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Control of weld penetration is currently. one of the most important and crucial
research issues in the area of welding. The weld pool can provide accurate and
instantaneous information about the weld penetration, however, the establishment. .
and confirmation of the correlation between weld pool and weld penetration require-
numerous accurate measurements and suitable geometrical modeling of weld pool.
A normalized model is proposed to characterize the weld pool two-dimensionally.
More than 6,000 weld pools are measured from experiments using a developed real-
time weld pool sensing system. A data analysis shows that the weld penetration is
correlated with the weld pool which is specified by the three characteristic parameters
proposed in the study. However, the correlation is nonlinear. To approximate the
complicated nonlinearity, neural networks are used. Comparative modeling trails
show that the weld penetration can be more accurately calculated if the adjacent weld
pools are also used. This implies that the correlation between the weld penetration and
weld pool is dynamic. Hence, an on-line nonlinear dynamic estimation system is

developed to estimate the weld penetration.

1 Introduction

The weld pool contains abundant information about the weld-
ing process. For example, the oscillation of the weld pool can
provide sufficient information to distinguish between full and
partial penetration [1, 2]. Weld pool width has been used as a
rough representation of the weld penetration. Due to a recent
development in sensing technology [3], clear imaging of the
weld pool is possible. In a previous study, a real-time image
processing algorithm was developed to extract the weld pool
boundary and used to control the arc welding process [4]. By
improving the hardware and algorithm, the weld pool boundary
can now be obtained in 80 ms. Numerous accurate measure-
ments can therefore be provided for studying the weld pool. It
is known that skilled operators can extract information about the
weld penetration by viewing the weld pool. Thus, the correlation
between the weld penetration and weld pool should be studied
in order to advance the sensing and control of weld penetration.

Sensing and control of weld penetration are fundamental is-
. sues of concern in automated welding. The weld penetration can
be classified as partial or full penetration, which are specified by
the penetration depth and back-side bead width of the weld pool
respectively. For a fully penetrated pool, the back-side bead
width could be sensed by a back-side sensor. However, because
of limitations of sensor access and motion match between the
torch and sensor, it is often necessary that the sensor be attached
to and move with the torch to form a so-called top-side sensor.
Thus, the top-side sensing of weld penetration is a major re-
search issue.

The difficulty in the top-side sensing of weld penetration
arises from the invisibility of the weld pool depth and back-
side bead width. Indirect methods must be used. Among existing
methods, pool oscillation has been extensively studied. The
pioneering work was conducted by Kotecki [5], Richardson
[6], Hardt [ 7] and their co-workers. Xiao and Ouden found an
abrupt change in the oscillation frequency of the pool during the
transition from the partial to full penetration [1, 2]. However, it
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is unlikely that the oscillation frequency can provide accurate
measurements of either the penetration depth or back-side bead
width of the weld pool. For example, in practical welding, the
desired back-side bead width could be selected from 3 mm to
5 mm. However, the oscillation frequency is not sensitive to
the variation in the back-side bead width in this range (Fig. 13
in [2]). The ultrasound based weld penetration sensing [8] has
been extensively investigated at the Idaho National Engineering
Laboratories [9, 10]. Although significant progress has been
made, practical applications are still restricted because of the
contact sensor. If the problems associated with the noncontact
sensor [11] are well resolved, its extended applications can be
expected. Because the temperature distribution in the weld zone
contains abundant information about the welding process, infra-
red sensing of welding processes has been explored. Chin and
co-workers have acquired valuable results in this area [12—14].
The penetration depth of the weld pool has been correlated with
the infrared characteristics of the infrared image. At MIT, Song
and Hardt used an infrared camera to view the temperature field
from the back-side [15]. The penetration depth was precisely
estimated from the measured temperature distribution and then
controlled [16]. In our previous work, infrared sensing of full
penetration was also been studied [17].

