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I.INIRODUCTION

The weld pool can provide abundant information

about the welding process. Human operators acquire

the majority of their information about the welding

process by obsendng the weld pool. The desired weld

quahty can be produced by accurately mntrolling the

weld pool
It is widely known that a correlation exists between

weld quality and the weld pool, for example, the weld

penetration is approximately proportional to the de-

pression of theweldpool surface [1, 2l.To date, onlythe

width of the weld pool has been reliably sensed onJine

to control the weld quality [3, 4J due to the difficulty in

sensing other pool parameters. However, it is known

that both an increase in current and a desrease in arc

lengthwill increase the weld penetration, but the resul-

tani changes in the weld pool width will be opposite'

Thus, the weld pool width is not always a proper repre-

sentation of the weld penetration [5, 6]. To acquire

sufficient information about the weld quality and weld-

ing process, more weld pool parameters must be sensed

in orOer to find the correlation between the weld quality

andweld pool.

2. REALTIME SENSING OF WFID POOL SHAPE

Gas tungsten zuc (GTA) welding is a primary welding

process foiproducing qualitywelds. It is frequentlyused

ior the tooi puss where the joint penetration is critical.

Because of its special role inwelding, itd. precise control

is desired. In this study, GTA welding process will be

addressed.
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The GTA welding process is illustrated in Fig 1' A

nonconsumable tungsten electrode is held by the torch'

Once the arc is established, the electrical current flows

from one terminal of the power supply to another ter-

minal through the electrode, arc, and worllpiece' The

temperature of the arc can reach 8000 - 10500K [7], and

therefore the workpiece becomes molten, forming the

weld pool. The tungsten elecfiode remains unmolten'

The shielding gas is fed through the torch to protect the

electrode, molten weld pool, and solidi$ weld metal

from being contaminated by the atmosphere'
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Abstract - The weld pool contains abundant information about the welding process. Its observation can

generate data for studying the welding process. Its control could provide an entirely ne'w lnethod to reach

t-he desired weld quality. i. realtime sensing technique has been developed to sense the 2D shape of the

weld.pool. Thus, abundant data can be aiquired hom the weld pool and used to correlate the pool

g"o*it.i*l appearancewith theweld penetration. Theweld pool is characterized usinga few parameters.

The desired weld pool can be acquirei by controling these parameters. A number of closed-loop control

systems have beendeveloped to control tfie welding ptocess based on the vision feedback of the weld pool'
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Fig. I - Gas tungsten arc welding

The strong arc light obscures the GTA weld pool

being observed. Pool oscillation, ultrasound, infrared,

and x-ray based methods have been proposed to detect

the arc weld pool. However, to accurately acquire the

shape of the weld pool, direct visual obsenrations may

be more appreciated. Co-a:rialviewing can obtain direct
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observations of the weld pool. However, the acquired
images of the weld pool may not be clear enough to

accurately detect the weld pool boundary in realtime [8,
9l due to the lack of contrast between the weld pool and
its surrounding area.

To improve the image quality, a pulsed laser of short
duration has been projected onto the weld pool in order
to suppress the arc light. The resultantweld pool image
is very clear (Fig.2 (a)) from the acquired image in 50
ms, despite the variation in welding conditions and pa-

rameters. This real-time processing technology pro-
vided abundant data to study the physical processes in
the weld pool and feedback for the closed-loop control
of welding process.

Fig.2 - Weldpoolbnage. The originalimage (a) can be
processed to acquire the weld pool boundnry @ in 50 ms.

Fig. 3 - Experimental SetuP
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An experimental system has been developed to imple-
ment machine vision based monitoring and conffol of the
GTAwelding process at the University of Kentucky (Fig.
3). The welding current is controlled by the computer
through its analog output to the power supplyranging from
10 A to 200 A- The torch and camera are attached to a
3-a:dal manipulator. The motion of the manipulator, i.e.,
the welding speed, is confrolled by a 3-axis motion control
board which receives the commands from the computer.
The motion can be preprogrammed and on-line modified
by the computer in order to achieve the required torch
speed and trajectory Fig.3).

The camera views the weld pool from the rear at a
45qangle. The frame grabber digitizes the video signals into
5L2x5l29bit digital image maffices. The extracted bound-
ary of the weld pool is used to calculate the length and
relative width, obtaining the feedback of the process'

4. DETERMINATION OF WEI,D PENETR,ATION

In order to achieve soundwelds, the desiredweldpool
must first be determined based on the requirements of
weld quality.
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Fig. 5 - Fully penetrated weld PooI.

The weld pools shown in Fig. 4 were acquired using

different welding currents. These weld pools are fully
penetrated. It is known that the status of the full pene-

ffation is primarily specified by the back-side beadwidth
W6 $ig. 5). It is found that the weld pool tends to

enlarge, sharpen, and become elongated when W6 in-

creases. In order to quantitatively correlate the weld

penetration with the weld pool geomeffy, the weld pool

should first be characterizedby a number of parameters.
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Fig. 4 - Weld. pools generated u"sing different welding currents. Arc tength=3mm, torch speed=I.9 mmfs, GTAwelded'

Si SOq. @).-g0A, w = 1.8 mm. (B). 95A, w6=j,0 mm. (C). 105A, w=4.0 mm. (D). 110A, wb=4,5 mm. (E). 1154'

w=5.0 mm.

