
Parameterisation of observers for time delay 
systems and its application in observer design 

Y.X.Yao 
Y. M. Zhang 
R. Kovacevic 

Indexing terms: State obscwation, Time delay syscerns, Factorisation approach 

Abstract: The paper addresses the design of 
observers for systems with time delay. A 
factorisation approach is used to parameterise all 
observers for such systems. The necessary and 
sufficient condition of existence for observers is 
obtained. Based on the results in the 
parameterisation of observers, the estimation 
error dynamics is also parametrised. A design 
example is given to illustrate the proposed 
parameterisation procedure. 

1 Introduction 

This paper is concerned with the observer design for 
time delay systems. The state observation of time delay 
systems arises from the practical needs in system moni- 
toring, regulation and/or identifying failure. In these 
cases, it is often desired to reconstruct the state varia- 
bles of systems wi1.h time delay. In general, designing 
observers for reconstructing the state variables is more 
involved in a time delay system than it is in a delay-free 
system. To solve this problem, considerable efforts 
have been made during the last two decades [1-7], by 
using spectral decomposition [1-4], matrix fractional 
representation [5], and finite spectrum assignment [6,7].  

It is known that the parameterisation of all observers 
plays an important role in designing an observer, espe- 
cially in designing an optimal robust observer under 
unknown disturbances [8-lo]. However such parame- 
terisation has not yet been developed for time delay 
systems. In this paper the factorisation approach is uti- 
lised to parameterise the set of all observers for the 
time delay systems. 

It has been shown that the factorisation approach is 
a powerful tool in solving a variety of control system 
design problems [I 11. Although the transfer function 
matrix of any finite-dimension system admits a proper 
stable Bezout factorisation, such factorisation does not, 
in general, exist for infinite-dimensional systems [ 121. 
Thus, the proper stable Bezout factorisations of trans- 
fer function matrices have been studied for linear- 
invariant systems with commensurate time delays 
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[12-141. It is shown [I31 that the existence of the proper 
stable Bezout factorisations is equivalent to the spectral 
controllability (or spectral observability) of the co- 
canonical (or canonical) realisation of a transfer func- 
tion matrix. An explicit procedure for computing 
proper stable Bezout factorisations has already been 
given [ 131. Recently, these results have been extended 
[I41 using the finite-spectral assignment method [7, 151. 
In this paper, some of their results are used to obtain 
the parameterisation of observers. 

When disturbances exist in the time delay system, 
estimation errors could be caused. With the aid of the 
observer parameterisation proposed in this study, the 
parameterisation of estimation error dynamics with 
respect to the disturbances has also been obtained. 

2 Notation and preliminaries 

Let R denote the field of real numbers, C denote the 
field of complex numbers or the complex plane, C, 
(C-) denote the open right-half (left-half) plane, c+ 
denote the closed right-half plane, and Q denote either 
C or C,. R[s] denote the set consisting of all finite sums 
&aksk, where a/< E R for all k = 1 ,  2,  .... Let z denote 
exp(-ds) where d is a fixed nonzero positive number 
and s is a complex variable. We also let M(.) denote the 
set of matrices, I denote the unity matrix, and 0 the 
null matrix. 

Let R[z] denote the ring of polynomials in z with 
coefficients in R, and R(z) denote the field of rational 
functions in z with coefficients in R. Let R[z][s] denote 
the ring of polynomials in ,F with coefficients in R[z]. 
Let a(s, z) be an arbitrary element of R[z][s] given by 
a($, z )  = an(z)sn + an-l(z)~n-l + ... + ao(z), where a&) E 
R[z] for all k. The degree of u(s, z )  is the largest value 
of k for which ak(z) t 0. The polynomial a(s, z )  is said 
to be monic in s if a,(z) = 1, where E is the degree of 
a(s, z ) .  Let R[z](s) (C[z](s)) denote the ring of rational 
functions in s with coefficients in R[z] (C[z]). 

Let R[s, z] denote the ring of polynomials in s and z 
with coefficients in R, and R(s, z )  denote the field of 
rational functions in s and z with coefficients in R. 