Because of the plasma impact, the surface of an arc weld
pool is depressed. Previous researchers have found that the
depression of the weld pool surface is correlative to the penetra-
tion depth of the weld pool [18, 19]. When a fully penetrated
weld pool is well established, the depression will be signifi-
cantly increased due to the free bottom surface of the weld pool
(Fig. 11 in [20]). In this case, the size of the bottom weld pool
surface plays a fundamental role in balancing the forces of the
plasma impact and surface tension. Also, it is known that the
surface tension is directly related with the surface curvature.
Thus, the surface depression and bottom size of the weld pool
are closely correlated. The back-side bead width could be esti-

‘mated from the depression of the weld pool. However, the

sensing of the surface depression is difficult. It was found that
the average sag depression of the solidified weld bead has a
good linear correlation with the back-side bead width [21].
As an alternative, a structured-light vision sensor and image
processing algorithm were developed to measure the sag geome-
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Fig. 1 Experimental set-up

.try in gas tungsten arc welding. By modeling the arc welding
process [22], an adaptive control system has been completed
to achieve the desired back-side bead width [23]. Recently, it
was found that this principle can also be used to determine the
full penetration when filler wire is used. The control experimen-
tation is currently in progress.

Although significant achievements have been made in the

area of top-side penetration sensing and control, accurate and
reliable techniques are still needed. Compared with the sag
behind the pool rear, the weld pool could provide quicker and
more accurate measurements of the welding process. If the cor-
relation between the weld penetration and weld pool can be
explored, progress will be made not only in understanding the
welding process, but also in sensing and control of the welding
process.

2 Experimentation

The experimental system is shown in Fig. 1. The welds are
made using the DCEN gas tungsten arc welding. The welding
current is controlled by the computer through its analog output
to the power supply ranging from 10 A to 200 A. The torch
and camera are attached to a 3-axial manipulator. The motion
of the manipulator is controlled by the 3-axis motion control
board which receives the commands from the computer. The
motion can be preprogrammed and on-line modified by the
computer in order to achieve the required torch speed and trajec-
tory, including the arc length.

The Control Vision’s ultra-high shutter speed vision system
[3] is used to capture the weld pool images. This system con-
sists of a strobe-illumination unit (pulse laser), camera head
and system controller. The pulse duration of the laser is 3 ns,
and the camera is synchronized with the laser pulse. Thus, the
intensity of laser illumination during the pulse duration is much
higher than those of the arc and hot metal. Using this vision
system, better weld pool contrast can be obtained under different
welding conditions than the coaxial vision system [24, 25].
The corresponding images are shown in Fig. 2(a). In our previ-
ous study, an image processing technique has been developed
to extract the pool boundary. By improving the algorithm and
hardware, the weld pool boundary can now be acquired on-line
i2n b80 ms. The resultant pool boundaries are illustrated in Fig.

(b).

The camera views the weld pool from the rear at a 45 deg
angle. The frame grabber digitizes the video signals into 512
X 512 8 bit digital image matrices. The extracted boundary
from the image processing is described using the image coordi-
nate system. To obtain the actual appearance of the weld pool,
the boundary should be described in the work coordinate sys-
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tem. The xy plane of the work coordinate system is the work
surface and the z-axis is the electrode (Fig. 1). A coordinate
transformation from the image coordinate to the work coordi-
nate can be done using the camera model [26]. Thus, assume
that (x; (7), y:(j))’s are the image coordinates of the weld pool
boundary, the pool boundary (x(j), y(j))’s can be calculated
from the (x; (), »:(/))’s.

The material is stainless steel 304. The thickness of the work-
piece is 3 mm. Bead-on-plate and butt welds are made. The
variation in weld penetration is generated by using varied cur-
rent, arc length, and travel speed (Table 1 and Fig. 3).

3 Geometrical Model of Weld Pool

The weld pool in this study refers to the two-dimensional
geometry of the top-side surface view of the weld pool, and is
described by the measured boundary points. However, these
measured points do not directly indicate the feature of the weld
pool. Also, the geometrical feature of the weld pool can not be
sufficiently characterized using pool length, width, area, etc. To
characterize the weld pool, a few parameters must be selected
based on careful analysis. These parameters are referred to as
the characteristic parameters of the weld pool.

