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Neurofuzzy Model-Based Predictive Control
of Weld Fusion Zone Geometry

Yu M. Zhang, Senior Member, IEEE, and Radovan Kovacevic

Abstract—A closed-loop system is developed to control the weld
fusion, which is specified by the top-side and back-side bead
widths of the weld pool. Because in many applications only a
top-side sensor is allowed, which is attached to and moves with
the welding torch, an image processing algorithm and neurofuzzy
model have been incorporated to measure and estimate the top-
side and back-side bead widths based on an advanced top-side
vision sensor. The welding current and speed are selected as
the control variables. It is found that the correlation between
any output and input depends on the value of another input.
This cross coupling implies that a nonlinearity exists in the
process being controlled. A neurofuzzy model is used to model
this nonlinear dynamic process. Based on the dynamic fuzzy
model, a predictive control system has been developed to control
the welding process. Experiments confirmed that the developed
control system is effective in achieving the desired fusion state
despite the different disturbances.

Index Terms—Fuzzy control, modeling, predictive control,
welding.

I. INTRODUCTION

FUSION is the primary requirement of a welding operation.
The fusion state can be specified using the outline of

the cross-sectional solidified weld bead (Fig. 1). Extraction
and control of the fusion outline is evidently impractical. A
few geometrical parameters should be used to characterize
the fusion zone and then be controlled to achieve the desired
fusion.

This study focuses on controlling the fusion state of fully
penetrated welds in gas tungsten arc (GTA) welding. The
fusion state on a cross section is characterized using two
parameters of the fusion zone, the top-side and back-side
widths of the fusion zone (Fig. 1). Therefore, the top-side
width and back-side bead width of the weld pool are
referred to as the fusion state. A multivariable system will be
developed to control and in this study.

Pool width control has been extensively studied. One of
the pioneering works was done by Vroman and Brandt [1]
who used a line scanner to detect the weld pool region. Chin
et al. [2], [3] found that the slope of the infrared intensity
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Fig. 1. Fusion parameters of fully penetrated weld pool.

becomes zero when the liquid-solid interface of the weld
pool is crossed. This zero slope is caused by the emissivity
difference between the liquid and solid [2]. In order to directly
observe the weld pool, the intensive arc light should be avoided
or eliminated. Richardsonet al. [4] proposed the co-axial
observation to avoid the arc light. Pietrzak and Packer [5]
have developed a weld pool width control system based on
the co-axial observation.

Compared with the pool width, weld penetration is a more
critical component of the weld quality. For the case of full
penetration, the state of the weld penetration is specified by
the back-side bead width (Fig. 1). With a back-side sensor,

can be reliably measured. However, it is often required
that the sensor be attached to and move with the torch to
form a so-called top-side sensor. For such a sensor,is
invisible. Hence, extensive studies have been done to explore
the possibility of indirectly measuring based on pool
oscillation, infrared radiation, ultrasound, and radiography.
Although many valuable results have been achieved, only a
few control systems are available to quantitatively estimate
and control the back-side bead width.

Fusion control requires the simultaneous control of both the
top-side and back-side bead widths and is, therefore, more
complicated than either penetration or pool width control.
Hardt et al. [6] have simultaneously controlled the depth,
which specifies the weld penetration state for the case of partial
penetration and width of the weld pool using top-side and
back-side sensors. To obtain a top-side sensor based control
system, we have proposed estimating the back-side bead width
using the sag geometry behind the weld pool [7]. Based on
a detailed dynamic modeling study [8], an adaptive system
has been developed to control both the top-side and back-side
widths of the weld pool [9]. In this case, a delay arises since
the feedback can only be measured at the already solidified
sag behind the pool.

More instantaneous and accurate information can be ac-
quired from the weld pool. In order to use the weld pool
information in welding process control, a real-time image
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Fig. 2. GTA welding.

processing algorithm was developed to detect the weld pool
boundary in a previous study [10] from the images captured by
a high-shutter-speed camera assisted with a pulsed laser [11].
Hence, the weld pool geometry can be utilized to develop more
advanced welding process control systems.