Let P denote the ring of rational functions defined by 

a ( s , z )  is monic in s ,  and 
g ( s ,  z )  is strictly proper in s} 

Then G(s, z) E M ( P )  can be viewed as the transfer 
function matrix of an m-input and p-output linear 
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time-invariant time delay system. A triple (C(z), 4(1). 
R(z)) of matrices over R[z] is a realisation of G(s. :) if 
and only if G(s, z )  = (C(z)(sl-- A ( z ) )  ‘B(z ) .  

2.1 Definition 7 [72, 141 
(i) The pair ( A ( z ) ,  R(z)) is R[z]-controllable if and only 
if rank[sl-  A ( z )  B(z)]  = n for all (s, z) E C’. 
(ii) The pair (A(z ) ,  B(z) )  is R(2)-controllable if and on14 
if rank[sl-  A(s) B(z)] = n for all but finite many pair (s. 
z) E P. 
(iii) The pair ( A ( z ) ,  B(z))  is spectrally controllable over 
Q if and only if uank[sl ~~ A(exp(--sd) B(exp(-sd)))] = P I  

for all s E C. 
(iv) The pair (C(z), A(z ) )  is R[~]-observable if and only 
if (A’(z), C ( z ) )  is R[z]-controllable. 
(v) The pair (C(z) ,  A ( z ) )  is R(z)-observable if a.nd only 
if (R’(z), C’(z)) is R[z]-controllable. 
(vi) The pair (C(z), A(z))  is spectrally observable over 
R if and only if (A’(z ) ,  C’(z)) is spectrally controllable 
over R. 

2.2 Definition 2 [12- 141 
(i) The triple (C(z) ,  A(z) ,  B( z ) )  is canonical if and only 
if (A(z) ,  B(z)) is R[z]-controllable and (C(z), A(: ) )  is 
R(z)-observable. 
(ii) The triple (C(z), A(z ) ,  B(z))  is co-canonical if and 
only if (B’(z), A’(z), C’(z)) is canonical. 
(iii) The triple (C(z), A(z) ,  B(s)) is spectrally canonical 
over R if and only if (A(z) ,  B ( z ) )  is spectrally controlla- 
ble over !2 and (C(z), A(z ) )  is spectrally observable over 
R. 

It is known that any transfer function matrix G(s. 1) 
has both a canonical realisation and a co-canonical 
realisation. Therefore the spectrally canonical realisa- 
tions can be studied in term of the canonical or co- 
canonical realisation of G(s, z )  and the next result is 
known. 

2.3 Lemma I [I31 
Suppose G(s, z) E M(P) then the following three state- 
ments are equivalent: 
(i) G(s, z )  has a spectrally canonical realisation over R. 
(ii) Any canonical realisation of G(s, z )  is spectrally 
observable over LZ. 
(iii) Any co-canonical realisation of G(s. z) is spectrally 
controllable over (1. 
The following definitions are related with the coeffi- 
cient matrices of the Rezout identity to be defined over 
a ring which contains both pure and distributed time 
delays, 

Let O(z) denote the ring of polynoinials in z, and 
O[z][s] denote the set consisting of all finite sums 
Caj(,s, z)si where ui(s, z) E @[I] for all i(i = 1, 2, ...). Any- 
element a($, z) E O[z][s] has unique representation as 
polynomials in s [13]. A monk polynomial n(s, 1) E 
Q[z][.s] is stable if and only if u(s, exp(-sd)) # 0 for all s 
E C,+. It is known that in general n(s, exp(-sd)) has 
infinitely many zeros. In particular, u(s, z) is finite- 
spectrally stable if and only if n(s, z )  is stable and. a(s, 
exp(--sd)) has only finitely many zeros. 

Let S, and S,., denote the ring of  proper stable func- 
tions defined by: 

f ( s ,  z) is monic in s and stable, aid 
q ( s ,  z) is proper in 5 )  

S F I  = { q ( 3 . z )  = __ g ( S >  1g(s. 2 )  E O [ z ] [ s ] ,  f ( s )  E R[s] f (.? 

j ( s )  is iiionic in s and stablp, and 

q ( s .  s) is proper in s} 
(2) 

respectively. Note that the element of Sr,\? has possibly 
infinitely many poles, and every element SFI has only 
finitely many poles. 

It has been shown [14] that any G(s, z) E M(P) has 
both a Bezout factorisation in SIy and in S,cI if G(s, z) 
is spectrally canonical over Q. 