The selection of the characteristic parameters is crucial. Three
criteria must be satisfied. First, the fundamental geometrical
appearance of the weld pool must be sufficiently described using
the selected characteristic parameters. Secondly, the correlation
between the status of the weld penetration and selected charac-
teristic parameters must be substantial. Also, in the projected
control system for weld penetration, the selected parameters
must be controlled to achieve the desired weld pool and weld
penetration. Although more parameters could describe the weld
pool more accurately, the increase in the number of the selected
characteristic parameters may complicate the resultant control
system. Thus, the number of the selected parameters must not -
be too large. As a result, the following parametric model is
proposed:

v, = *ax?(l = x){a>0,1=5b>0) (1)

where a and b are the model parameters, (x,, y,) are the coordi-
nates of the pool boundary in the normalized coordinate system
ox,y, (Fig. 4). These normalized coordinates are calculated
using the measured x, y coordinates:

X, = x/L

¥ =y/L
where L is the length of the weld pool.
Model (1) presents a symmetric and normalized description
of the weld pool. Although actual weld pools are not perfectly
symmetric, if the nonsymmetry of the weld pool is not extreme,
its effect on the weld penetration may be negligible. A symmet-
ric description of the weld pool will be more suitable for corre-
lating the weld pool to the weld penetration, in addition to

reducing the number of the used parameters. In Model (1), the
dimensions of the weld pool along both the length and width

(2)

 directions are normalized relative to the length of the weld pool.

This normalized description can decouple the shape from the
size of the weld pool so that the shape can be characterized by
the parameters a and b. This decoupling between the shape and
size can clarify the role of each parameter in characterizing the
weld pool and designing a perspective control system.

The location corresponding to the maximum width of the
weld pool is determined by b. It can be shown that max y,(x,)
= y.(b/(b + 1)). I the weld pool is divided into the leading
and trailing portions, their lengths in the normalized coordinate
system are /(b + 1) and 1/(b + 1), respectively. Thus, b is
the ratio between the leading and trailing lengths. Since the
trailing length is larger, 1 = b. It was found that the absolute
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length of the leading portion is less seriously affected by the
welding parameters than the length of the trailing portion. Thus,
when the current increases, b will decrease. For a stationary
weld pool, the leading and trailing lengths should be equal. In
addition to b, the weld pool shape is also determined by the
parameter a. For a given b, the width of the weld pool in the
normalized coordinate is proportional to the parameter a. This
relative width characterizes the narrowness of the weld pool
and can be calculated using the parameters a and b:

b TP 1
,=wlL =2
W= wl a[l—i«b}l—i—b

Thus, the weld pool can be characterized using three parameters:

(3)

the length ratio b, the relative width w,, and the length of the
pool L. These three parameters characterize the weld pool from
different points of view. It is apparent that the length L is
independent of the shape parameters. The shape of the weld
pool is described using two independent parameters based on
the parrowness and the leading to trailing ratio. Thus, these
three parameters can be selected as the characteristic parameters
of the weld pool and are denoted as p; = L, p, = w,, and p;
= b, :

Figure 5 shows two families of simulated weld pool bound-
aries. In family A (Fig. 5(a)), the relative widths are the same,
whereas the leading to trailing length ratios vary. It can be seen
that the narrowness of the weld pools looks similar despite the
variation in the ratio. In family B, the weld pools possess the

Table 1 Experimental conditions

No. current arc-length
(A) (mm})

1 100 see Fig.3(a)
2 100 see Fig.3(b)
3 see Fig.3(c) 3

4 100 3

5 100 3

6 100 3

7 100 3

8 100 3

Journal of Manufacturing Science and Engineering

speed gap Ar flow rate
(mm/s) (SCFH)
2 - 30
2 - 30
2 - 30
2 - 25
3 - 30
2.5 - 30
1.5 - 30
2 see Fig.3(d) 35
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same leading to trailing length ratio (Fig. 5(b)). It can be seen
that the variation in the relative width changes the narrowness
of the weld pool.