Molten

Speed and



Adaptive robotic welding wing vision feedback

4.1. Geometrical Model Of Weld Pool

The weld pool in this study refers to the two-dimen-
sional geometry of the top-side surfacs view of the weld
pool, and is described by the measured boundary points.
However, these measured points do not directly indicate
the feature of the weld pool. AIso, the geometrical
feature of the weld pool can not be sufficiently charac-
terized using pool length, width, atea, etc. To charac-
teize the weld pool, a few parameters must be selected
based on careful analysis. These parameters arereferred
to as the characteristic parameters of the weld pool.

The selection of the characteristic parameters is cru-
cial. Three criteria must be satisfied. First, the funda-
mental geometrical appearance of the weld pool must
be sufficiently described using the selected charac-
teristic parameters. Secondly, the correlation between
the status of the weld penefration and selected charac-
teristic parameters must be substantial. Also, in the
projected control system for weld penetration, the se-
lected parameters must be controlled to achieve the
desiredweld pool andweld penetration. Although more
parameters could describe the weld pool more accu-
rately, the increase in the number of selected charac-
teristic parameters may complicate the resultant control
system. Thus, the number of selected parameters must
not be too large. As a result, the following parametric
model is proposed:

!,=!a xl 1t -xS (a > o, 1 > b > o) (1)

where a and b are the model parameters, (4, y2), are the
coordinates of the pool boundary in the normalized
coordinate system o4y, @ig. 6(a)). These normalized
coordinates are calculated using the measured x, y coor-
dinates:

I x-=x/L
I (2)
I y,=y/L

*tr.r, L is the length of the weld pool.
Model (1) presents a symmetric and normalized de-

scription of the weld pool. Although actual weld pools
are not perfectly symmetrig if the non-symmetry of the
weld pool is not extreme, its effect on the weld penetra-
tion may be negligible. A symmetric description of the
weld pool will be more suitable for correlating the weld
pool to theweld penetration, in addition to reducing the
number of used parameters. In Model (1), the dimen-
sions of the weld pool along both the length and width
directions are nonnalized relative to the length of the
weld pool. This norm alued description can de coupl e the
shape from the size of the weld pool so that the shape
can be characterized by the parameters a and b. This
decoupling between the shape and size can clariff the
role of each parameter in characterizing the weld pool
and designing a perspective control system.

The location corresponding to the maximumwidth of
the weld pool is determined by b. It can be shown that
mzx yr (xr) = y, (b I (b + 1)). If the weld pool is divided
into the leading and trailing portions, their lengths in the
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Fig. 6 - Symmetric modeling of the weld pool boundary.
(a) Geometrical description (b) Modeling acnmples

normalized coordinate system are b I (b + 1) and 1l @
+ 1), respectively. Thus, b is the ratio between the
leading and trailing lengths. Since the trailing length is
larger, 1 b. it was found that the absolute length of the
leading portion is less seriously affected by the welding
parameters than the length of the trailingportion. Thus,
when the current increases, b will decrease. For a sta-
tionary weld pool, the leading and trailing lengths
should be equal. In addition to b, the weld pool shape is
also determined by the parameter a. For a given b, the
width of the weld pool in the normalized coordinate is
proportional to the parameter a. This relative width
characteraes the narrowness of the weld pool and can
be calculated using the parameters a and b:

t - +w,=w/L=^lf;l # (3)

Thus, tt e wetto nooi, .un be charact eruedusing three
parameters: the length ratio b, the relativewidthw' and
the length of the pool L. These three parameters char-
acterize the weld pool from different points of view. It
is apparent that the length L is independent of the shape
parameters. The shape of the weld pool is described
using two independentparameters based on the narrow-
ness and the leading to trailing ratio. Thus, these three
parameters ian be selected as the characteristic parame-
ters of the weld pool and are denoted as pt = L, pz =
w., and pg = b.

It has been shown that the proposed model can accu-
rately characterize the weld pool shape. Two examples
are illustrated in Fig. 6 (b). The small difference between
the measured and modeled boundaries show the model
effectiveness. Also, although the proposed model is non-
linear about the parameter b, its linear version can be
acquired using a log transformation. Thus, the modei
parameters can be on-line identified from the weld pool
boundary using the linear least squares algorithm.
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4.2. WeId Penetration Determination

In order to acquire a precise correlation between the

characteristic parameters and the weld peneffation, ex-

tensive experiments were performed using varied weld

conditions and parameters. Because of the complexity

of the relationship betwewen the weld pool and weld

penetration, neural-networks were used to correlate the

weld pool parameters, andweld penetration. Data from

more than 6,000 weld pools and corresponding back-

side bead widths were used to train the networks. The

results are shown in Fig. 7.lt can be seen that the weld

penetration can be determined with sufficient accuracy

using the three characteristic parameters of the weld

pool (fig. 7).
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Fig. 7 - Neural-network modelling of full penetratian

status using the characteristic parameters of the weld pool

5. WELD POOL CONTROL

The lowlevel conffol of theweldpool, i.e., controlling

the weld penetration which is the most important deter-

minant oitheweld qualityhasbeen done in our previous

work (13). It is known that the top-side bead width and

back-side bead provide a description of the fusion zone

geometry at the cross section. Their control can achieve

the desired weld penetration and proper fusion zone

which is critical in determining the heat affected zone.

