracy have been related to the size of
samples and the number of parameters. In terms of the
ratio of modelling accuracy to sample size, the possible
benefit can be determined.

3.1 Accuracy

From equation (4) the following inequality can be
shown:

AE,(ARMA > M) < [\/{AE,(ARMA — AR(K))}
+ V{AE(AR(K) - M)}T?

Thus, the final modelling accuracy can be estimated
from the following inequality:

l(m - M)

\/{AEl(ARMA — AR(K))} + /{AE,(AR(K) - M)}
V{E{(M)}

D,(ARMA — AR(K)) + D,(AR(K) —» M) 13)

In most cases, D,(ARMA — AR(K)) < D,(AR(K)).
Also, it will be illustrated in Section 3.3 that
D,(AR(K)) < D;(AR(K) —» M). Therefore, the accuracy
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. . T = . .
associated with ARMA may conveniently be estimated
in most circumstances through

D,(ARMA - M) < 2D,(AR(K) > M) (14)

3.2 Computational burden

The procedure of the model-distance based approach
consists of the AR modelling and the ARMA approx-
imation (Fig. 1). It can be shown that the total number
of multiplications for the AR modelling is only approx-
imated to (K + 2)N, where N > K. (Note that the es-
timate of parameters associated with the higher order
model can be recursively calculated.) However, both the
ARMA approximation and the conventional parameter
estimation must be acquired through a number of
iterations. The number of iterations depends on the
accuracy requirement, accuracy of the initial iterative
parameter, the optimization algorithm and the number
of parameters, etc. This number, in general, varies in a
range of (10, 100) and significantly increases with the
number of parameters. It can be shown that

Ny ~(p+q9LF+@+qp+29+ 1)L+ I7)2
N,~(p+q)(p+3q+ 4N

where N, and N, are the numbers of multiplications in
one iteration for the ARMA(p, q) approximation and
for the ARMA(p, q) non-linear LS estimation respect-
ively. The total numbers must be calculated through
summing N,; or N, with respect to possible orders and
corresponding numbers of iteration. Thus, the computa-
tional burden for the AR modelling may be ignored in
the preliminary investigation. Let us compare the com-
putational burden between the non-linear estimation
and the approximation.

Suppose A is the ratio of the cumulated computa-
tional burden. Then

YT,
W, o0 G D 16
I =
q i2

where i; and i, correspond to the number of iterations
associated with the ARMA approximation and the non-
linear LS estimation respectively. For the sake of con-
venience, i; and i, are assumed to be two equivalent

constants. Thus, we have

2.2 4%
lz-u—%:;Nz

From equations (15) it can be seen that both N, and N,
depend on (p, q). Yet a variety of (p, q) values will be
encountered in order to determine order. Suppose the
DDS order determination procedure of Pandit and Wu
(12) is followed. Thus, ARMA(2, 1), ARMA@4, 3)
ARMA(6, 5), ARMA(S, 3) and ARMA(4, 4) may be
encountered, assuming the final result to be of
ARMA(4, 3). Hence, it can be shown that A can be es-
timated through

(15)

(17)

%
Ny(r*, 4° i
N 2(p*, %)
where (p*, g*) are the final orders. Thus, from equations
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(15), the following can be employed:
@+ 9N+ (p* + g% p* +2¢* + DL + 22
3 (@* + g*)p* + 3¢* + 4N

A

(19)

This equation can, in a practical situation where
p* + 2g* + 1 < K + 5 = L, be approximated as

ftuse iuicr GHD sndit g
T (p* +3¢* + 4N

Equation (20) will be employed to determine the benefit
of the present algorithm.

In order to demonstrate the decrease in the ratio of
computational burden as the sample size increases,
some computational results are depicted in Fig. 2 where
L is selected to be 45. The computation is performed

(20)
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0.204
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0.02 1
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0.00 1

ARMA(2, 1)

Ratio

ARMA (6, 5)

ARMA 4, 3)

ARMA (8, 7)/
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based upon equations (17) and (15), assuming the DDS
order determination procedure of Pandit and Wu is fol-
lowed. It can be found that the computational burden
dramatically decreases as the size of the samples
becomes larger.