It is known that skilled operators can estimate and control
the welding process based on pool observation. This implies
that an advanced control system could be developed to control
the fusion state by emulating the estimation and decision
making processes of human operators. In the past, operator’s
experience was the major source to establish the fuzzy model
that emulates the operator. Recently, neurofuzzy approach, i.e.,
determining the parameters in fuzzy models using optimization
algorithms developed in neural network training, has been
employed to establish fuzzy models based on experimental
data. Hence, we developed a neurofuzzy system for estimating
the back-side bead width from the pool geometry [12]. In
this work, a neurofuzzy dynamic model based multivariable
system will be designed to control the fusion state using the
top-side pool width and the estimated back-side bead width as
the feedback of the fusion state.

II. PROCESS

A. Controlled Process

GTA is used for precise joining of metals. The GTA welding
process is illustrated in Fig. 2. A nonconsumable tungsten
electrode is held by the torch. Once the arc is established, the
electrical current flows from one terminal of the power supply
to another terminal through the electrode, arc and workpiece.
The temperature of the arc can reach 8000–10 500 K [13] and,
therefore, the workpiece becomes molten forming the weld
pool, whereas the tungsten electrode remains unmolten. The
shielding gas is fed through the torch to protect the electrode,
molten weld pool, and solidifying weld metal from being
contaminated by the atmosphere.

The major adjustable welding parameters include the weld-
ing current, arc length, and travel speed of the torch. In
general, the weld pool increases as the current increases and
the travel speed decreases. For GTA welding, the welding
current is maintained constant by the inner closed-loop control
system of the power supply despite the variations in the
arc length and other parameters. Thus, when the arc length

Fig. 3. Weld pools made using different welding speeds. Current: 100 A;
arc length: 3 mm, 3 mm 304 stainless steel. (a) 2.92 mm/s. (b) 2.42 mm/s.
(c) 1.95 mm/s. (d) 1.43 mm/s.

increases, the arc voltage increases so that the arc power
increases, but the distribution of the arc energy is decentralized
so that the efficiency of the arc decreases. As a result, the
correlation between the weld pool and arc length may not be
straightforward. In addition to these three welding parameters,
the weld pool is also determined by the welding conditions
such as the heat transfer condition, material, thickness, and
chemical composition of the workpiece, shielding gas, angle
of the electrode tip, etc. In a particular welding process
control system, only a few selected welding parameters are
adjusted through the feedback algorithm to compensate for
the variations in the welding conditions.

Compared with the arc length, the roles of the welding
current and welding speed in determining the weld pool and
weld fusion geometry are much more significant and definite.
For many automated welding systems, the welding speed can
be adjusted on-line. Such an on-line adjustment may also be
done for many advanced welding robots with proper interfaces.
Thus, in addition to the welding current, we selected the
welding speed as another control variable. The controlled
process can therefore be defined as a GTA welding process
in which the welding current and speed are adjusted on-line
to achieve the desired back-side and top-side widths of the
weld pool.

B. Nonlinearity

The heat input of the arc in a unit interval along the travel
direction can be written as

(1)

where is the welding current, is the welding speed, and
is the welding voltage. Roughly speaking, one can assume

that the area of the weld pool is approximately proportional
to .

When the welding speed changes, both the lengthand
width of the weld pool alter. However, their ratio
referred to as the relative width of the weld pool in this work,
does not change significantly (ranged from 0.72 to 0.85 in
Fig. 3). This suggests that

In our case, the voltage can be assumed constant. Hence,

(2)

where .
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Fig. 4. Weld pools made using different currents. Arc length: 3 mm; speed:
1.9 mm/s, 3 mm 304 stainless steel. (a) 95 A. (b) 105 A. (c) 110 A. (d) 115 A.