The sufficiency of the selected parameters in characterizing
.the geometrical appearance of the weld pool can be examined
by comparing practical weld pools with their modeling results.
The modeling results for the weld pools in Fig. 2 are shown in
Fig. 6. It can be seen that the acquired models do characterize
the geometry of these typical pools. The effectiveness in charac-
terizing the weld penetration will be discussed later.

0 02 04 06 08 1
(@ w,=0.8

It can be seen that the proposed model is nonlinear about the
parameter b. However, its linear version can be acquired using
a log transformation. Hence, the normalized parameters a and
b can be on-line identified from the weld pool boundary using
the linear least squares algorithm [27].

4 Nonlinear Estimation

The weld pool develops in a three-dimensional world. A top-
side sensing technology needs to estimate the invisible weld
penetration status from the top-side visible information. In this
study, the top-side visible information is the observed weld pool
and therefore two-dimensional. It is difficult to prove theoreti-
cally that the status of the weld penetration is unique for a
certain top-side appearance of the weld pool. However, it is
known that different variables of the welding process are heavily
coupled. When a welding parameter changes, all the process
variables will change accordingly. The signature of the change
in a specific process variable may be detected from the changes
in other process variables. The problem is how to select the
coupled variables and how to correlate them.

The weld pool could contain the signature of the change in
the weld penetration. In fact, for the gas tungsten arc welding
process addressed in this study, the majority of the heat is input
from the surface and then transferred into the metal. The heat

0 02 04 06 08 1
(b) 5=0.5

Fig. 5 Simulated weld pools (a) Fémily A (b) Family B
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Fig. 6 Modeling results of the typical weld pools using normalized model

transfer occurring inside the metal is therefore closely correlated
with the surface of the weld pool. Hence, the change in the
weld penetration should leave some signature on the weld pool
surface. Although the correlation between the weld pool surface
and weld penetration could also be influenced by the material,
welding process, and thickness, these parameters are usually
known. Other welding parameters or conditions, i.e., current,
travel speed, heat transfer condition, shielding gas, and angle
of the electrode tip may vary during welding. However, analysis
shows that the influence of these parameters on the addressed
correlation may be negligible. The weld penetration could there-
fore be estimated using the top-side visible weld pool.

To confirm the existence of the correlation between the weld
pool and weld penetration, experiments have been done using
varied welding parameters (see the experimental section). The
material, thickness, and welding process were not changed. The
on-line image algorithm [4] was used to detect the weld pool
boundary, and the characteristic parameters of the weld pool
were measured at 10 Hz. Hence, numerous accurate data were
acquired from different weld pools (Fig. 7). The back-side bead
width was off-line measured using the structured-light technique
developed in a previous study [28]. It can be seen that both
the characteristic parameters and back-side bead width vary in
a large range. If the variation in the back-side bead width can
be tracked by using the characteristic parameters, the existence
of the correlation between weld pool and weld penetration is
confirmed. The remaining task will be to improve the modeling
accuracy.

The cross-correlation functions between the back-side bead
width and each individual characteristic parameter shows that
the back-side width has significant correlation with the charac-
teristic parameters. In order to accurately estimate the back-side
bead width using the characteristic parameters, a mathematical
model should be acquired. Denote the measured data as:

wp(1), pi(l), pa(1), ps(1)
wb(2)7 PI(Z)’ p2(2)1 p3(2)
ws(N), pi(N), p2AN), ps(N) 4)

where w,(7), p1(7), p2(j), and p3(j) are the back-side bead
width, pool length, relative width, and length ratio at the jth
sample instant, respectively. The number of samples is N, suc-
ceedingly counting from the first to the last experiment. In
general, the mathematical model can be written as:

wo(J) = f(pr(J), p2(i)s ps(1)) (5)

The form of the functional relation f could be complicated. Its
simplest form can be expressed by the following linear equation:
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wy(J) = ao + aupi(J) + aapa(f) + aaps(f) (6)
Using the standard least square algorithm [27], this linear
model can be fit from the raw data. The results are shown in
Fig. 8(a). It can be seen that the measured back-side bead width
can be traced with acceptable accuracy by the characteristic
parameters of the weld pool. This implies that the selected
characteristic parameters do contain sufficient information about
the weld penetration. However, when 15 parameters from five
adjacent weld pools are used to develop a linear model, no
accuracy improvement is observed (Fig. 8(b)). In order to
further improve the modeling accuracy, a more complicated
non-linear model should be tried.