3.3 Estimation accuracy behaviour

Assume that the least squares estimate of AR(K), &g,
can be denoted by

s = [@T®]'®TY
Thus, the large sample matrix for &, ¢ covariance may be
obtained utilizing

1
V¢¢ = [(DTq)]_IO'SZ ~ _A',_ R‘laz

T T T
0 1000 2000 3000

0.011

ARMA(2, 1)
0.0101

0.009 A
0.008 -

ARMA 4, 3)

0.007 4

Ratio

ARMA(6, 5)
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0.005 4 ARMA(8, 7)
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T
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Size of samples

S000 6000 7000 8000 9000 10000

T T T
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T
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T T P  ; T T
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Fig. 2 Ratio of cumulated computational burden versus sample size
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Therefore,
K K
AE(AR(K)) = Y’ Vaolis (i —j1)
ji=1 j=1
0.2 K K i K
~ = 1. R, =— g2 21
N i;”;l (R )U Ji N T, ( )

It can be seen that the AR modelling error is pro-
portional to the order and inversely proportional to the
sample size in the case where adequately large samples
are addressed.

Equation (21) actually provides an accuracy estimate
for the case where the actual model is a Kth AR model.
In fact, the actual model in this problem will, in general,
be an infinite-order AR model. For this infinite AR
model, an adequately accurate finite-order AR approx-
imation exists for any given accuracy requirement if the
order of the AR approximation can be sufficiently large,
if invertibility is assumed. For any given order, a corres-
ponding optimum AR approximation exists. The
accuracy estimate provided by equation (21) is simply a
correspondence to the error measurement from the es-
timated AR(K) to the optimum AR(K) approximation.
(Note that the estimated AR(K) is the optimal or nearly
optimal autoregressive estimate in the case of the given
samples. This model is determined through a total con-
sideration of the sample size and the order.) Thus, if it is
assumed that all the infinite AR models (all M values) of
concern can be sufficiently approximated by AR (K,,),
the following can be shown:

AE(AR(K) - M) < % o} (22)

In most circumstances, K, can be taken to be 30 (35).
In this paper, K, is taken to be 40 for the sake of con-
clusion validity.

For non-linear least squares estimates of ARMA
models, the dependence of modelling accuracy on the
sample size and the parameter number can not be as
simple as equation (21). The modelling error will, in
general, be larger than provided by equation (21).
However, for the sake of convenience, it can still be
assumed that

AEARMA,(p, q) = =4 52 3)

although the actual value will be larger.

3.4 Beneficial sample size

It can be seen that the computational burden for the
ARMA approximation is independent of the sample size
while the computational burden for the non-linear LS
estimation is proportional to the sample size. This
implies that the present algorithm may be preferred
when the sample size is large enough. It will now be
determined which size of sample is sufficiently large.

The concern here is to acquire a more accurate es-
timate using less computational burden. Thus,

g 1/AE
" computational burden

(24)
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is defined as a ratio of modelling accuracy to the com-
putational burden. Hence, the intention is to acquire
large p. Confirmation of the following inequality can
ensure that the present algorithm is superior to the non-
linear least squares estimate:

P ARMApresent > P ARMALs (25)

It can be shown that pggya,, is independent of the
sample size because the computational burden is pro-
portional to the sample size. Using equations (20), (21),
(23) and (14), the following inequality can be obtained:

N 1
=
8K (p+qp+3q+4
Thus,
8K, L2

ot T —— YT 5

The minimum N that satisfies equation (26) can be
defined as the beneficial sample size N,. It is apparent
that if the sample size is larger than N,, the presented
algorithm will possess a larger p than the non-linear LS
algorithm. In this computation, L = K + 5. Thus,

_ BK (K +5)
P+ 9(p+3q+4)

If D,(ARMA — AR(K)) > D,(AR(K)), N, should be cal-
culated through the following equation:

ARNMA 2
WK (K + 5 {1 . Dl(AlEMA - AR(K))}
CN. = D,(AR(K)) (28)
y P+ap+3g+4

It can be seen that if some f; (see Section 2.1) is near to
the unit circle a large K will be produced. In this cir-
cumstance, Ny will tend to increase as K increases.
However, in this situation, AE(m,_s(p, q)) may not
be estimated by equation (23). A much larger modelling
error will be caused as well (36). From this point of
view, Ny will be much smaller than the value calculated
through equation (27).

