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Neurofuzzy Model-Based Predictive Control
of Weld Fusion Zone Geometry

Yu M. Zhang, Senior Member, IEEEand Radovan Kovacevic

Abstract—A closed-loop system is developed to control the weld Top-side
fusion, which is specified by the top-side and back-side bead pool width
widths of the weld pool. Because in many applications only a
top-side sensor is allowed, which is attached to and moves with

Unmolten Qutline of

the welding torch, an image processing algorithm and neurofuzzy géljdiﬁed fusion zone
model have been incorporated to measure and estimate the top- material

side and back-side bead widths based on an advanced top-side | ¢ Back-side
vision sensor. The welding current and speed are selected as ‘ bead width

the control variables. It is found that the correlation between
any output and input depends on the value of another input.
This cross coupling implies that a nonlinearity exists in the
process being controlled. A neurofuzzy model is used to model hpecomes zero when the liquid-solid interface of the weld

this nonlinear dynamic process. Based on the dynamic fuzzy .| is crossed. This zero slope is caused by the emissivity
model, a predictive control system has been developed to control 7. - . .

the welding process. Experiments confirmed that the developed difference between the liquid and solid [2]. In order to directly

control system is effective in achieving the desired fusion state Observe the weld pool, the intensive arc light should be avoided

Fig. 1. Fusion parameters of fully penetrated weld pool.

despite the different disturbances. or eliminated. Richardsort al. [4] proposed the co-axial
Index Terms—Fuzzy control, modeling, predictive control, observation to avoid the arc light. Pietrzak and Packer [5]
welding. have developed a weld pool width control system based on

the co-axial observation.

Compared with the pool width, weld penetration is a more
critical component of the weld quality. For the case of full

USION is the primary requirement of a welding operatiompenetration, the state of the weld penetration is specified by
The fusion state can be specified using the outline tife back-side bead width, (Fig. 1). With a back-side sensor,

the cross-sectional solidified weld bead (Fig. 1). Extraction, can be reliably measured. However, it is often required
and control of the fusion outline is evidently impractical. Ahat the sensor be attached to and move with the torch to
few geometrical parameters should be used to charactefiaen a so-called top-side sensor. For such a sensgris
the fusion zone and then be controlled to achieve the desiiadisible. Hence, extensive studies have been done to explore
fusion. the possibility of indirectly measurings, based on pool

This study focuses on controlling the fusion state of fullpscillation, infrared radiation, ultrasound, and radiography.
penetrated welds in gas tungsten arc (GTA) welding. Thdthough many valuable results have been achieved, only a
fusion state on a cross section is characterized using t¥ewv control systems are available to quantitatively estimate
parameters of the fusion zone, the top-side and back-siled control the back-side bead width.
widths of the fusion zone (Fig. 1). Therefore, the top-side Fusion control requires the simultaneous control of both the
width w and back-side bead widtly, of the weld pool are top-side and back-side bead widths and is, therefore, more
referred to as the fusion state. A multivariable system will beomplicated than either penetration or pool width control.
developed to controlv andw;, in this study. Hardt et al. [6] have simultaneously controlled the depth,

Pool width control has been extensively studied. One woich specifies the weld penetration state for the case of partial
the pioneering works was done by Vroman and Brandt [penetration and width of the weld pool using top-side and
who used a line scanner to detect the weld pool region. Chiack-side sensors. To obtain a top-side sensor based control
et al. [2], [3] found that the slope of the infrared intensitysystem, we have proposed estimating the back-side bead width

. ) i _using the sag geometry behind the weld pool [7]. Based on
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; \ J:Solidiﬁed increases, the arc voltage increases so that the arc power

Bas tal  Weld pool . L . . .
e me P weld metal increases, but the distribution of the arc energy is decentralized
Fig. 2. GTA welding. so that the efficiency of the arc decreases. As a result, the
correlation between the weld pool and arc length may not be

processing algorithm was developed to detect the weld p&g[aightforward. In addition to these three welding parameters,
boundary in a previous study [10] from the images captured Bje weld pool is also determined by the welding conditions
a high-shutter-speed camera assisted with a pulsed laser [$4Eh as the heat transfer condition, material, thickness, and
Hence, the weld pool geometry can be utilized to develop md¥gemical composition of the workpiece, shielding gas, angle
advanced welding process control systems. of the electrode tip, etc. In a particular welding process
It is known that skilled operators can estimate and contréPntrol system, only a few selected welding parameters are
the welding process based on pool observation. This impliddiusted through the feedback algorithm to compensate for
that an advanced control system could be developed to con#fft variations in the welding conditions.
the fusion state by emulating the estimation and decisionCompared with the arc length, the roles of the welding
making processes of human operators. In the past, operatétérent and welding speed in determining the weld pool and
experience was the major source to establish the fuzzy mot@ld fusion geometry are much more significant and definite.
that emulates the operator. Recently, neurofuzzy approach, i2r many automated welding systems, the welding speed can
determining the parameters in fuzzy models using optimizati®¥¢ adjusted on-line. Such an on-line adjustment may also be
algorithms developed in neural network training, has beé&@ne for many advanced welding robots with proper interfaces.
employed to establish fuzzy models based on experimentdus, in addition to the welding current, we selected the
data. Hence, we developed a neurofuzzy system for estimatiglding speed as another control variable. The controlled
the back-side bead width from the pool geometry [12]. IArocess can therefore be defined as a GTA welding process
this work, a neurofuzzy dynamic model based multivariabl@ Which the welding current and speed are adjusted on-line
system will be designed to control the fusion state using th@ achieve the desired back-side and top-side widths of the
top-side pool width and the estimated back-side bead width'%gld pool.