A major difficulty in non-linear modeling is the acquisition
of the model structure. In our case, it is very difficult to acquire
the model based on theoretical analysis. However, the artificial
neural-networks can be used to approximate almost any kind
of nonlinear functions if the used neurons are sufficient [29].
In our case, numerous data have been measured so that the
allowed number of neurons can be large. High modeling accu-
racy can therefore be expected on the resultant neural network.
Thus, the neural networks have been used to correlate the back-
side bead width with the characteristic parameters of the weld
pool in this study.

Figure 9 illustrates the neural network modeling results, One
hidden layer was used in the network work. The number-of
neurons in the input layer equals to and varies with the number
of the used inputs. The number of neurons in hidden layer
should be selected so that the total number of intersections
between neurons in adjacent layers is not larger than one fifth
of the number of samples [30]. In our case, numerous data are
available and the allowed number of neurons in the hidden layer
can be very large. Although more neurons could improve the
approximation capability of the network, the difficulty in the
training convergence could be increased. Thus, the number of
neurons in the hidden layer was selected to be 25 for all the
neural networks in this study. The sigmodial function [29] was
selected as the non-linear function of the neuron. The training
was performed using the commercial neural network software,
Professional II [30]. The algorithm is the extended delta-bar-
delta (EDD) which can overcome the slow convergence associ-
ated with the conventional back-propagation algorithm [29].
The learning ratio is automatically determined by the algorithm.
The training cycle is selected to be 50,000. It can be seen
from Fig. 9 that the modeling accuracy associated with each
individual parameter is much lower than the accuracy provided
by the three characteristic parameters. A significant difference
is also observed when using any two of the characteristic param-
eters rather than all three parameters. Thus, in order to $uffi-
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ciently determine the weld penetration, three characteristic pa-
rameters are used.

A comparison can be made between the linear (Fig. 8(a))
and non-linear (Fig. 9(c)) models. In Fig. 8(a), severe model-
ing errors are primarily observed in data ranging from 500 to
800, from 1,200 to 1,600, from 2,300 to 2,500, and from 3,500
to 4,100. It can be seen that these severe errors have been
substantially reduced in Fig. 9(c). Thus, the nonlinearity does
improve the capability of the model in approximating the stud-
ied correlation.

In order to examine the sufficiency of the selected three pa-
rameters in characterizing the weld pool from the viewpoint of
determining the weld penetration, a network has also been
trained to calculate the back-side bead width using a full set of
weld pool parameters, including the pool length and nine widths
of the weld pools equally sampled longitudinally. The modeling
results are illustrated in Fig. 10. By comparing with Fig. 9(c),
it can be found that the difference between modeling accuracies
associated with the full set of parameters and the selected three
characteristic parameters is very small. This implies that the
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Fig. 8 Linear modeling of weld penetration using characteristic parameters of the weld pool (a) modeling
based on the current weld pool (b) modeling based on adjacent weld pools
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selected parameters can sufficiently characterize the weld pool
for determining the weld penetration.

To show the effect of the selected characteristic parameters
in acquiring the accurate estimation of weld penetration, the
conventional parameters of the weld pool have also been used
as the inputs for the neural networks. The results are shown in
Fig. 11. It can be seen in the sample number ranging from 1000
to 1600, from 2200 to 2800, and from 3600 to 4300 that the
conventional parameters do not provide the estimates of the
weld penetration as accurately as the characteristic parameters
do. In addition, it is apparent that the conventional parameters
characterize the geometrical features of the weld pool from
different points of view or independently, whereas the proposed
characteristic parameters mutually characterize the weld pool.
Because of more reasonable characterization, the weld penetra-
tion can be better estimated. :