2.4 Lemma 2 [I41 
Suppose G(s, z) E M ( P )  is spectrally caiionical over C2. 
A double co-prime factorisation of G(s, z) ca,n be writ- 
ten as: 

G(.s . z )  = S(S, z ) ; \ ~ - ~ ( s ! z )  lG~-l  ( S ; ~ ) X ~ ( S :  2) ( 3 )  

where N(s. z) M(s, z) and N(s, z), i@s, z) are right and 
left coprime i!4(§ft%r) matrices. respectively. For this 
double coprime factorisation, there exist M(S,,> matri- 
ces Y(s. z). x(.~. z) and Y(s, z), x ( . ~ ,  z )  satisfying: 

which is referred to as doubly Bezout factorisation 
(DBF) in 

The state-space realisation of the eight factors in 
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det(s1, - A o ( z ) )  = n(s + pz(x)) (14) 
2 x 1  

are stable. Then from eqn. 9, we have 

G ( s , z )  = C,(z ) (s I ,  - A,(z))-'B,(z) (15) 
When choosing positive real numbers a,[z] E R and 
pI[z] E R (i = 1, 2, ..., n), S, can be replaced by S, in 
Lemma 2. 

2.5 Lemma 3 1141 
Suppose G(s, z) E M(P) is spectrally canonical over R. 
G(s, z) has a DBF in SFI. 

In the proceeding Sections, only SIN will be 
addressed. However, all the results also hold if SIN is 
substituted for SFI. 

3 Problem formulation 

Consider the following linear time delay system 
described by: 

k ( t )  = A(z)a( t )  + B(z)u( t )  (16) 

Y(t) = C ( x ) 4 t )  (17) 
r ( t )  = E(z ) z ( t )  (18) 

where x(t) E R" is the state vector, u(t) E R'" is the 
input vector, y ( t )  E RP is the measured output vector, 
r ( t )  E R" is the state to be estimated, and A(z), B(z), 
C(z), E(z)  E R[z] are constant matrices with appropri- 
ate dimensions, and z denotes a formal delay operator 
which has the property such that zx(t )  = x(t - 4, z2x(t) 
= x(t - 2 4 ,  ..., for delay duration d. Taking Laplace 
transforms of eqns. 16-18, the transfer function matrix 
description is given by: 

y(s) = G ( s , z ) u ( s )  (19) 

T ( S )  = E(z)z(.s)  (20) 

(21) 

with 
G(s,  Z )  = C(z) (s I  - A(a))- lB(z)  

?(s) = F ( s ,  z ) u ( s )  + H(s ,x)y(s )  

and note that z = exp(-,$) in the Laplace domain. 
The observer for eqns. 16-18 can be described by 

( 2 2 )  
where F(s, z) E M(SIlv) and H(s, z) E M(SIN). The esti- 
mation error for r(t)  using the observer eqn. 22 should 
satisfy 

t+m lim ( r ( t ) )  - ?( t ) )  = O (23)  
for all u(t)  and initial states. 

Suppose G(s, z) E M(P) is spectrally canonical over 
Q. A right co-prime factorisation of G(s, z )  can be writ- 
ten as 

where N(s, z) and M(s,  z) is SIN matrices. 

eqn. 19 with the factorisation eqn. 24 as 

G ( s , z )  = N ( s ,  x ) M - ' ( s ,  z) (24) 

Introducing the partial state k(s), we can rewrite 

M ( s ,  z ) [ ( s )  = u(s )  (25) 

N ( %  z)<(s)  = Y(S) (26) 

r ( s )  = P(.S, z)E(s)  (27)  

Correspondingly, the variable r(s) = E(z)x(s) in eqn. 20 
can be expressed as 

with 
P ( s , z )  = E,(z)(sI, - A o ( s . x ) ) -  'B,(z) (28 )  

where EJz) = E(z) 01. Eqn. 28 can be proved as fol- 
lows. 