the feedback of the fusion state.
B. Nonlinearity

Il. PROCESS The heat input of the arc in a unit interval along the travel
direction can be written as
A. Controlled Process AH x (2 /v)u 1)

GTA is used for precise joining of metals. The GTA welding . ) ) .
process is illustrated in Fig. 2. A nonconsumable tungstéyl€reé is the welding currenty is the welding speed, and

electrode is held by the torch. Once the arc is established, th& the welding voltage. Roughly speaking, one can assume
electrical current flows from one terminal of the power suppij?at the area of the weld pool is approximately proportional

to another terminal through the electrode, arc and workpie g AH. .
The temperature of the arc can reach 8000—10500 K [13] and"Vhen the welding speed changes, both the lengtand

therefore, the workpiece becomes molten forming the wefdth w of the weld pool alter. However, their ratio/L,

pool, whereas the tungsten electrode remains unmolten. FRETed to as the relative width of the weld pool in this work,
shielding gas is fed through the torch to protect the electrod€S Not change significantly (ranged from 0.72 to 0.85 in
molten weld pool, and solidifying weld metal from being9- 3)- This suggests that
contaminated by the atmosphere. L o< (iv/u)(1/v/v)

The major adjustable welding parameters include the weld- w o (iv/u)(1/v/v)
ing current, arc length, and travel speed of the torch. In
general, the weld pool increases as the current increases ¥h@ur case, the voltage can be assumed constant. Hence,
the trav_el sp_eed_ decreases. For G'I_'A welding, the welding L o f1(i)(1//v)
current is maintained constant by the inner closed-loop control w o f1(i)(1/v/v) )
system of the power supply despite the variations in the
arc length and other parameters. Thus, when the arc lengthere f1 (i) = i\/u.
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The adjustability of the used rules, membership functions,
and reasoning mechanism allow the fuzzy model to adapt
to the addressed problem or process. In order to adjust the
parameters in the fuzzy model, various learning techniques de-
; , veloped in the neural network literature have been used. Thus,
(a) (b (©) @ the term neurofuzzy modeling is used to refer to the application

Fig. 4. Weld pools made using different currents. Arc length: 3 mm; spee(a]'c algorlthms deveIOpEd throth neural network training to

1.9 mm/s, 3 mm 304 stainless steel. (a) 95 A. (b) 105 A. (c) 110 A. (d) 115 Mentify parameters for a fuzzy model [14]. A neurofuzzy
model can be defined as a fuzzy model with parameters, which

can be systematically adjusted using the training algorithms in
neural network literature. In neurofuzzy modeling, the abstract
thoughts or concepts in human reasoning are combined with

When the current increases, the relative widtiL de-
creases (Fig. 4). This implies

L o (fa(v))rict numerical data so that the development of fuzzy models
ey e 3 becomes more systematic and less time consuming. As a result,
w oc(f2(v))*1 3 neurofuzzy systems have been successfully used in different

areas [21]-[24].
Most neurofuzzy systems have been developed based on
the Sugeno-type fuzzy model [25]. A typical fuzzy rule in a

wherec; > 1,0 < ¢ca < 1,¢1 + 2 = 2, and fo(v) = J/u/v.
During closed-loop control, the control variableandv are

subject to fundamental adjustments so tligand f> change _ .

as the control variables move in the control variable pla%u_geno-typzmodzl he:stthe f(;rm.d:HsA anddglsB TH.EN

i ~ v. Hence, the correlation between the top-side geometrical” ff(x’y)_' erﬁ_, han bare u?zy sets an o f(x,yh) ISa

parameters (width and length) of the weld pool and the inpﬁ'E'Sp unction which can be any function as long as the system

variables is nonlinear. Because of the correlation between fPllétpl.Jt.s can be appropriately described within the fgzzy region
back-side bead width and the top-side geometrical parameté&?c'f'ed by the antepedent of the rule [14]. In this Paper, a
it is apparent that the correlation between the back-side b rofgzzy system will be dgveloped to model the nonlinear
width and the control variables is also nonlinear. Hence, tf&"amics of the process being controlled.