5 Dynamic Modeling and On-Line Estimation

The above networks are basically different realizations of the
function (5) which correlates the back-sidé bead width to the
chatacteristic parameters at the same instant (jth). Although
the functional relationship could be sufficiently sophisticated to
approximate any possible correlation between the output and
inputs, the input information may not be sufficient. That is, the
status of the weld penetration at any instant may not be deter-
mined only by the weld pool at the same instant, but also by
the adjacent weld pools. This implies that the correlation be-
tween the weld penetration and the weld pool is dynamic. The
following function should be used to correlate the weld penetra-
tion to the weld pool:

wb(j) = g(PT(j + A)s PT(] + A - 1)9 R ]
' PG+ A=-mn) (7)

where p7 = (py, p2, ps) is the characteristic parameter vector,
n is the order of the dynamic model which defines the range in
which the weld pool can substantially affect w,(j), and vTA
is the shift from the current location (x = vjT) to the most
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forward location (x = vI'(j + A)) where the arc can still
influence the back-side bead width w,(j) (Fig. 12). Here v and
T are the torch speed and sampling period, respectively.

In our case, the characteristic parameters of the weld pool
are the outputs of the welding process. The correlation between
the welding input parameters (current, etc.) and resultant weld
pools is dynamic due to the substantial inertia of the welding
process. Thus, each individual characteristic parameter of the
weld pool must be substantially auto-correlated despite the form
of the welding input parameters. In the modeling of weld pene-
tration, the characteristic parameters are the inputs. The auto-
correlation in each individual input makes it difficult to estimate
A and n based on the functions of the cross-correlation between
the back-side bead width and each individual characteristic pa-
rameter. Thus, these model parameters will be determined in
the modeling simultaneously with other model coefficients.
Again, the neural networks are used to approximate the non-
linear function g of Eq. (7).

In general, the parameter vector p which can maximally affect
w;(j) may be p(j + j&), rather than p(j). Here j§ is referred
to as the transfer shift. Before the dynamic modeling is per-
formed, the transfer shift should be determined. That is, the
model

wo(J) = FU + jo), we(J + Jo), B( + Jo)) (8)
should be optimized with respect to the possible j,. Thus, the

‘optimal jo, denoted as j§, which can minimize the modeling

error
X (we() = FUG + ). G + 78, bG + 58
j
= min 3, (wy(j) — FUG + jo),
o

w,(j + jo), b(j + jo))* (9)

can be acquired. It has been clearly observed that the modeling
accuracy associated with j, = j& has been significantly im-
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proved compared with jo = 0. Also, the value of j§ varies from
experiment to experiment because of the variations in the used
welding speed and other welding parameters. However, j& >
0 is always observed. This implies that the arc location at which
the back-side bead width w,(j) will be maximally affected by
the weld pool is ahead of the current electrode location x =
JTv. .
Based on the selected j&, Eq. (7) can be written as

wy(j) = g7 +Jjs +8),pT(G+js +6—1),...,

pT(j +j¥ +6-n)) (10)

where § = A — j¢. In this case, the number of the network
inputs is 3(n + 1). Because of the small sampling period
(T = 0.1s), n could be large. The resultant input number could
reach nearly one hundred. To reduce the input number, the
means of the characteristic parameters were calculated for every
5 sampling period afid used as inputs for the dynamic networks.
Thus, the input number was significantly reduced. By extensive
neural network modeling trails, the best 6 and n which can
minimize the modeling errors were found for each individual
experiment. Although the acquired optimal 6 and n are not
exactly the same for different experiments, the variations in
these parameters are small. The best § varies around 5, and the
best n is about 25. The neural network modeling results for
different experiments are plotted in Fig. 13(a)-and (&) for the
static model (using both zero j; and zero n) and dynamic model
(using non-zero j, and n), respectively. It can be seen that
compared with Fig. 13(a), the modeling accuracy in Fig. 13(b)
has been significantly improved. Thus, the correlation between
the weld pool and weld penetration is substantially dynamic.
Using 6 = 5 and n = 25 and all the experimental data, a dynamic
neural network can also be trained using the means of the char-
acteristic parameters for each 5 sampling period as the inputs.
The modeling accuracy can be observed in Fig. 14. It is seen
that despite the large variation and steep change, the back-side
bead width has been well tracked by the adjacent weld pools
(characteristic parameters). Significant improvement in the
modeling accuracy can be observed by comparing the dynamic
modeling (Fig. 14) with the static ones (Fig. 9{c)).