When the current increases, the relative width de-
creases (Fig. 4). This implies

(3)

where and .
During closed-loop control, the control variablesand are

subject to fundamental adjustments so thatand change
as the control variables move in the control variable plan

. Hence, the correlation between the top-side geometrical
parameters (width and length) of the weld pool and the input
variables is nonlinear. Because of the correlation between the
back-side bead width and the top-side geometrical parameters,
it is apparent that the correlation between the back-side bead
width and the control variables is also nonlinear. Hence, the
controlled plant is a two-input–two-output nonlinear multivari-
able process. Because of the thermal inertia, the process will
also be dynamic.

III. N EUROFUZZY NONLINEAR DYNAMIC MODELING

A. Neurofuzzy Modeling

A fuzzy system has three major conceptual components:
rule base, database, and reasoning mechanism [14]. The rule
base consists of the used fuzzy IF–THEN rules. The database
contains the membership functions of the fuzzy sets. The
reasoning mechanism performs the inference procedure for
deriving a reasonable output or conclusion based on the
IF–THEN rules from the input variables.

In the conventional fuzzy models, the fuzzy linguistic
IF–THEN rules are primarily derived from human experience
[15]. Because the fuzzy modeling takes advantage of existing
human knowledge, which might not be easily or directly
utilized by other conventional modeling methods [14], such
fuzzy models have been successfully used in different areas,
including manufacturing [16]–[19]. In these models, no sys-
tematic adjustments are made on the used rules, membership
functions, or reasoning mechanism based on the behavior of
the fuzzy model. In general, if the fuzzy rules elicited from
the operators’ experience are correct, relevant, and complete
[20], the resultant fuzzy model can function well. However,
frequently such fuzzy rules from the operators do not satisfy
the correctness, relevance, and completeness requirements
[20]; the rules may be vague and misinterpreted, or the rule
base could be incomplete. In such cases, the performance
of the fuzzy system can be greatly improved if systematic
adjustments are made based on its behavior.

The adjustability of the used rules, membership functions,
and reasoning mechanism allow the fuzzy model to adapt
to the addressed problem or process. In order to adjust the
parameters in the fuzzy model, various learning techniques de-
veloped in the neural network literature have been used. Thus,
the term neurofuzzy modeling is used to refer to the application
of algorithms developed through neural network training to
identify parameters for a fuzzy model [14]. A neurofuzzy
model can be defined as a fuzzy model with parameters, which
can be systematically adjusted using the training algorithms in
neural network literature. In neurofuzzy modeling, the abstract
thoughts or concepts in human reasoning are combined with
numerical data so that the development of fuzzy models
becomes more systematic and less time consuming. As a result,
neurofuzzy systems have been successfully used in different
areas [21]–[24].

Most neurofuzzy systems have been developed based on
the Sugeno-type fuzzy model [25]. A typical fuzzy rule in a
Sugeno-type model has the form: IFis and is THEN

. Here, and are fuzzy sets and is a
crisp function which can be any function as long as the system
outputs can be appropriately described within the fuzzy region
specified by the antecedent of the rule [14]. In this paper, a
neurofuzzy system will be developed to model the nonlinear
dynamics of the process being controlled.

B. Model

Relationships in (2) and (3) imply that the fuzzy model
can be established based on partitioning the inputs. Define

and as the outputs, and as
the control variables. In this study, the units of and are
100 A and 1/mm, respectively. Denote the present time instant
by . Consider the following model:

(4)

where ’s and ’s
are the parameters and orders of the model. This

is an impulse response function that is widely used in industrial
processes. If the model parameters ’s are constant for
each given , (4) will be a linear time-invariant model.
If the parameters are dependent on, the model will be linear
time-varying. In our case, due to the cross-coupling, ’s
and ’s will depend on and ’s and ’s on

. The model is nonlinear.
In order to model the nonlinear welding process, the control

variables are first partitioned into a number of fuzzy sets.
(Modeling comparison shows that the partition of four sets
shown in Table I is optimal for both variables.) For the welding
current, the four fuzzy sets are low, middle, high, and very
high. For , the four fuzzy sets are: small, moderate,
large, and very large. For a given value of, the degree of
truth that belongs to its th fuzzy set is measured by the
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TABLE I
FUZZY PARTITION OF CONTROL VARIABLES

Fig. 5. 1=
p
v � 1=v.

membership function

(5)

where is the number of the partitioned fuzzy sets for
and are the parameters of the membership

function.
Based on the partition of the control variables, the following

rules can be applied:

If is then

If is then

(6a)

Here, and are constant for the given, ,
and . Also, in and in are used to
indicate that the parameters and [in model (4)]
depend on the partition set and to which and

belong, respectively.
Rule (6a) is designed to account for the cross-coupling only.