C ( z ) ( s I  - A(z ) ) - lB ( z )  = N ( s , x ) A K ' ( s ,  x) 
Using eqn. 5 we have 

(SI-  A(z)) -lB( z )  = (I 0) (SI, - Ao( S ,  2)) 

From eqns. 21 and 24, we obtain 

(29) 

Be( z )M- ' (  S ,  z) 
(30) 

which leads to 

X ( S )  = ( 5 1  - A ( ~ ) ) - ' B ( x ) u ( s )  

= ( I  

= (I 

0 )  ( s Ie  - A,(s ,z))- 'Be(z)1Z:J- ' (~,z)u(s)  

0) ( S I ,  - Ao(s, z ) ) - ' B 6 ( z ) < ( s )  
(31) 

Thus the variable E(z)x(s) can be expressed by 

r ( s ) = E ( z ) z ( s ) = ( E ( z )  0 )  (SI, - Ao(s , z ) )  - 'B,(z)<(s)  

= Ee(z)(tyIe - A~(s,z))~'B~(z)<(s) 
( 3 2 )  

For this new system description eqns. 25-27, we can 
obtain the following existence condition of observers. 

3.1 Theorem I 
For the given system eqns. 16-18, the variable r ( t )  = 
E(z)x(t) can be observed using the observer eqn. 7 if 
and only if the following condition holds: 

F ( s ,  z ) M ( s ,  x) + H ( s ,  z)iV(s, z )  = P(S, z) (33) 

3. I .  I Proof: Necessity. The estimation error in 
eqn. 23 is given as 

T ( t )  - ?( t )  = L- l [ r ( s )  - ? ( s ) ]  (34) 
where E'[.] denotes inverse Laplace transformation. 
Furthermore, let the state-space realisation of F(s, z )  
and H(s, z )  in the observer eqn. 22 be (Af(z) ,  Bxz), 
Cfcz), Dj(z)) and (&(z), Bh(z) Ch(z) Dh(z)) with stable 
vectors xf and xh and initial values xf(0) and xJ7(0), 
respectively. Then we have: 

L-' [ ~ ( s ) ]  = L-l [P( S ;  z )<(s )  + E, ( z )  ( S I  - Ao (z)) -'z(0)] 

L-'[?(s)] = L- '[F(s ,  z ) u ( s )  + C f  (~-Af(z))-~z,~(O) 
+ H(s,z)y(s) + C ~ ( S I - A A ~ ( Z ) ) ~ ~ ~ ~ ( O ) ]  

(35) 

= L-'[ ( F ( s .  z ) M ( s ,  x) + H ( s ,  % ) N ( S >  z ) [ ( s )  

+ C f  ( S I -  As (z))- 'z f  (0) + Ch ( S I -  Ah (z)) -'zh (O)] 
(36) 

Substituting eqns. 35 and 36 into eqn. 34, gives: 

T ( t )  -?(t) =L- ' [ (P( s , z ) -F( s ,  z ) M ( s , x )  
-H( S ,  2 )  A;( S ,  z))[( S )  + E(  SI - A0 (2)) -' X (  0) 

- Cf ( S I  - Af (z))- ' " J  (0) 

- Ch ( S I -  A h  ( z ) ) - ' x ~  (O)] 

Since E(s1- A0(z))-l, CksI - Af(z))-' and Ch(sl - Ah(z))- 
E &'(SIN), we have: 

lim L-' [E ( S I -  A~ (2)) -'Z(O) 
t i m  

- Cf ( S I -  As (2)) (0) - Ch ( S I -  A A ~ ( z ) )  (O)] = 0 
Therefore, the condition eqn. 33 is a necessary condi- 
tion for system eqn. 22 to satisfy condition eqn. 23. 
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3.1.2 Sufficiency: It is known that the observer 
satisfies 

That is 

then 

It is seen that the term P(s, z)E,(s) on the right side of 
eqn. 38 is the dynamics of the state function E(z)x(t) in 
the frequency domain. Therefore, the observer can be 
expressed as the form of eqn. 22. Thus the proof is 
completed. 

The objective in the next Section is to find the set of 
all observers which satisfies condition eqn. 33 (e.g. to 
parameterise all observers). The factorisation approach 
for time delay systems will be used to solve this prob- 
lem. 