controlled plant is a two-input—two-output nonlinear multivari-

able process. Because of the thermal inertia, the process Bill Model

also be dynamic. Relationships in (2) and (3) imply that the fuzzy model
can be established based on partitioning the inputs. Define
Ill. NEUROFUZzZY NONLINEAR DYNAMIC MODELING y1 = wp andys = w as the outputsy; = ¢ andus = 1/v as
the control variables. In this study, the units:af andu. are
A. Neurofuzzy Modeling 100 A and 1/mm, respectively. Denote the present time instant
A fuzzy system has three major conceptual componenPQf . Consider the following model:
rule base, database, and reasoning mechanism [14]. The rule nay nas
base consists of the used fuzzy IF-THEN rules. The database y, (1) = S ¢y (jus(t — )+ cra(iualt — )
contains the membership functions of the fuzzy sets. The =1 =1
reasoning mechanism performs the inference procedure for na1 naz

deriving a reasonable output or conclusion based on the y.(t) = Z 021(j)u1(t—j)+z caa(Pua(t — 7) (4)
IF-THEN rules from the input variables. j=1 j=1

In the conventional fuzzy models, the fuzzy linguistic
IF-THEN rules are primarily derived from human experiencehere c x,(j)’'s and ny,x,’s (k1 = 1,2k = 1,2;5 =
[15]. Because the fuzzy modeling takes advantage of existig - -, n, %, ) are the parameters and orders of the model. This
human knowledge, which might not be easily or directlis an impulse response function that is widely used in industrial
utilized by other conventional modeling methods [14], sugbrocesses. If the model parametegs;, (j)'s are constant for
fuzzy models have been successfully used in different areaach giver(ky, k2, 5), (4) will be a linear time-invariant model.
including manufacturing [16]-[19]. In these models, no sydf the parameters are dependentmhe model will be linear
tematic adjustments are made on the used rules, memberginge-varying. In our case, due to the cross-coupling(j)’s
functions, or reasoning mechanism based on the behavioraof c21 (5)’s will depend onus, andei2(j)’s andces(7)'s on
the fuzzy model. In general, if the fuzzy rules elicited from.;. The model is nonlinear.
the operators’ experience are correct, relevant, and completén order to model the nonlinear welding process, the control
[20], the resultant fuzzy model can function well. Howevewnariables are first partitioned into a number of fuzzy sets.
frequently such fuzzy rules from the operators do not satisfilodeling comparison shows that the partition of four sets
the correctness, relevance, and completeness requiremshtswvn in Table |is optimal for both variables.) For the welding
[20]; the rules may be vague and misinterpreted, or the ruarrent, the four fuzzy sets are low, middle, high, and very
base could be incomplete. In such cases, the performahiagh. Foru, = 1/v, the four fuzzy sets are: small, moderate,
of the fuzzy system can be greatly improved if systematiarge, and very large. For a given valueof, the degree of
adjustments are made based on its behavior. truth thatw; belongs to itsith fuzzy set is measured by the
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TABLE | In our case, the partition is fuzzy. This implies thatt— j)
Fuzzy PARTITION OF CONTROL VARIABLES (OI’ ul(t _ J)) may simultaneously belong tdsy, ---, and
Fuzzy variables | Number of fuzzy sets Partition Azg, (Or Ay, -+, and Ay g, ), but with different membership
", 1, =4 low (4,,), middle (4,,), functions. Hence
high (A,;), very high(A,,)
u, I,=4 small( A, ) .moderate (A,,),
large (Ay,), very large (A,,) ckl Z AQZZ U,Q t — ))ckl( /LQ)
10=1

(k:1727J:177nk1)

2 g

T R Ry I

L6 E- JI : —[()5 mm,4gmn,’]A S cral(; Z Ay (ug (t = j))era(d/41)
B OLAE- e o A =1
S VPR A (k=12)=1- o). (7)
EOE S A R
= 08 E i A

0.6 F-*- -2

04 F IV. IDENTIFICATION ALGORITHM

| 1 | Lol | I |

02 The identification of a fuzzy model consists of structure

identification and parameter estimation. During identification,
the parameters are estimated for different structures. The final
Fig. 5. 1/vv ~ 1/v. structure, i.e., the fuzzy variable partition in this case, is
selected by comparing different models. This is, in general,
very inefficient. Also, the decision is made purely based on
statistical (mathematical) analysis. No process characteristics
Aji(ug) = exp(—(uj — azi)® /b)) (1<i<I;) (5) or designers experience are involved. If the designer is
Familiar with the process, an experience-based partition may be

ppropriate. Thus, as suggested in [14], we have selected and

artitioned the fuzzy variables based on our understanding of
e welding process (Table I). Hence, the identification of the
zzy model is simplified as a parameter estimation problem.
Denote the data as

If ua(t — 7) is Agi, thenew () = a1 (4/42) v
If s (t — ) is Au, thencro(j) = cro(i/in) (k= 1,2). ta(), w0l we®  Hi<h) @
(6a)

0506070809 1 1.1 12131415

VY2 (1/mirt?)

membership functiord,;

where [; is the number of the partitioned fuzzy sets fo
u; (j = 1,2), aj; andb; are the parameters of the membershi
function.