Theoretically, based on (2) and (3), the rule should be:

If is and is then

and

(6b)

However, in our case, the range of the welding speed in
the closed-loop control will be 1.0–3.0 mm. In this range,
the correlation between and can be roughly linear
(Fig. 5). Hence, we can regard and

. Also, from Fig. 4, the static correlations between
the weld pool parameters and the welding current in Fig. 6 can
be obtained. Again, although the correlations are nonlinear,
the nonlinearity is slight. As a result, as will be discussed in
Section V, experimental data analysis suggests that the above
more complex rule (6b) does not significantly improve the
modeling. This implies that the cross-coupling is the dominant
factor which causes the nonlinearity. Hence, (6a) is used.

In our case, the partition is fuzzy. This implies that
(or ) may simultaneously belong to , , and

(or , , and , but with different membership
functions. Hence

(7)

IV. I DENTIFICATION ALGORITHM

The identification of a fuzzy model consists of structure
identification and parameter estimation. During identification,
the parameters are estimated for different structures. The final
structure, i.e., the fuzzy variable partition in this case, is
selected by comparing different models. This is, in general,
very inefficient. Also, the decision is made purely based on
statistical (mathematical) analysis. No process characteristics
or designer’s experience are involved. If the designer is
familiar with the process, an experience-based partition may be
appropriate. Thus, as suggested in [14], we have selected and
partitioned the fuzzy variables based on our understanding of
the welding process (Table I). Hence, the identification of the
fuzzy model is simplified as a parameter estimation problem.

Denote the data as

(8)

and the prediction errors as

(9)

Define the cost function

(10)

The parameter estimation is to find the optimal parameters
so that

(11)

Although many excellent algorithms such as the second-order
back-propagation [26] and normalized cumulative learning
rule [27] proposed in the neural network literature can be used
to speed up the parameter identification, the authors found
that satisfactory identification speed can be achieved by using
the simplest, but the most frequently usedrule [27], [28]
in this case. In order to implement this algorithm, partial
derivatives of the cost function with respect to each of the
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(a) (b)

Fig. 6. Empirical static correlations between the welding current and weld pool parameters. (a)L � i. (b) w � i. The experimental data in Fig. 4 are used.

model parameters are needed. The following can be shown:

(12)

(13)

(14)

Fig. 7. Experimental setup.

(15)

(16)
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(a) (b)

(c) (d)

(e)

Fig. 8. Inputted welding parameters for the five dynamic experiments.

(17)

Thus, an identification procedure can be designed accordingly.

V. DYNAMIC EXPERIMENTS

The experimental setup is shown in Fig. 7. The welds are
made using direct-current GTA welding with the electrode
negative [13]. The welding current is controlled by the com-
puter through its analog output to the power supply ranging
from 10 to 200 A. The torch and camera are attached to
a three-axial manipulator. The motion of the manipulator
is controlled by the three-axis motion control board, which
receives the commands from the computer. The motion can be
preprogrammed and on-line modified by the computer in order
to achieve the required torch speed and trajectory, including
the arc length. The control vision’s ultrahigh-shutter-speed

vision system [11] is used to capture the weld pool images.
This system consists of a strobe-illumination unit (pulse laser),
camera head, and system controller. The pulse duration of the
laser is 3 ns and the camera is synchronized with the laser
pulse. Thus, the intensity of laser illumination during the pulse
duration is much higher than those of the arc and hot metal.
Using this vision system, good weld pool contrast can always
be obtained under different welding conditions. In this study,
the camera views the weld pool from the rear at a 45angle.
The frame grabber digitizes the video signals into 512512
8 bit digital image matrices. By improving the algorithm [10]
and hardware, the weld pool boundary can now be acquired
on-line in 80 ms.