4 Parameterisation of observers 

4.1 Theorem2 
Given plant eqns. 16-18. Suppose G(s, z) E M(P) is 
spectrally canonical over a, with the right and lsft co- 
prime factorisation (N(s ,  z) ,  M(s ,  z ) ) ,  (N(s, z), M(s, z))  
in SIN,  respectively. Then the set of all observers for 
z( t )  is parameterised by: 

(39) 

(40) 

F ( s ,  z) = P ( s ,  z ) Y ( s ,  2 )  - Q ( s ,  z ) N ( s ,  z ) ]  

H ( s , z )  = P ( s ,  z ) X ( s ,  z) + Q ( s ,  Z)~$?(S, z)] 

Q ( s , z )  E M ( S I N )  

I 
I 

(41) 
where Y(s, z) ,  X(s,  z )  satisfy the Bezout identity eqn. 4 
corresponding the co-prime factorisation of G(s, z). 

4.1. 7 Proof: Necessity. Select a Q(s3 z) satisfying 
eqn. 41. There exists an observer, 

T ( S )  = F ( s ,  z )u(s )  + H ( s ,  x)y ( s )  

= [P(s, z ) Y ( s ,  2) - Q ( s ,  ~ ) f i ( ~ ,  211 4 s )  

+ [p(+ z ) X ( s ,  z )  + Q ( s ,  z ) a ( s ,  211 Y(S)  (42) 
or 

[ F ( s ,  .) H ( s ,  .)I [ p ( s ,  z ) Y ( s ,  z) - Q ( s ,  z ) f i ( s ,  z) 

P(s ,  z ) X ( s ,  z) + Q ( s ,  z)*(s, z)] (43) 

Thus 

(44) 
It can be seen that this satisfies the condition eqn. 33 of 
the observation. 

4.1.2 Sufficiency: The observer is given by: 

It is desired to find a Q(s, z) E M(SIN) such that F(s, z) 
and H(s, z) can be expressed as eqns. 39 and 40, that is: 

4 s )  = F ( s ,  4 4 s )  + w, Z)Y(S) 

(45) 
It is known that the observer satisfies: 

From Lemma 2, 

is nonsingular. Let 

This is a stable matrix [12]. From eqn. 45, we obtain 

That is, 

Thus eqn. 45 is satisfied. 
Theorem 2 gives the result of parameterisation of all 

observers for the time delay system in eqns. 16-18. 
According to this parameterisation, the observer design 
reduces to searching for a suitable parameterisation 
matrix in SzAT set. This provides us with a systematic 
procedure to design observers. As the summary, the 
procedure designing observers is given in the following 
algorithm: 
(i) Obtain a co-prime factorisation of G(s, z) E M(P) 
for f i (s ,  z) and M(s, z). 
(ii) Calculate Y(s, z) and X(s,  z )  which satisfy the Bez- 
out identity eqn. 4 and P(s, z )  given in eqn. 28. 
(iii) Choose the parameterisation matrix Q(s, z) E 

(iv) Observers are given in the following form 
M(sZN). 

= [r (s ,  2 )  Y ( s ,  2) - Q ( s ,  2 )  fi(s, 211 ~ ( s )  

+ [P(s ,  2) X ( s ,  2 )  + Q ( s ,  z) ~ ( s ,  211 ds) 

4.2 Remark 7 
The above algorithm is based on the proper stable Bez- 
out factorisation under state-space representation, and 
therefore, it can be easily realised and implemented. 

4.3 Remark 2 
The selection of the parameterisation matrix Q(s, z) 
depends on the performance specification of observer 
design. When a certain design specification is given, 
one can solve the corresponding observer design by 
finding an optimal Q(s, z). 
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5 Parameterisation of estimation error 
dynamics 

When disturbances exist in the system, the performance 
in eqn. 23 will never be satisfied. In this case, we can 
give the parameterisation of estimation error dynamics 
as follows. 