Using the developed image processing algorithm and dy-
namic neural network, a system has been developed to on-
line estimate the back-side bead width (Fig. 15). The execu-
tive code of the trained network is directly loaded down into
the personal computer 486DX100 and called by the C-pro-
gram as a subroutine. The implementation of this subroutine
needs only less than 13 ms. The whole cycle, including the
image acquisition, image processing, geometrical modeling
of weld pool boundary, and network computation, can be
completed in 100 ms. In the example illustrated in Fig. 15,
the welding conditions are the same as in the welding experi-
ments. The used welding parameters are shown in the figure.
The off-line measured back-side width is also shown in order
to compare with the estimated results. It can be seen that the
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variation in the back-side bead width has been tracked with
sufficient accuracy.

6 Discussion

6.1 Roles of Weld Pool Parameters.
ear model is

W, = —6.26 + 0.908] + 5.06w, — 1.695  (11)

The units for the back-side bead width and pool length are milli-
meters. It has been shown that this simple linear model can be
used to calculate the back-side bead width of a fully penetrated
weld pool with acceptable accuracy. Also, it explicitly expresses
the correlation between the weld penetration status and each indi-
vidual characteristic parameter. It can be seen that the back-side
bead width will increase by about 0.9 mm when the pool length
increases by 1 mm if the pool length is in a proper range, i.e., 5
mm to 12 mm as used in the modeling (Fig. 7(a)). For a given
pool length, the weld penetration increases with increasing relative
pool width. This implies that the area of the weld pool is also a
factor in determining the weld penetration. A larger weld pool
tends to increase the weld penetration. However, its infiuence on
the weld penetration is not as significant as the pool length is. In
fact, the range of interest of the relative width is from 0.6 to 0.9
for a moving GTA weld pool (Fig. 7(b)). Thus, the maximum.
change caused by the relative width is about 1.5 mm. It has been
stated that the leading to trailing length ratio is an important
parameter for characterizing the shape of the weld pool. In general,
when the heat transfei condition becomes poorer or the current
increases, the weld pool could become longer and sharper whereas
the leading portion of the weld pool changes slightly. The length
ratio decreases. Thus, a decrease in the length ratio should increase
the weld penetration. This correlation can be seen from the nega-
tive coefficient in Eq. (11). The range of the length ratio in the
raw data is from 0.4 to nearly 1, and the maximum possible
change caused by the length ratio is about 1 mm. It is clear that
the length plays the most important role in determining the weld
penetration. However, the roles of the relative width and length
ratio are also significant. '

The above analysis is made based on the linear model. In order
to further analyze the correlation between the weld penetration
and weld pool parameters, a more sophisticated non-linear dy-
namic model should be used. Because the correlation given by
the neural network is not explicit, the responses of the back-side
bead width to the step change of each individual characteristic
parameter have been calculated (Fig. 16). It can be seen that
when the pool parameters change, the back-side bead width un-
dergoes a transient period and then reaches the steady-state value.
This transient period is caused by the dynamic comrelation be-
tween the weld pool surface and back-side bead width. Also, it
can be seen that the gains of the back-side bead width in response
to the changing pool parameters vary with the weld pool parame-
ters. (That is, the correlation is nonlinear.) However, the degrees
of the nonlinearity are different. The relative width has a good

The estimated lin-
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Fig. 15 On-line estimation of weld penetration

linear correlation with the back-side bead width. The gain is
about 2 mm, rather than 5 mm in the linear model. The correlation
between the pool length and weld penetration is not perfectly
linear. The gain increases when the pool length increases. The
maximum change of the gain is about 60 percent. The gain in
the linear model (0.9) is basically an average estimate of the
gain. This gain changes from 1.1 to 1.7 in the nonlinear model
when w, = 0.6 and » = 0.4. (It could change if w, and b are
different.) The most dramatic difference between the linear and
non-linear models is caused by the length ratio. When the ratio
increases from a small value (0.4), the weld penetration de-

creases very fast. (The gain can reach —7.0 mm.) When the ratio
reaches about 0.8, the gain changes its sign. The weld penetration
starts to increase with the length ratio. Thus, the correlation be-
tween the length ratio and the weld penetration is fundamentally
non-linear. The gain a; = —1.69 mm in the linear model is only
arough approximation of the correlation between the length ratio
and weld penetration.