Five experiments have been done on 1-mm-thick stainless
steel 304 plates. The workpieces are 250 mm in length and
100 mm in width. The shielding gas is pure argon. The arc
length is 3 mm in all the experiments. In order to establish
the full penetration mode, the current and welding speed must
be in certain ranges. We have used control variables in larger
ranges. Fig. 8 plots the segments in each experiment where
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(a) (b)

(c) (d)

(e)

Fig. 9. Measured pool parameters from the five dynamic experiments.

the inputs have produced fully penetrated weld pools. The
measured parameters of the weld pools in these segments are
given in Fig. 9. The back-side bead width can be calculated
using the weld pool parameters and the neurofuzzy model
developed in the previous study [12]. The results have also
been illustrated in Fig. 9.

Fig. 10 shows the distribution of the control variables in
these segments of experiments. It can be seen that the welding
parameters have filled the projected range of the control
variables. This distribution implies that the resultant model
can be used during control if the control variables are in the
projected range.

The above experimental data have been used to fit a
neurofuzzy model here. It is found that orders

are sufficient when the sample period s.
The identified model parameters are given in Tables II–VI.
Here and are the average inputs in

rather than at discrete
instant .

Fig. 10. Distribution of inputs in the dynamic experiments.

Assume that represents the continuous time rather than
the discrete-time instant. The outputs atcan be predicted
using the inputs in ’s

no matter whether or not is an
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TABLE II
IDENTIFIED FUZZY PARTITION PARAMETERS

TABLE III
IDENTIFIED c11(j=i2)’s

TABLE IV
IDENTIFIED c12(j=i1)’s

TABLE V
IDENTIFIED c21(j=i2)’s

TABLE VI
IDENTIFIED c22(j=i1)’s

integer. Hence, by applying the identified model, the outputs
at any moment can be predicted.

The modeling accuracy of the resultant fuzzy model can be
seen in Fig. 11 where the outputs were measured at 10 Hz.
The variances of the fitting errors are 0.039 and 0.020 mm
for and , respectively. It is found that the no noticed
improvement can be made when increasing ’s, increasing

and or using (6b). In fact, the welding process is subject
to uncertainty and its outputs cannot be exactly predicted using
the inputs without any errors. The prediction errors in Fig. 11
are certainly not larger than the deviations of the outputs
caused by the uncontrollable variations in the welding process
when the same inputs are used. Hence, the obtained model is
sufficient.

In order to show the effectiveness of the fuzzy model,
a linear model has also been fitted. It is found that the
modeling is much poorer (Fig. 12). It is apparent that the

(a)

(b)

Fig. 11. Neurofuzzy modeling results. (a) Back-side bead widthyi. (b)
Top-side bead widthy2.

used neurofuzzy model structure has played a critical role in
accurately modeling the nonlinear dynamics of the process
being controlled.

VI. FUZZY MODEL-BASED PREDICTIVE CONTROL

A number of methods could be used to design a neurofuzzy
controller [14], including mimicking another working con-
troller, inverse model, specialized learning, back-propagation
through time and real-time recurrent learning, feedback lin-
earization and sliding control, gain scheduling, etc. The ad-
vantage and limitation of each individual method has been
analyzed in [14].

Traditionally, fuzzy controllers have been designed without
an explicit model of the process being controlled. However,
in neurofuzzy systems, mathematical models are explicitly
used. We notice that the predictive control principle [29]
has recently been incorporated with fuzzy models to provide
design methods for neurofuzzy model based controllers be-
cause predictive methods have several advantages that make
them good candidates for industrial applications. Oliveira and
Lemos proposed a fuzzy model based predictive controller for
single-input single-output systems [30]. They used relational
fuzzy models, rather than the Sugeno-type models as used in
our work. Next, we will develop a predictive controller for our
two-input two-output Sugeno-type model.