When there are disturbances in given plants, the 
description for the system in eqns. 16-18 becomes: 

z ( t )  = A ( z ) z ( t )  + B(z)u( t )  + U ( z ) d ( t )  (49) 

Y ( t )  = C ( z ) 4 t )  (50) 

T ( t )  = E ( z ) z ( t )  (51) 
where d(t)  E Rq is the unknown disturbance vector, 
U(z) E R[z] are constant matrices with appropriate 
dimensions. Then the transfer function description is 
rewritten by 

where G(s, z) is expressed in eqn. 21 and 
Y(S) = G ( s ,  z ) u ( s )  + G d ( S ,  214s )  

G ~ ( s , x )  = C ( X ) ( S I  - A ( z ) ) - l U ( z )  

(52) 

(53) 
The double coprime factorisation of Gd(s, z )  can be 
written as 

G ~ ( s ,  Z )  = N ~ ( s ,  X)M;'(S,  Z )  = M;'(S, z)IV~(S, Z )  (54) 
According to eqn. 11, eqn. 53 also can be expressed as 

(55) G ~ ( s , z )  = Ce(Z)(sIe  - A ~ ( Z ) ) - ' U ~ ( Z )  

where 

Ue(z) = [ :] (56) 
A d ( % )  = ['t' -I 

Furthermore, through introducing the partial state $(s) 
defined in eqn. 25, we have 

and 
Y(S) = N ( s ,  4m + Gdb,  4 d ( s )  

T ( S )  = P(S, x ) l ( s )  + F d ( S ,  z)d(s )  

(57) 

(58) 

(59) 

where P(s, z) is given in eqn. 28 and 

F ~ ( s ,  Z )  = E ( z ) ( s I  - A ( z ) ) - l U ( z )  

= Ee(z ) ( s I e  - ~ d ( ~ ) ) - ' ~ e ( z )  
Eqn. 59 can be obtained as follows. 

From eqns. 53 and 54, we obtain 
S I  - A ( z ) ) - l U ( z )  = ( I  
Furthermore, we have 
Z(S) = ( S I  - A(z))- lB(z)u(s)  + ( S I  - A(z) ) - 'U(s)d(s )  

0 )  (S I ,  - A ~ ( Z ) ) ~ ~ L I , ( ~ )  (60) 

= ( I  

+ ( I  

0 )  ( S I ,  - Ao(~,a))-~U,(z)M-'(s,~)u(s) 
0 )  ( S I ,  - Ad(z))- 'Ue(z)d(s)  

(61) 

(62) 

Then 

= E,(z ) (sIe  - A o ( s , x ) ) - l B e ( z ) ~ ( s )  
+ Ee(x)(sIe - Ad(z ) )Ue(z )d ( s )  

Thus eqn. 59 is obtained. 
The estimation error is described by 

e ( s )  = ~ ( s )  - ?(s )  (63) 
Substituting F(s, z) and H(s, z )  of eqns. 39 and 40 into 
eqn. 63, we obtain 

4 s )  = ( (Fd(s ,  z )  - P ( s ,  z ) X ( s ,  ~ ) G d ( s ,  Z )  

- Q ( S , ~ ) ~ ( S , Z ) G ~ ( S ,  z ) ) d ( s )  

That is, 

where 
e ( s )  = (TI ( s ,  2) - Q ( s ,  z ) T ~ ( s ,  x ) ) d ( s )  

T ~ ( s ,  Z )  = & ( S .  Z )  - P(s ,  z ) X ( S ,  z ) G ~ ( s ,  Z )  

T~(s, Z )  = iQ(s, ~ ) G d ( s ,  Z )  

(64) 

(65 )  

The following theorem can be proved. 

5.1 Theorem3 
Given system eqns. 49-51. The set of all achievable 
transfer function matrices of the estimation errors e(t)  
in the presence of the disturbance vector d(t)  is param- 
eterised as 

where: 
T ( s , z )  = Tll(S,Z) -R(s,x)Tzz(s,z) (66) 

E M ( S I N )  

R ( s ,  .) = &(z) (& - A d s ,  4 )  - l K e ( Z )  + &(s ,  
(69) 

E M ( S I N )  

5. I. I Proof: See the Appendix. Eqn. 66 in Theorem 
3 gives a straightforward relationship between the esti- 
mation error and disturbance vector. R(s, z) is the only 
unknown parameterisation matrix in eqn. 66. Thus, 
when a certain design specification is used one can 
solve the optimal robust observation problem by find- 
ing R(s, z). It can be seen that the parameterisation of 
observer provides a basic tool for this kind of optimal 
problem. 

