FORMULATION AND BENEFIT ANALYSIS OF OPTIMIZATION MODELS FOR
NETWORK RECOVERY DESIGN

Approved by:

Dr. Richard Barr

Dr. Eli Olinick

Dr. Marion Sobol

Dr. Jerrell Stracener

Dr. Stephen A. Szygenda
FORMULATION AND BENEFIT ANALYSIS OF OPTIMIZATION MODELS FOR
NETWORK RECOVERY DESIGN

A Praxis Presented to the Graduate Faculty of the
School of Engineering
Southern Methodist University

in
Partial Fulfillment of the Requirements
for the degree of
Doctor of Engineering

with a
Major in Engineering Management

by

M. Scott Kingsley
(B.S., Edison State College, 1989)
(M.S., Southern Methodist University, 1993)

May 14, 2011
Network recovery is critical capability that service providers must provide. It can be accomplished in four ways. Span protection is the most common recovery method. It is fast but expensive. An alternative is path restoration. Although it is typically considered less expensive than span protection, it is too slow for most real-time applications. Some service providers try to achieve the speed and cost advantages of these two methods by selectively applying both span protection and path restoration in different parts of their networks in a “hybrid” recovery configuration. Another alternative is a feature in Multiprotocol Label Switching (MPLS) called “Fast Reroute” which offers the benefits of span protection, path restoration, and hybrid recovery. Since little conclusive research has been accomplished that addresses the effects of network implementation options on recovery methods (particularly newer MPLS Fast Reroute), service providers often rely on rules-of-thumb and industry folklore to guide them in their decision on which recovery methods to use in their network.
This praxis addresses several fundamental problems related to network recovery of large service provider networks. First, the effects of the numbers of links, demand unit sizes, and link size modularity have on the four recovery methods, individually and collectively, are examined. Next, the selection of the minimum cost recovery method given the presence and levels of the other options is determined. Finally, the cost differences of the recovery methods given any combination of the other options and their levels are presented.

Span protection and Fast Reroute are formulated as mixed integer problems while Path restoration is an edge-path multi-commodity linear programming model. Hybrid recovery is accomplished by calculation. The models focus on minimizing the network capacity cost of implementing each of the four recovery methods considering the other options.

To evaluate the effectiveness of these models in providing relevant solutions to network service providers, a series of computational experiments are performed. A suite of network instances, with varying topologies and origin-destination demand sets that mirror realistic service provider networks, are developed and tested using the recovery method, numbers of links, demand units sizes, and link modularity as factors. The results are evaluated to test a series of research hypotheses and develop insight into effectively designing recovery solutions for large service provider networks.
The models have several practical applications to service providers that provide measureable benefits. First, they provide definitive guidance to network design engineers in the selection and placement of recovery methods in their networks. It also allows them to quickly and accurately analyze the effects of implementing or migrating different recovery options based on network characteristics. Finally, and perhaps the most beneficial result of the models, is they provide definitive financial guidance as to which recovery method is the most cost-efficient. The models results are applicable to both planning for new networks and to migration of existing networks.
TABLE OF CONTENTS

Chapter

| LIST OF FIGURES | xiii |
| LIST OF TABLES | xiv |

1 OVERVIEW OF PROBLEM 1

1.1 Network Models 2

1.1.1 OSI Model 2

1.1.2 Internet Framework 4

1.1.3 Encapsulation 4

1.1.4 Network Recovery and OSI Model 6

1.2 Introduction to Network Recovery Methods 7

1.3 Motivation for Network Recovery Research and Analysis 11

1.4 Network Recovery Overview 12

1.4.1 Layer 1: Synchronous Optical Networks (SONET) 12

1.4.2 Layer 2: Ethernet, Frame Relay and ATM 16

1.4.3 Layer 3: Internet Protocol (IP) 17

1.4.4 Layer 4: Transmission Control Protocol (TCP) 19

1.4.5 Legacy Recovery Limitations 19

1.4.6 MPLS Overview 20
1.5 Drivers for Efficient Network Recovery 23
 1.5.1 External Drivers 23
 1.5.2 Internal Drivers 24

1.6 Example of Problem 25
 1.6.1 Span Protection 26
 1.6.2 Path Restoration and Protection 28
 1.6.3 Hybrid Recovery 30

1.7 Praxis Overview 31
 1.7.1 Approach and Methodology 32
 1.7.2 Significance of Contributions 33

2 FORMULATION OF OPTIMIZATION MODELS FOR NETWORK RECOVERY 34

2.1 Problem Statement 34
 2.1.1 Survey of Literature 35

2.2 Mathematical Formulations 42
 2.2.1 Notation and Conventions 43
 2.2.2 Span Protection Model 44
 2.2.3 Fast Reroute Restoration Model 46
 2.2.4 Path Restoration Model 48
 2.2.5 Hybrid Recovery 49

2.3 Using Models for Managerial Decision-Making 50
3 EXPERIMENTAL DESIGN

3.1 The Experiment

3.1.1 Response Variable: Optimal Network Cost

3.1.2 Factor: Numbers of Links

3.1.3 Factor: Demand Units

3.1.4 Factor: Modularity

3.1.5 Factor: Restoration Method

3.1.6 Hypotheses Investigated

3.2 The Design

3.2.1 Evidence for the Analysis

3.2.2 Software and Computing Environment

3.2.3 Number of Observations

3.2.4 Randomization

3.3 The Analysis

3.3.1 Data Analysis Method

3.3.2 Test Statistics Used

3.3.3 Significance Levels

4 EXPERIMENT TEST RESULT

4.1 One-Factor Analyses

4.1.1 Cost Effect of Recovery Method

4.1.2 Cost Effect of Numbers of Links
4.1.3 Cost Effect of Number of Demand Units 73

4.2 Two-Factor Analyses 74
4.2.1 Cost Effect of Number of Links and Demand Units 75
4.2.2 Cost Effect of Recovery Method and Numbers of Links 76
4.2.3 Cost Effect of Recovery Method and Demand Units 79

4.3 Three-Factor Analyses 82
4.3.1 Cost Effect of Recovery Method, Number of Links, and Demand Units 82
4.3.2 Cost Effect of Modularity 84

4.4 Analysis Summary 86
4.4.1 Numbers of Links Summary 86
4.4.2 Demand Units Summary 86
4.4.3 Recovery Methods Summary 87
4.4.4 Modularity Summary 88

4.5 Service Provider Recommendations 89
4.5.1 Service Provider Recommendations: Number of Links 89
4.5.2 Service Provider Recommendations: Recovery Method 89
4.5.3 Service Provider Recommendations: Demand Units 90
4.5.4 Service Provider Recommendations: Modularity 91

5 COST OF THE NUMBER OF DEMANDS, DEMAND UNIT SIZE, AND RECOVERY METHOD Migrations 92
5.1 Numbers of Links Migrations 93