At , the controller needs to determine the control action
based on the feedback to drive the

welding process to reach the desired outputs . In a
predictive control, prediction equations should be developed
to predict the outputs. Equation (4) can directly yield the
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(a)

(b)

Fig. 12. Linear modeling (without variable partition). (a) Back-side bead
width y1. (b) Top-side bead widthy2.

following recursive prediction equations:

(18)

with initials

(19)

where notations emphasize that
are dependent on .

In order to achieve a robust control, it is required that the
following cost function is minimized:

(20)

In a long-range predictive control, the positive integer
should be large enough in order to achieve a robust control.
In general, the regulation speed increases whendecreases.
However, the robustness of the closed-loop control system
becomes poorer. For welding process control, the robustness
is the primary requirement. It is found that can achieve
satisfactory regulation speed and excellent robustness.

It is known that fluctuations in welding parameters will
generate nonsmooth weld appearance, which is not acceptable.
Energetic control actions must be avoided. Although all of

can be
free variables in optimizing the cost function, only
and will be actually applied. (In fact, at the succeeding
instants, will be determined again.)
In addition, being free variables, and

could vary severely so that energetic
control actions are generated. Hence, the outputs can be
predicted to optimize the cost function by assuming constant
control variables in the prediction horizon, i.e.,

and . In this case, the
prediction equations will be

(21)

where
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(22)

with initials

(23)

Denote

(24)

Then the cost function (20) can be written as

(20 )

It can be seen from (22) that depends on being
determined. Hence, minimization of with respect to
is a nonlinear optimization problem.

In order to obtain an exact numerical solution of a nonlinear
optimization, an iterative calculation is needed. For a real-time
control, an on-line iterative calculation is not preferred. Hence,
the necessity of implementing an on-line iterative calculation
for achieving an exact numerical solution should be argued.
It is known that the neurofuzzy model identified is a nominal
model of the welding process. The unavoidable variations in
the welding conditions such as the heat transfer condition
cause the actual dynamics to differ from the nominal model.
In this case, an exact numerical solution of the nonlinear
optimization based on the nominal model may not exactly
optimize the actual cost function. The error increases as the
uncertainty of the process increases. For the welding process,
the uncertainty which makes the closed-loop control necessary
is substantial [8], [31]. Also, since there is no constraint
on the change of the control action ,
determined based on the nonlinear optimization of (20) or
(20’) could significantly differ from . As a result, the
control actions could be very energetic so that the resultant
weld appearance is not smooth. Also, the large changes of
the control actions and the significant difference between the
actual dynamics and the nominal model could cause severe

Fig. 13. Closed-loop control system.

errors between the predicted and actual outputs. The closed-
loop system could be unstable. Hence, the following modified
cost function is used:

(25)

where are the weights.
When the amplitudes of are not large,

can be approximated by
so that can be calculated before the optimiza-

tion. [The resultant accuracy in calculating depends
on the actual amplitudes of .] Hence, the
optimization becomes linear. The analytic solution is

(26)

The values of the weights and can be determined
based on their physical meaning in correlating the preferred
changes of the control actions to the errors between the desired
and measured outputs. In the developed system,
(mm/100 A) is selected. This implies that an error of 1
mm in the predicted and desired top-side or back-side bead
width has the same contribution to the cost function as

, i.e., 10 A because the unit of in our
control system is 100 A does. Similarly, (mm )
is selected.

VII. CLOSED-LOOP CONTROL EXPERIMENTATION

The developed closed-loop control system can be illustrated
using the diagram in Fig. 13. In order to examine the ro-
bustness of the developed control system, uncertainties are
emulated using a number of artificial disturbances in the
closed-loop control experiments.
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(a)

(b)

Fig. 14. Closed-loop control experiment of the top-side and back-side bead
widths under step change in the rate of the shielding gas. (a) Outputs. (b)
Control actions.