5.2 Remark 3 
Based on the parameterisation of observer, we can 
obtain a clearly observer construction. From eqns. 22, 
39 and 40, we have 
?(s) = F ( s ,  z ) u ( s )  + H(s,z)y(s) 

= [P(s ,  ~ ) Y ( s ,  z) - Q ( s ,  z)fi(s, 211 4 s )  (70) 

+ [p ( s ,  z ) X ( s ,  z> + Q(s ,  z ) a ( s ,  211 ~ ( 3 )  

From eqn. 4, Y(s, z )  = M-l (s, z )  - X(s,  z)N(s, z)M-'(s, 
z)  and substitute it into eqn. 70, gives 
i y s )  = P ( s ,  z )M- l ( s ,  Z ) U ( S )  

+(P(s ,  z ) X ( S ,  2) +Q(s,  ~ ) n / r ( s ,  2)) b(s) -G(s ,  z)u(s)l 
(71) 

( 72) 

where 
(73) 

It can be seen that the observer eqn. 72 consists of two 
terms. The first term ~(s) = P(s, z)$(s) = P(s, z)M-'(s, 
z)u(s) is the estimation for dynamics of the state func- 
tion r ( t )  = E(z)x(t) in the disturbance-free case. The 
second term reflects the mismatch between the measur- 
able output and the disturbance d(t). By properly 
selecting the gain matrix L(s, z), the estimation error 
for r(t)  can be bounded to a prescribed range. 

Thus, we have 
?(s) = P ( s ,  Z )M- l ( s ,  z ) u ( s )  + L(s ,  z )  

[Y(S) - G(s ,  .)U(.)l 

L ( s ,  x) = P ( s ,  x ) X ( s ,  2 )  + Q ( s ,  z ) 6 f ( s ,  z )  
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6 Design example 

This example has been worked out in detail in [5] and 
its references. The disturbance is also added here to 
illustrate the effects of estimation error. It is desired to 
obtain the parameterisation of all observers and esti- 
mation error dynamics. 

Consider the following delay-differential system 
described by: 

i l  ( t )  = 2 2 ( t  - 1) + u ( t )  + d ( t )  (74) 
&(t )  = q ( t  - I) + 5 2 ( t )  + u ( t )  (75) 

r ( t )  = XI ( t )  + x2 ( t )  (77) 
Let zx(t) = x(t - I ) .  Then the delay-differential system 
can be modelled as a linear system over R[z]. The 
matrices (C(z), A(z ) ,  B(z))  in state-space expression 
eqns. 49-51 arc givcn by 

and 

E ( z )  = [ 1 11, U ( 2 )  = (79) 

Transfer functions are: 

Let us get the factors o f  the co-prime factorisation o f  
the system. From eqns. 13 and 14, given ar(z) E R[z], 

can be obtained such that: 

dct(j-I, ~ A o ( s , z ) )  = n(s + a , ( z ) )  = s2 + 2.s + 1 (81) 

And given pi(.) E R[z], then 

then Fe(,r, z) = [1 - 32 + z2 -4 + 32 - z2 01 E M(O(Z)) 

TL 

2 = 1  

h' e - - -2- '1 E M(R[z]) 

can be obtained such that 
n 

tlet(s1, - &(z)) = n(S + (3,(z)) = ( S  + Z)(S + 1) ( 8 2 )  
7=1 

Thus, the related factors o f  the coprime factorisation of 
the system are, respectively, 

2 + ( z + 4 ) s + 4 2  (7+z2) s  + (1 +k2) 
Y ( s ,  z) = X ( s .  2 )  = 

(s i -  1) (s + z )  (s+ 1) (s+ z )  
(85) 

and 
2s + 22 - 1 
5 2  + 2s + 1 

P( . s : z )  = 

Thus the set of all observers is given in eqn. 22, where: 
2s + 22 ~ 1 s2 + ( 2  + 4)s + 42 

F ( 5 . z )  = 
(87) 7 2  + 2s + 1 ( s  + l)(s + z )  

S + Z  + Q(s;  z) 
( s  + I)(. + 2 )  

2s + 22 - 1 (7 + 2 ) s  + (I + 422) 
H ( 3 . z )  = 

(88) 
sl  + 2s + 1 ( s  + l ) ( s  + z) 

S 2  ~ s - 2 2  

(s + l)(s + 2) + Q ( s .  z) 

The parameterisation of estimation error dynamics is 
given in eqn. 66, where 

(89) - 
s + 2 z + l  

R(s,  ( 3  + 1;s + z )  
T(s.1) = 

( s  + l)(s + z) 
The plot in Fig. 1 shows unity step responses of estima- 
tion error dynamics to disturbance d when three differ- 
ent R(s, z ) s  are chosen. It can be seen that the 
estimation error dynamics are stable as they are desired 
despite different R(s, z)s.  It is apparent that, if a cer- 
tain performance specification is given, the estimation 
error can be minimised by properly selecting R(s, z). 