Based on the partition of the control variables, the foIIowinﬁ]
rules can be applied:

and the prediction errors as

61(t) .= t) — 1 (¢t
Here,ci1(j/i2) andega(j/i1) are constant for the given ¢4, 1(8) = () %1( )
andis. Also, is in ¢1(j/i2) andi; in ex2(j/i1) are used to b2(t) :=ya(t) — 92(2). )
indicate that the parameteeg; () andci2(j) [in model (4)] Define the cost function
depend on the partition sef andi; to which uy(¢ — j) and ) ) o
u1(t — j) belong, respectively. T(aji bji)'s (1< i < I;, 1< j < 2)seaa(ifiz)'s

Rule (6a) is designed to account for the cross-coupling only. (E=1,21<dy < Ip;j=1,-- ,mp1); cra(d/i1)’s
Theoretically, based on (2) and (3), the rule should be: (k =1,2,1<i; <I;;5=1,---,n0)
If U,l(t —J) is Ay anduQ(t —J) is Ay then R 2
. s N = {(1(t) — 0.(0)? + (12(t) — 52(1))*}. (10)
a1 (J) = er1(j/ix, i2) andera(j) = cra(i/iv, i2)- sz:O 1l ' ? 2

6b) The parameter estimation is to find the optimal parameters

However, in our case, the range of the welding speed 10%5i Uji)'s: ck1(3/i2)'s, ca(i/41) s} so that

the closed-loop control will be 1.0-3.0 mm. In this range, j(,* @l V)'s, ¢y (i)', i fir) s}

the correlation betwee/\/v and1/v can be roughly linear / PR v

(Flg 5). Hence, we can regarl « f1(¢)(1/v) and w o = min H{(aji,bji)'s, i (3/02)'s, e fin) s} (11)
f1(6)(1/v). Also, from Fig. 4, the static correlations betweerlthough many excellent algorithms such as the second-order

the weld pool parameters and the welding current in Fig. 6 caack-propagation [26] and normalized cumulative learning

be obtained. Again, although the correlations are nonlinean)e [27] proposed in the neural network literature can be used

the nonlinearity is slight. As a result, as will be discussed i@ speed up the parameter identification, the authors found

Section V, experimental data analysis suggests that the abthat satisfactory identification speed can be achieved by using

more complex rule (6b) does not significantly improve théhe simplest, but the most frequently usédule [27], [28]

modeling. This implies that the cross-coupling is the dominaimt this case. In order to implement this algorithm, partial

factor which causes the nonlinearity. Hence, (6a) is used. derivatives of the cost function with respect to each of the
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Fig. 6. Empirical static correlations between the welding current and weld pool parametdis~(a) (b) w ~ i. The experimental data in Fig. 4 are used.

model parameters are needed. The following can be showi:

A 3-axis motion A Computer
a _ 5 Z {61 8y1 () +8y() A2 (t) } control board [*
a1 =T day; Oay; vy ﬁ
T nis . 3-axial Interface Frame Grabber
=23 {8ty u(t—j) %21(‘2) Manipulator
t=T i=1 Power Supply | Video "’ -
N2z 9e (J) Signal 6 ¥;
+ 8o(t t— 22 Speed c t
2( ) ; UQ( ) day; 1) Hrren Monitor
’ Laser Torch Y.
ni2 Optical \’ z '
= —42 (51 ZU/Q t — J Clg(J/ )Alz(ul(t — J)) Fiber A Camera
4 Travel Directi
t=T, j=1 ‘ ravel Direction }%/y
ui(t —j) —ay B o = K
bii / Weld Pool /
+ 62(t)2“2(t_j)CQQ(j/i)Ali(ul (t=3)) Fig. 7. Experimental setup.
j=1
ur(t—j) —au
bii aJ s
‘ 5 2—22 o1(t Zul (t = g)eri(d/i) Ani(ua(t — j))
(1217"'7-[1) (12) e t=To j=l1
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b2 =t
e . c . . u2(t —73) —a i 2 .
+62(t) > ua(t — fean(§/i)Azi(ua(t — 5)) ualt = J) = a2i)” ‘{)2 2) (i=1,--,15)
=1 2
) e (15)
ua(t b‘l) az; (i=1,---.1) (13)
2
ni2 Tl R
T o3 603 St fesatifi sttt — ) 0T _ 5 S sr) 0O
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2 amien S
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i=t ==2 ) Su(tyua(t — ) Asi, (ua(t - j))
w(t — j) — ag;)? . =t . .
( 1( ZQ) 1) (1,:17.“7]1) (14) (]C:].,Z;]:1,"',7’Lk1;12:1,"',_[2)
14

(16)



394 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 3, AUGUST 1998

70 ¢ 80 F
60 F- 2 - 3
< F < =
2S00 f-a-a- - S OE
& g Z S0F
E 40 F E F
40 F
S 30 B e i i Tt T S 3
=) S U S SR NI VI
w F T 30 E f
20 20 B - -2 o BRI 0 I
10 SPUTSTETI PRUTS FUUTH FRUT FUUTS FUOTE FEUTE Ouw. UL x 9 o b ) UNSTOREE FUTTN SUUTE FYRRE NN
20 25 30 35 40 45 50 55 60 65 70 20 30 40 S0 60 70 80 90 100
Time (s) Time (s)
(@) (b)
2 2
S S
- -