Hence, in this paper, the top-side bead width and back-

side bead width are controlled simultaneously based on

the vision feedback of the welld pool. In the developed

closed-loop system, the welding current and welding

speed will be adjusted to achieve the desired back-side

and top-side bead widths.

5. 1 NeurofvznY Modelling

When the welding current increases, both the top-

side and the back-side bead widths increase. However,

as the welding current increases, the resultant changes

in the top-side and back-side bead widths increase as the

welding speed decreases. Also, as the welding speed

decreaies, the resultant changes in the top-side and

back-side bead widths increase as the welding current

increases. This implies that the correlation between an

output and an input can be influenced by another input'

Different models and algorithms may be used to

model and control nonlinear processes. Recently, neu-

ral networks have been used to model and control non-

linear processes, including manufacturing processes'
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The non-linearity can be approximated by adding more

neurons without having a detailed knowledge of the

controlled process. Although the non-linearity of the

process can be modeled with accuracy in most applica-

tions, the neglect of valuable process knowledge re-

quires more neurons to be used. As a result, the training
and adaptation of the networks are slowed down.

In order to increase the speed of modelling and ad-

aptation, the model must be more efficient regarding the

number of used parameters. An analytical model, de-

rived from the physics of the controlled process, with

unknown parameters, can be regarded as the most effi-

cient and the number of parameters is usually relatively

small. Its parameters can be identified very quickly and

the adaptation of the resultant adaptive control system

to the changed process environment can be fast. How-

ever, if the model structure is incorrect or incomplete,

the resultant modelling and control performance could

be poor.
A better approach is to partially assume the model

structure using the knowledge of the controlled process

so that the number of parameters is less than using a

neural network. In order to do this, a specific model

structure is required. First, the adjustment of the model

structure should be connected in some way to the lin-

guistic description of the process knowledge. Secondly,

ihe model structure should have a mechanism to de'

scribe the addressed non-linearity through changing its

parameters or incteasing the model complexity.

The nevrofiuzy model is a model structure which

satisfies the above two requirements. First, the fuzzy

partition can be done based on the linguistic knowledge

about the process. This is the basic characteristic of a

fuzzy system. Secondly, for a non-linear process, the

dynamic model changes with the system variables' By

finely partitioning the space of the system variables, the

non-linear dynamics can be described using a set of local

linear models with sufficient accuray. In a SegenoFuzzy

Model used in the neurofivzy system, these local linear

models correspond to the uispfunctions associatedwith

different IF-THEN implications. Hence, a neurofuzzy

model has a mechanism to describe a nonlinear dy-

namic process with satisfactory accuracy. Moreover, in

a fiizzy model, the system variables arc fuzzified' The

outpuis of the fivzy system are generated from crisp

functions with weights which are determined according

to the.degrees of truth of the premises. Thus, there are

no sharp tr4nsitions from one local model to the other

local models. As a result, the requirement on the fine-

ness for the partition of the system variables can be

greatly reduced. Ftrence, in addition to the ability to

reach the required accuracy, neurofuzzymodels can also

decrease the number of needed parameters.

A neurofuzzy modelhas been developed to calculate

the back-side bead width and top-side bead width only

from the controlvariables (welding current andwelding

speed) without any use of the previous outputs. Fig- 8

shows the accuracy of the developed neurotn?zy model

in predicting the back-side and top-side bead widths.
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The measured data are generated from a number of

experiments. It can be seen that the elrors between the

measured and predicted values are always very small'

However, if a linear model is used, the errors are very

large (Fig. 9). Hence, the neurofuzzy model provides an

accurate description of the process being controlled'

5.2 NeurofuznY Model Based Control

The identified neurofuzz�y model can be used to pre-

dict the outputs of the system. In this worh a predictive

control algorithm has been designed to control the fu-

sion state. We notice thatthe non-linearityintheprocess

being controlled is fundamental. Extensive welding ex-

periirents of closed-loop control have been conducted

under different disturbances. It was found that the re-

quired fusion state was always achieved by the devel-

oped control sYstem.
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Fig. 10 - Closed.-toop control upeiment of the top-side

at back-side bead widtlts under step change in the rate

of the shieWing gas. (a) Outputs. (b) Control actions

Fig. 10'shows a closed-loop control e4periment, In

this e}periment, the shietding gas changes from 201/lim

to 7 l/min at t=50 s. As a result, both the top-side and

the back-side bead widths inctease. By measuring the

increased widths, the feedback conffol adjusted the

welding current and welding speed so that the desired

fusion itut" is achieved again. However, it is observed

that in the case of the open-loop conffol where the

welding current and welding speed are constant, the

changes in the top-side and back-side bead widths

caused by the varying rate of the shielding gas are not

eliminated.
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