Some examples showing the beneficial sample sizes
may be found in the next section.

27)

b

3.5 Accuracy ratio

Suppose that the equivalent values of computational
burden are costed to identify ARMA models by means
of the non-linear least squares algorithm and the
present algorithm. The accuracy ratio of the present
algorithm to the non-linear least squares algorithm can
be obtained. This ratio can be calculated through

 ul i,
"~ N/p+q)

where N’ represents the size of samples for which the
non-linear least squares modelling will have the same
computational burden cost as that where the present
algorithm has a size of samples N. It is evident that ¢ is
a measure of the accuracy improvement due to the util-
ization of the present algorithm. By equation (20), it can
be shown that
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N
= =5

N, (29

It is apparent that the accuracy ratio increases with the
sample size utilized to conduct the present algorithm.
Some ratios in simulations and in practical cases may
be found in the following two sections.

4 SIMULATION
The samples are generated from ARMA models:

(1 + 1.45B + 0.518B%)y, = (1 — 0B,

for =03, 0=06, 6=0.7, 0 =08 and 6 =0.9. The
number of samples is 10000. Simulation results are
listed in Table 1. The details for order determination
can be found in Table 2.

From Table 1, it can be seen that the accuracy ratios
are much larger than one. This reveals that more ac-
curate results are produced using the present approach

than the conventional non-linear least squares algo-
rithm, assuming equivalent computational burden costs.
Also, the correct orders of ARMA models are selected.

e
_In the case of 6=09, DARMA - AR)>
D(AR(K) — M). For this case, equation (28) is employed
to calculate N, rather than equation (27). This ensures
that the values of N, and ¢ in Table 1 are correct.

5 IDENTIFICATION OF SURFACE PROFILES

Surface profile measurements have been performed on
copper plates cut by an abrasive water jet. In the liter-
ature, only a few hundred data have been employed to
fit the ARMA model. In the present two cases, the
sample sizes are 6400 and 30000 respectively. The meas-
ured data are depicted in Figs 3 and 4. The results are
listed in Table 3 [for case 2, equation (28) was employed
to calculate N, rather than equation (27) to calculate
the accuracy ratio]. It can be seen that the accuracy

Table 1 Modelling results of simulation

AR modelling

ARMA approximation

0 K a D*AR(K)) p q ¢ 0 D*—AR(K)) N, 1

0.3 6 —029, —1.52, —0.44, —0.62, 0.0005989 4 1 0.0109, —1.436,  0.2991  0.00024127 705 142
—0.17, —0.04 0.0118, —0.4984

06 10  —0.59, —1.79, —1.06, —1.12, —0.66,  0.0009984 4 1 0.0073, —1.438, 0.5932  0.0004299 1310 763
—0.38, —0.22, —0.11, —0.05, —0.02 0.0085, —0.5000

07 12 —0.69, —1.92, —1.35, —1.44, —1.02,  0.0012047 4 1 00113, —1.438,  0.7008  0.0007743 1682 595
—0.71, —0.50, —0.34, —0.22, —0.13, 0.129, —0.5000
—0.05, —0.03

08 16  —079, —2.07, —1.65, —1.82, —1.46, 0.0016008 4 1 0.0114, —1.437,  0.7941  0.0009197 2566 3.90
—1.17, —0.95, —0.76, —0.61, —0.49, " 0.0122, —0.5000
—0.38, —0.29, —0.20, —0.13, —0.06,
—0.03

09 2D o: | 12088, —22%--1.98, ~=2:25,1—2.01} 150,0021918 = ;: 4 1 —0.002, —1.451, 08733  0.006869 4242 2.36
—1.78, —1.58, —1.39, —1.23, —1.07, —0.000, —0.513

—0.94, —0.81, —0.70, —0.59, —0.49,
—0.42, —0.33, —0.29, —0.20, —0.15,

—0.06, —0.03
Table 2 Order determination
AR modelling ARMA approximation
0 D? ﬁz(AR(p)) 6 Selected P q D*(ARMA(p, q) » AR(K)) Selected