60 65 70 75 80 8 90 95 100
Time (s)
(d)

70
60
50
40

30

v(0. 1mmy/s), i(A)

20

wl

10
0 10 20 30 40 50 60 70 80 90 100

Time (s)
(e)
Fig. 8. Inputted welding parameters for the five dynamic experiments.
o7 I ) ) vision system [11] is used to capture the weld pool images.
dera(G/ir) =-2 Z Sr(tyuz(t = 5) Az (war(t = 7)) This system consists of a strobe-illumination unit (pulse laser),
=1 ) ) camera head, and system controller. The pulse duration of the
(k=1,2j=1-,mi1=1,-,11). |aser is 3 ns and the camera is synchronized with the laser

(17) pulse. Thus, the intensity of laser illumination during the pulse
) o ) _duration is much higher than those of the arc and hot metal.
Thus, an identification procedure can be designed accordlng_lysing this vision system, good weld pool contrast can always
be obtained under different welding conditions. In this study,
V. DYNAMIC EXPERIMENTS the camera views the weld pool from the rear at & dhgle.

The experimental setup is shown in Fig. 7. The welds afd€ frame grabber digitizes the video signals into 51312
made using direct-current GTA welding with the electrod® bit digital image matrices. By improving the algorithm [10]
negative [13]. The welding current is controlled by the connd hardware, the weld pool boundary can now be acquired
puter through its analog output to the power supply rangirfi-line in 80 ms.
from 10 to 200 A. The torch and camera are attached toFive experiments have been done on 1-mm-thick stainless
a three-axial manipulator. The motion of the manipulatsiteel 304 plates. The workpieces are 250 mm in length and
is controlled by the three-axis motion control board, whichO0 mm in width. The shielding gas is pure argon. The arc
receives the commands from the computer. The motion canlbagth is 3 mm in all the experiments. In order to establish
preprogrammed and on-line modified by the computer in ordidte full penetration mode, the current and welding speed must
to achieve the required torch speed and trajectory, includibg in certain ranges. We have used control variables in larger
the arc length. The control vision’s ultrahigh-shutter-speednges. Fig. 8 plots the segments in each experiment where
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Fig. 9. Measured pool parameters from the five dynamic experiments.

the inputs have produced fully penetrated weld pools. The s
measured parameters of the weld pools in these segments are
given in Fig. 9. The back-side bead width can be calculated *
using the weld pool parameters and the neurofuzzy model
developed in the previous study [12]. The results have alsé
been illustrated in Fig. 9.

Fig. 10 shows the distribution of the control variables in'
these segments of experiments. It can be seen that the weldigg ,
parameters have filled the projected range of the control
variables. This distribution implies that the resultant model 1
can be used during control if the control variables are in the
projected range. 03

The above experimental data have been used to fit a Current (A)
neurofuzzy model here. It is found that orders = ni» =
ne1 = Noo = 4 are sufficient when the sample peridd= 1 s.
The identified model parameters are given in Tables II-VI. Assume thatr represents the continuous time rather than
Here w;(t — j) and ua(t — j) are the average inputs inthe discrete-time instant. The outputs7acan be predicted
((t = )T = 0.57, (t — j)T' + 0.577, rather than at discrete using the inputs in~ — j7 — 0.5T,7 — jT + 0.5T]'s (j =
instantt — j. 1, -+, max(ni1, - -,n22)) NO Matter whether or net/7 is an

-]
H

B

Projected
Range of
Control

Variabies

2.5

2

ing Speed (i

70 75

Fig. 10. Distribution of inputs in the dynamic experiments.



396 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 6, NO. 3, AUGUST 1998

TABLE I T r
IDENTIFIED FuzzY PARTITION PARAMETERS F T Measured ‘Model Predicted
6 F - - e SR
k=1 k=2 k=3 k=4 s
a, 030 [043 [os6 |07 = SE Ny T aahi
0 030 1053 076 |10 Eab - fF-
b, (x0.001) [8.45 8.45 8.45 8.45 £ 3 Taoll AN " I I
b,, (x0.01) 2.64 2.64 2.64 2.64 E
2k e
{ e U b

TABLE I
IDENTIFIED ¢11(j/72)'S

D=l 5, =2 =3 i,=4

0 500 1,000 1,500 2,000 2,500

Discrete instant

@

J=1 254 150 142 85
j=2 .09 .36 46 .37
J=3 196 164 127 0.54
j=4 -3.04 -1.68 -0.12 -0.40
=
TABLE IV =
IDENTIFIED c12(j/41)’S 3
L=t =2 =3 i=4