6.2 Improvement and Complexity. Although the im-
provement generated by the non-linear dynamic model is sig-
nificant (Fig. 8 and Fig. 14), the accuracy associated with the
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Fig. 16 Step responses of the dynamic neural network model
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linear model could also be acceptable (Fig. 8) for most applica-
tions. Thus, for the simplification, the linear model could be
used. However, the target of the developed estimation system
is for the precise control of weld penetration. Thus, the authors
prefer the non-linear dynamic model.

6.3 Variation in Dynamic Correlation. The responses
of the back-side bead width to the step changes in the charac-
teristic parameters have also been calculated using the neural
networks trained using the experimental data from each indi-
vidual experiment. It is seen that variations in the calculated
back-side bead width exist among different models. This im-
plies that the correlation between the weld pool parameters
and back-side bead width is influenced by the experimental
conditions and welding parameters which are different in
each experiment. In our experiments, the travel speed has
been changed from 1.5 mm/s to 3 mm/s. The current varies
from 90 A to 130 A. The arc length covers the range from
1.5 mm to 6 mm. The variations in the step responses reflect
the influence of the welding parameters and conditions on
the correlation between weld pool and weld penetration.
However, the observed variations in the step responses are
not significant. Thus, the influence of the welding parameters
and conditions on the correlation is slight.

6.4 Shift and Estimation. In the data preparation for the
dynamic modehng, the optimal shifts j&’s selected from differ-
ent experiments have been used for the data in different experi-
ments, although the used & and n are the same for the data from
different expenments In practical welding, the exact value of
the optimal j§ may not be available. An estimate of Jj& can
be used to unplement the network calculation. Denote the esti-
mate of j§ as j&. The difference between ;i and jo will
produce a phase shift in the resultant estimate. However, during
weld penetration control, the desired status of the weld penetra-
tion is usually constant. In this case, the phase shift will produce
no influence either on the weld quality or on the control actions
of the welding process. In the case that the desired status varies,
the resultant shift could influence the welds in the transient
intervals. However, if J & can be estimated, the resultant shift
could be reduced to a minimum. The resultant influence on the
welds could also be kept to a minimum.

7 Conclusions

The experiments have been performed on 3 mm stainless
steel 304 plates using GTA welding. Pure argon is used as the
shielding gas. The welding current varied from 90 A to 130 A.
The travel speed varied in the range from 1.5 mm/s to 3 mm/
s, and the arc length changed from 2 mm to 6 mm. Because of
the changes in the welding parameters, weld pools with different
geometrical appearances have been made. The resultant full

penetration status, specified by the back-side bead width varied -

from 1 mm to 7 mm. Based on the above data, the following
are found:

(1) The proposed normalized model can characterize the
weld pool both in describing the geometrical appearance and
in determining the weld penetration.

(2) The full penetration can be determined with sufficient -

accuracy by the proposed three characteristic parameters of the
weld pool.

(3) The correlation between the weld pool and weld pen-
etration is basically non-linear and dynamic. Specifically, the
weld penetration increases when the pool length or relative

width increases. The increase in the length ratio tends to .

decrease the weld penetration in most cases. The pool length
plays the most significant part in determining the weld pene-
tration.

(4) The status of the full penetration can be on-line esti-
mated using the developed image processing algorithm and dy-
namic neural-network.
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It can be noticed that this study has been done for the full
penetration mode. For partial penetration, the depth of penetra-
tion may also be correlated to the geometry of the weld pool.
However, a neural network modeling which requires abundant
data may not be easy because of the difficulty in measuring the
depth of penetration.
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