0.3 2 0.00020 1.2024 2 1 0.26426
4 0.39608 0.00040 1.0172 2 2 0.08565

6 0.02778 0.00060 1.0033 X 4 1 0.00024 X
8 0.00006 0.00080 1.0032 4 2 ©0.00011
0.6 6 0.13451 0.00060 1.0107 2 1 0.25391
8 0.01177 0.00080 1.0045 4 0 0.15351

10 0.00203 0.00100 1.0033 X 4 1 0.00043 X
12 0.00004 0.00120 1.0031 4 2 0.00027
0.7 8 0.02948 0.00080 1.0083 2 1 0.26647
10 0.00921 0.00100 1.0042 2 2 0.19846

12 0.00195 0.00120 1.0034 X 4 1 0.00077 X
14 0.00118 0.00141 1.0032 4 2 0.00071
0.8 12 0.00716 0.00120 1.0055 2 1 0.28127
14 0.00434 0.00140 1.0036 2 2 0.23147

16 0.00198 0.00160 1.0028 X 4 1 0.00092 X
18 0.00004 0.00180 1.0028 5 1 0.00087
0.9 18 0.00238 0.00180 1.0050 2 1 0.35614
20 0.00226 0.00198 1.0039 2 2 0.35230

22 0.00229 0.00219 1.0034 X 4 1 0.00687 X
24 0.00177 0.00241 1.0036 : 4 2 0.00577
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ratios of the present algorithm to the non-linear least
squares algorithm are 6.7 and 4.3 respectively; that is
much more accurate ARMA models have been acquired
by the proposed approach than with the non-linear least
squares method with a nearly identical computational
burden in both cases.

6 CONCLUSIONS

An innovative approach has been proposed to identify
ARMA models from large samples in order to improve

Waterjet pressure: 260 MPa at nozzle

modelling accuracy of surface characteristics. The
feature of this approach is that its computational
burden is independent of the sample size while the com-
putational burden of the conventional algorithm is pro-
portional to the sample size. Thus, extra-large available
samples may be utilized sufficiently to improve the
modelling accuracy, without a virtual increase in the
computational burden. When the sample size is beyond
the beneficial sample size, a better accuracy to the com-
putational burden can be produced. It is shown that the

Abrasive type: Garnet (mfd. Barton)

—0.61 Water orifice diameter: 0.25 mm Abrasive size: 80 mesh (0.180 mm)
Stand-off distance: 8 mm Mixing nozzle length: 75 mm
—=0:74] Traverse speed: 50 mm/min Mixing nozzle diameter: 0.75 mm
Abrasive flowrate: 0.44 kg/min
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Fig. 3 Surface profile measure: case 1
1000 ; :
Waterjet pressure: 240 MPa at nozzle Abrasive type: Garnet (mfd. Barton)
Water orifice diameter: 0.25 mm Abrasive size: 80 mesh (0.180 mm)
Stand-off distance: 8 mm Mixing nozzle length: 75 mm
Traverse speed: 200 mm/min Mixing nozzle diameter: 0.75 mm
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Fig. 4 Surface profile measure: case 2
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Table 3 Identification of surface profiles

AR modelling ARMA modelling
Case N K o D? Model D? ¢ 6,/8,

1 6400 4 1.864, — 1.098, 0.00064 (1 — 1.60B + 0.608B2)y, 0.00016 6.7 0.01/0.18
0.2776, —0.04968 =(1 + 0.265B)e,

2 30000 22 —0.115, —0.103, —0.113, 0.00073 1- 1.55B+0.607B2 +0.018 B 0.003236 43 13.2/835
—0.129, —0.106, —0.113, x (1—B)%y,
—0.099, —0.091, —0.098, =(1 - 1.67B — 0.69B2)e,
—0.092, —0.079, —0.061,
—0.066, —0.073, —0.075,
—0.060, —0.045, —0.040,
—0.041, —0.035, —0.038,
—0.034

standard deviation after modelling D? = D¥AR(K))

é,=
6, = standard deviation before modelling

accuracy ratio, which is a measure of the accuracy
improvement, linearly increases with the sample size. It
was shown that the proposed approach provided much
more accurate ARMA models for surface character-
ization than did the non-linear squares method without
increasing the computational burden.
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