j=1 <010 142 195 1.66 : . .
j=2 -101 .723 850 2.29 DS P A R I
J=3 078 138 143 092 0 500 1000 1500 2,000 2,500
j=4 -2.08 -047 -0.11 3.9
Discrete instant
(b)
IDENT;’EE’I;E 2/./7. Vs Fig. 11. Neurofuzzy modeling results. (a) Back-side bead wigth (b)
214J/12 Top-side bead widthy,.
L=l =2 i,=3 i,=4
j‘ilz 37'?)2 2832 26.12 1%133 used neurofuzzy model structure has played a critical role in
J=3 712 444 382 0.22 accurately modeling the nonlinear dynamics of the process
j=4 <190 -1.54 041 -0.56 being controlled.
VI. Fuzzy MODEL-BASED PREDICTIVE CONTROL
TABLE VI
IDENTIFIED ¢22(j/41)’S A number of methods could be used to design a neurofuzzy
i1 =2 1 =3 i-4 controller [14], including mimicking another working con-
TE1 148 206 249 228 troller, inverse model, specialized learning, back-propagation
j=2 703 121 154 273 through time and real-time recurrent learning, feedback lin-
Jj=3 207 933 135 .950 earization and sliding control, gain scheduling, etc. The ad-

j=4 -148 -0.04 373 196

vantage and limitation of each individual method has been
analyzed in [14].

. . . - Traditionally, fuzzy controllers have been designed without
mtteger. Hencei by a;;plylngdt_h:a (;dentmed model, the outpué% explicit model of the process being controlled. However,
at any moment can be predicted. in neurofuzzy systems, mathematical models are explicitly

e lE@ed. We notice that the predictive control principle [29]
seen in Fig. 11 where the outputs were measured at 10 {zs yacently been incorporated with fuzzy models to provide

The variances of the fitting errors are 0.039 and 0.020°MMegign methods for neurofuzzy model based controllers be-
for w and w;, respectively. It is found that the no noticetyse predictive methods have several advantages that make
improvement can be made when increasing,'s, increasing  them good candidates for industrial applications. Oliveira and
1 and1, or using (6b). In fact, the welding process is subjegtemos proposed a fuzzy model based predictive controller for
to uncertainty and its outputs cannot be exactly predicted usigiggle-input single-output systems [30]. They used relational
the inputs without any errors. The prediction errors in Fig. 1,zzy models, rather than the Sugeno-type models as used in
are certainly not larger than the deviations of the outpugtir work. Next, we will develop a predictive controller for our
caused by the uncontrollable variations in the welding proceggo-input two-output Sugeno-type model.
when the same inputs are used. Hence, the obtained model iat ¢, the controller needs to determine the control action
sufficient. (u1(t), u2(t)) based on the feedbagk; (¢), y=(¢)) to drive the

In order to show the effectiveness of the fuzzy modelyelding process to reach the desired outpifg, Y20). In a
a linear model has also been fitted. It is found that th@edictive control, prediction equations should be developed
modeling is much poorer (Fig. 12). It is apparent that th® predict the outputs. Equation (4) can directly yield the
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Fig. 12. Linear modeling (without variable partition). (a) Back-side beal

width y,. (b) Top-side bead widthy;.

following recursive prediction equations:

it +Fk)
=g(t+Ek—-1)
+ Z Cll(j,UQ(t+]€ —J))ul(t+ k —J)
j=1
— Z Cll(j,UQ(t+k -1 —j))ul(t—i-k -1 —J)
j=1
+> 7 e, u(t+k = 5))ua(t+ k- j)
j=1
— Z Clg(j,ul(t—i-/{} -1 —j))Uq(t-Fk -1 —J)
j=1
?)z(t-i-k)
=P +k-1)
+> enua(t +k = fua(t+k - )
j=1
= en(uat+k—1—u(t+k—1-j)
j=1
+> en(iwt+k = fus(t+k - j)
j=1
=3 eniu(t+k—1—)us(t +k—1—j)

=1

(k=1) (18)

with initials

() = (?)
92(t) =y2(2) (19)

where notationscy(j,u2(t + k£ — j)), -, emphasize that
c11(4), -+, are dependent ony(t + & — j), - - -.

In order to achieve a robust control, it is required that the
following cost function is minimized:

G = [t + K) — Yio]® + [G2(t + K) — Yao]*. (20)

In a long-range predictive control, the positive integir
should be large enough in order to achieve a robust control.
In general, the regulation speed increases wRedecreases.
However, the robustness of the closed-loop control system
becomes poorer. For welding process control, the robustness
is the primary requirement. It is found that = 4 can achieve
satisfactory regulation speed and excellent robustness.

It is known that fluctuations in welding parameters will
generate nonsmooth weld appearance, which is not acceptable.
Energetic control actions must be avoided. Although all of
U,l(t), .- ',U,l(t + K — 1),11,2(t), .- ',U,Q(t + K — 1) can be
free variables in optimizing the cost functid#, only w,(¢)
andu»(t) will be actually applied. (In fact, at the succeeding
instantsu (¢+1), - - -, uz(t+1), - - - will be determined again.)

f!:l addition, being free variables; (), ---,u1(t+ K —1) and
ua(t),-- -, u2(t+ K — 1) could vary severely so that energetic
control actions are generated. Hence, the outputs can be
predicted to optimize the cost function by assuming constant
control variables in the prediction horizon, i.e4(t + &) =

w1 (t) and ua(t + k) = w2(t) (kK > 1). In this case, the
prediction equations will be