A. Experiment 1: Step Change of Rate of the Shielding Gas

In arc welding, the weld pool and electrode are prevented
from being contaminated by the atmosphere by applying the
shielding gas. In terms of circuit, the arc column can be
regarded as a resistor in which the welding current flows and
its resistance depends on both the arc length and shielding
gas. The shielding gas (either the type or rate of the flow) has
an influence on the welding arc, and, therefore, influences the
weld pool.

In this experiment, the initial rate of the argon flow was 27
l/min. At s, the rate changes to 10 l/min (Fig. 14).
As a result, both the top-side and back-side bead widths
increase. As it can be observed in Fig. 14, by decreasing the
welding current and increasing the welding speed, the closed-
loop control system successfully eliminates the influence of
the decrease in the rate of the argon flow.

B. Experiment 2: Current Disturbance

In this experiment, an artificial error between the actual and
nominal values of the welding current is applied. During the
first 42 s, no error exists between the actual and nominal
values. From s, the actual current is 5 A larger
than the nominal value. Hence, both the top-side and back-
side bead widths increases. As it can be seen in Fig. 15,
the welding current and speed immediately decreases and
increases, respectively, so that the outputs can be maintained
at the desired levels again.

(a)

(b)

Fig. 15. Closed-loop control experiment of the top-side and back-side bead
widths under step disturbance caused by the difference between the actual and
nominal values of the welding current. (a) Outputs. (b) Control actions.

We notice that for advanced welding systems, such an error
between the actual and nominal values of the welding current
may not be frequently encountered. However, this artificial
disturbance can change the dynamic model, which correlates
the outputs to the nominal values of the welding parameters.
Hence, a model perturbation is emulated.

C. Experiment 3: Speed Disturbance

In this experiment, an artificial error between the actual and
nominal values of the welding speed is applied. During the first
52 s, no error exists between the actual and nominal values.
However, after s, the actual welding speed is 0.5 mm/s
smaller than the nominal value. At s, the welding
current and speed are about 38 A and 2.2 mm/s, respectively.
If no closed-loop correction is applied, 38 A welding current
and 1.7 mm/s welding speed will increase the top-side and
back-side bead widths by about 2 mm. Fig. 16 shows that
this disturbance has been overcome by the closed-loop control
system by simultaneously changing the welding current and
welding speed.

Unlike the error between the actual and nominal values
of the welding current, the error between the actual and
nominal values of the welding speed can often be met in
many applications. Hence, in addition to the emulation of
the model perturbation, this experiment also shows that the
developed closed-loop control system is robust with respect to
the possible variation in the welding speed.
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(a)

(b)

Fig. 16. Closed-loop control experiment of the top-side and back-side bead
widths under step disturbance caused by the difference between the actual and
nominal values of the welding speed. (a) Outputs. (b) Control actions.

D. Experiment 4: Tracking Varying Set Points

Fig. 17 shows a closed-loop control experiment in tracking
varied set-points. In general, the dynamic properties of the
nonlinear process vary with the operating points. In order to
track the varied set points, the operating points have to change.
If a linear controller is used, the performance of the closed-
loop control will in general not be guaranteed for different
operating points. The welding experiment in Fig. 17 shows
that the varied set points are well tracked. The similar results
have also been observed in other experiments that tracked
other varied set points.

VIII. C ONCLUSIONS

The nonlinearity of the controlled process which has the
welding current and speed as the inputs and back-side and
top-side bead widths as the outputs is fundamental. The
neurofuzzy model can describe the dynamic nonlinear process
being controlled with sufficient accuracy. A neurofuzzy model
based predictive algorithm has been developed to control the
nonlinear welding process. The control experiments showed
that the desired fusion state can be achieved by using the
developed control system despite severe disturbances.

The developed system provides a solution to precise control
of welding process. It is currently being used to weld aerospace
materials. In applications where the requirement on the accu-
racy is relatively low and where the variations in the welding
conditions are insignificant, other simpler control algorithms
may also be used to ease the system design.

(a)

(b)

Fig. 17. Closed-loop control experiment of the top-side and back-side bead
widths in tracking varied set-points. (a) Outputs. (b) Control actions.
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