I 
4 k  I 

3 

1 2  

& I  
L L 

0 5 10 15 20 25 30 
time,s 

Fig. 1 
a X ( 5 .  .) = I t ( $  A I)($ + z) 
b Xis .  z i  = 1:i.s + z )  

l,'nity step response of rstirnation error dynamics to disturbance d 

, ,  
c R(J. I) = (s  T 21 + l)/(.s + I)(,r + 2) 

7 Conclusions 

The observer parametrisation of time delay systems is 
achieved by using the factorisation approach. This pro- 
vides a dual result to the parametrisation of stabilising 
controllers of time delay systems. It is also an extension 
of the observer parameterisation results for the system 
without time delay in [9, 101. 

Although the result of observer parameterisation 
here can only treat the systems with strictly proper 
transfer function matrices, it could also be extended to 
the systems with proper transfer function matrices. 

The parameterisation of observer and estimation 
error for time delay systems obtained in this paper also 
provides a useful tool for designing an optimal 
observer in terms o f  a certain performance specifica- 
tion. It is also suitable for the development of other 
systematic observer design methods, such as simultane- 
ous state observation for a given set of systems [16]. 

It should be pointed out that the results presented in 
this paper are based on the factorisation approach of 
time delay systems under state-space representation, 
and therefore, it can be easily realised and implemented 
with the aid o f  modern computer aided control system 
design packages. 
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Appendix: Proof of Theorem 3 

b = ( S I e  - A,(z ) ) - lK, (z )C: , ( z )  

= (I - a - '  ( I  - CI - a ( 1 -  b ) - l b )  

= ( I  - a)-l (I - a(I + ( I  -- b ) - % ) )  

= (I -- a)-' (I - (*(I - b y )  
= ( I  - a )  -1 (I - b -a)([ - b ) - l  

(93) 
Then 

T'~(S,Z) = 1 - ( I  - a )  la(I - b ) - l b  

(94) 

Substituting eqns. 92 and 93 into eqn. 94, gives 

I C ( z )  - B ( z )  
= ( o  I 

Then eqn. 96 becomes 

23 1 



From eqn. 97, Tz(s, z )  in eqn. 65 can be rewritten as 

TL(s,  Z )  = -G(s, z ) G ~ ( s ,  z) 

= IG(S,Z)C,(Z)(SI, - A d ( z ) ) - l U , ( z )  

= 1~f(s,z)C,(z)(sIe - -4&))-l (99) 

From eqns. 15 and 24, we have 

Ce(z)(sIe - A , ( ~ ) ) ~ l € ? , ( z )  = -@-'(S. z ) _ T ( s . s )  
-1 

= i A P ( S ,  Z)C,(Z) ( S I ,  - /io(.?. 2 ) )  B,(z) 
Then 

Ce(z)(51e - -444-1 

Substituting eqn. 100 into eqn. 99, gives 
-1 

T2(s*Z)=1G(s ,Z) l l / [ -  '(s,.)C,(z) ( s Ie -Ao(s . z ) )  

(101) 
Thus substituting eqns. 98 and 101 into eqn. 64. we 
obtain 
T ( s ,  Z )  = Ti ( s ,  Z )  - Q(5, z ) T ~ ( s .  Z) 

= E,(z)(sI, - A,(z )  - B,(z)F,(s. z ) ) ~ '  

x ( s I e  - A,(z) - B,(z)F,(s.z) - Ke(z)Ce(z)) 
x (sic - A,(z) - Ke(z)Ce(~))-l 

(105) 
They are the matrices in SIN Thus eqn. 66 in Theorem 
3 is obtained. This completes the proof. 
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