G1(t+ k) =F1(k) + Au(k)ua(t) + Aa(k)ua(?)
Qg(t =+ k‘) = FQ(k) + Aoy (k)ul (t) + AQQ(k)UQ(t)

(k>1) (21)
where
Fi(ky=Fi(k=1)+ Y cu(juat+k—j)
j=k41
- U,l(t + k— J)
= en(ua(t+k—1—)u(t+k—1-j)
j=k
+ Z cra(d, wa(t 4k — ) ua(t +k — j)
j=k41
= eplut+k—1— ) u(t+k—1-j)
=k
Fy(k) =Fak = 1)+ Y enljua(t+k—j))
j=k+1
- U,l(t + k— J)
= en(ua(t+k—1—)u(t+k—1-j)
=k
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na2

+ jou(t+k—j t+k— Feedback Control
’Z c2(fiua(t + k= j)ua(t +k —j) eedback Contro
j=k+1
722 l[))esliregjdto —sige Jgdm
. . . H ACK-S10€ bead wi S
- Z €22 (]7 U1 (t +k—-1- j))U’? (t +k—-1- j) g\:/:;[ltrinugers ~ A top-side and back-side bead widths
j=k Penetration
k k—1 Estimator
. . A
An(k) =Apn(k—-1)+ Z c11 (g, ua(t)) — c11 (g, ua(t)) bounggg; O
j=1 j=t Image
k k—1 Procests'mg
Ara(k) = Ara(k = D)+ Y en(iun () = Y era(d, u(t)) A I
j=1 J=1 Torch
; = High
Agl(k) :Agl(k — 1) + Z Cc21 (J, U,Q(t)) — Cgl(j, U,Q(t)) s:hﬁ[ter
speed
j=1 j=1 camera
k k—1
Agg(k) = Aga(k — 1)+ Y cao(f,ua(t)) — c22(j, wa(t))
j=1 j=1 Weld
(22)
with initials f
Fi(0) =y:1(t), F2(0) = w2(t), A11(0)=0 Fig. 13. Closed-loop control system.
A12(0) =0, Ax(0)=0, Ax(0)=0. (23)
Denote errors between the predicted and actual outputs. The closed-

loop system could be unstable. Hence, the following modified

Agl A22 a8 Y0 = |:Z;:| . cost function is used:
(24) T =(F(K) = Yo — AU (FE) = Yo — ACK)U(1))

+(U@) Ut - 1))YTAU#) = Ut - 1)) (25)

ol ] B e

Then the cost function (20) can be written as
a= (F(K) —Yo— A(K)U(t))T(F(K) — Yy — A(K)U(t)) whereA = dlag()\l, )\2)()\1 > 0, Ao > 0) are the WelghtS
20 When the amplitudes ot/(¢t) — U(t — 1) are not large,
(20) c1:(J,u2(t))'s--- can be approximated by (5, uz(t —
It can be seen from (22) that(K) depends or/(K) being 1))'s--- so thatA(K) can be calculated before the optimiza-
determined. Hence, minimization 6 with respect tol/(K) tion. [The resultant accuracy in calculating(K’) depends
is a nonlinear optimization problem. on the actual amplitudes d¥(¢) — U/(t — 1).] Hence, the
In order to obtain an exact numerical solution of a nonline&Ptimization becomes linear. The analytic solution is
optimization, fim |te_rat|ve_z calculatlor_1 is _needed. For a real-time U(#) = (AT(K)ACK) + A)~ (AT (K)F(K)
control, an on-line iterative calculation is not preferred. Hence,
the necessity of implementing an on-line iterative calculation

for achieving an exact numerical solution should be argueﬁ~|e values of the weights; and A, can be determined
It |sdk:10\;v:1hthat tl?f neurofuzzy _Ir_r;1odel 'der!gf'if IS a_n(t)_mméﬂased on their physical meaning in correlating the preferred
rmodet of the Welding process. 1he unavoidable varia 'On_s_&rﬁanges of the control actions to the errors between the desired
the welding conditions such as the heat transfer conditi Nd measured outputs. In the developed systems= 102
cause the actual dynamics to differ from the nominal mod m/100 A} is selectéd This implies that an e,r_ror of 1
In this case, an exact numerical solution of the nonIine%gm in the predicted and. desired top-side or back-side bead
opt!m!zatlon based on the no_mlnal model may not exackf\{idth has the same contribution to the cost function as
optimize the actual cost function. The error increases as jue(t) —wui(f—1)] = 0.1, i.e., 10 A because the unit of in our
uncertainty of the process increases. For the welding proc (,S(§lntI‘O| s;stem is 10(') ’A.dlc,)es Similarlyiy = 102 (mm?)2
the uncertainty which makes the closed-loop control Necessalycqacted '
is substantial [8], [31]. Also, since there is no constraint '
on the change of the control actidi(t) — U(t — 1), U(¢t)
determined based on the nonlinear optimization of (20) or
20") could significantly differ from{/(¢ — 1). As a result, the  The developed closed-loop control system can be illustrated
g y p p Y
control actions could be very energetic so that the resultarding the diagram in Fig. 13. In order to examine the ro-
weld appearance is not smooth. Also, the large changesboistness of the developed control system, uncertainties are
the control actions and the significant difference between teenulated using a number of artificial disturbances in the
actual dynamics and the nominal model could cause sevetesed-loop control experiments.

— AT(K)Yo + AUt - 1)). (26)

VIl. CLOSED-LOOP CONTROL EXPERIMENTATION
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Fig. 14. Closed-loop control experiment of the top-side and back-side befid. 15. Closed-loop control experiment of the top-side and back-side bead
widths under step change in the rate of the shielding gas. (a) Outputs. Wajiths under step disturbance caused by the difference between the actual and
Control actions. nominal values of the welding current. (a) Outputs. (b) Control actions.

A. Experiment 1: Step Change of Rate of the Shielding Gas We notice that for advanced welding systems, such an error

In arc welding, the weld pool and electrode are prevent&?twee“ the actual and nominal values of the weIdjng current
from being contaminated by the atmosphere by applying tAeY not be frequently encountered. However, this artificial
shielding gas. In terms of circuit, the arc column can gadisturbance can changg the dynamic model, yvhich correlates
regarded as a resistor in which the welding current flows affé outputs to the nominal values of the welding parameters.
its resistance depends on both the arc length and shieldf#gnce, a model perturbation is emulated.
gas. The shielding gas (either the type or rate of the flow) has
an influence on the welding arc, and, therefore, influences the ] )
weld pool. C. Experiment 3: Speed Disturbance

In this experiment, the initial rate of the argon flow was 27 In this experiment, an artificial error between the actual and
I/'min. At ¢ = 55 s, the rate changes to 10 I/min (Fig. 14)nominal values of the welding speed is applied. During the first
As a result, both the top-side and back-side bead widtB2 s, no error exists between the actual and nominal values.
increase. As it can be observed in Fig. 14, by decreasing tHewever, after = 52 s, the actual welding speed is 0.5 mm/s
welding current and increasing the welding speed, the closefinaller than the nominal value. At = 52 s, the welding
loop control system successfully eliminates the influence ofirrent and speed are about 38 A and 2.2 mm/s, respectively.
the decrease in the rate of the argon flow. If no closed-loop correction is applied, 38 A welding current

and 1.7 mm/s welding speed will increase the top-side and
) , back-side bead widths by about 2 mm. Fig. 16 shows that
B. Experiment 2: Current Disturbance this disturbance has been overcome by the closed-loop control

In this experiment, an artificial error between the actual arsystem by simultaneously changing the welding current and
nominal values of the welding current is applied. During thevelding speed.
first 42 s, no error exists between the actual and nominalUnlike the error between the actual and nominal values
values. Fromt = 42 s, the actual current is 5 A largerof the welding current, the error between the actual and
than the nominal value. Hence, both the top-side and bacieminal values of the welding speed can often be met in
side bead widths increases. As it can be seen in Fig. Ibany applications. Hence, in addition to the emulation of
the welding current and speed immediately decreases dhd model perturbation, this experiment also shows that the
increases, respectively, so that the outputs can be maintaidesieloped closed-loop control system is robust with respect to
at the desired levels again. the possible variation in the welding speed.
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Fig. 16. Closed-loop control experiment of the top-side and back-side befaig. 17. Closed-loop control experiment of the top-side and back-side bead
widths under step disturbance caused by the difference between the actualveidths in tracking varied set-points. (a) Outputs. (b) Control actions.

nominal values of the welding speed. (a) Outputs. (b) Control actions.

D. Experiment 4: Tracking Varying Set Points
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Fig. 17 shows a closed-loop control experiment in trackingopotics and Manufacturing Systems Welding Research and
varied set-points. In general, the dynamic properties of tigsyelopment Laboratory, University of Kentucky, Lexington,
nonlinear process vary with the operating points. In order {g hjs significant contributions in programming, data process-

track the varied set points, the operating points have to changpg

If a linear controller is used, the performance of the closed-
loop control will in general not be guaranteed for different
operating points. The welding experiment in Fig. 17 shows
that the varied set points are well tracked. The similar resulté!
have also been observed in other experiments that tracked
other varied set points. 2]
(3]
VIIL.
The nonlinearity of the controlled process which has they)
welding current and speed as the inputs and back-side and
top-side bead widths as the outputs is fundamental. Thg]
neurofuzzy model can describe the dynamic nonlinear process
being controlled with sufficient accuracy. A neurofuzzy model®!
based predictive algorithm has been developed to control the
nonlinear welding process. The control experiments showeld]
that the desired fusion state can be achieved by using the
developed control system despite severe disturbances. 8]
The developed system provides a solution to precise control
of welding process. It is currently being used to weld aerospa
materials. In applications where the requirement on the accu-
racy is relatively low and where the variations in the weldin
conditions are insignificant, other simpler control algorithm
may also be used to ease the system design.

C ONCLUSIONS

and experimenting.
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