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CHAPTER I

DESCRIPTION OF THE PROBLEM

1.1 Introduction

Consider the following variables sampling plan problem. We are
given a lot of sizem + n itemsf Each item's quality is characterized
by some continuous random variable X. If this random variable, X, for
a given item is within some specification limits, say (a, b) , the item
is conéidered accéptable; On the basis of a random sample of size n,
we want to accept or reject the remaining m items. If we reject the lot,
we incur a loss o for each of the remaining m items that meets the
specification (i.e., a < X < b). We incur no loss in this case when an
item does not meetvthe‘specification. If we accept the lot, we incur a
loss ¢y for each of the rémaining m items that does not meet the speci-
fication (i.e., ¥ < a, or X > b). We incur no loss for those items
meeting the specification. The random variable, X, is known to be normally
distributed with some unknbwn mean i and unknown variance 02, The random
variable, X, for any item in the lot is independent of the random variable,
X, for any other item in the lot.

>Furthermore, we know that u and 62 are random variables with some
unknown prior distribﬁtion G(u,cz). That is, the manufacturing process
for this item is a random process tha£ chooses some u and 02 at random

according to a distribution G(u,02) and then produces m + n items according



to the normal distribution with mean p and variance o2.

If we knew the prior distribution G(u,cz), we could determine a
Bayesian decision rule based on the sample mean x and sample variance s?
that would minimize the average expected loss. We show in this research
that in certain cases, if one has data from past lots of size m + n, it
is possible to estimate the Bayesian decision rule empirically. That is,
we have an "empirical Bayes" decision rule, and, consequently, we have an
"empiricél_Bayés" approach to a variables sampling plan problem. We show
that as the number of past lots increase (i.e., data from past realizations
of the process), the empirical Béyes,decision rule converges to the Bayesian
decision rule. Finally, we give an example of the theoretical results by
performing a Monte Carlo simulation using a conjugate prior distribution

for u and o2.

1.2 General Bayesian Formulation of the Problem

We are given a lot of m + n items each of which has a variable
quality characteristic X.l For each item the random variable X is normally
distributed with mean u and variance o2 independent of all other items in
the lot. An iteﬁ is considered acceptable if its quality characteristic
is within some specification limits, i.e., a < X < b. We take a sample
of size n and calculate X and s, On the basis of these sufficient statis-
tics, we decide to accept or reject the lot. If we reject the lot, we incur
a loss o for each item in the remaining m items that meets the specification
and no loss‘for each item that fails to meet the specifiéation. If we accept
the lot, we incur a loss c; for each item in the remaining m items that does
not meet the specification and no loss for each item meeting the specifica-

tion.
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Since the quality characteristics,.xl, sevs Koo of the remaining
m items are independently distributed, the probability that 3 of the m

items meets the specification is
(’;’) Pla <x<b | u,0ld 11 - Pla <x<b | o™,

where Pla < x £b | u,0} is the probebility that any given item meets the
specification when x is normally distributed with parameters u and o. Let
ao be the action of rejecting the lot and let ay be the action of accepting
the loct. The loss functions associated with these actions for given p and

¢ are thus defined as followé:

n
Llggu,0] = ¢, ) J(?)P[af_xf_bfu,d]d{l - Plagx<b|u,01™ |
end J:?
Llay,u,0] = ¢ § (302 - Pla<x<b|u,0]} Plagxch|u,ol™d |
J=0

Examining these loss functions we see that they can be simplified as
follows:
Llegu,0] = egn Pla < x < blu,0]

Lla;,u,0] = cm {1 - Pla < x < blu,ol} .

2

Next we define & decision rule based on x and s~ for taking actions a. and

0

a,. Let t(%,s2) be the probability of taking action a, when % and s° are

observed, i.e., t is a randomized decision rule. The risk function corres-

ponding to t is defined as follows:
Rlt,u,0] = B, _ {8(%,6?) Llay,u,0] + [1-6(%,57)] Llag,u,0]} ,
2

where B o denotes the expectation with respect to the joint distribution

s

Fl%,s2|u,0]. The statistician's aim is to minimize R{t,u,0], but in general

no t can be found that will do this uniformly for all p and o.
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However, in our problem we further assume that u and o are random.
variables with prior distribution G(u,02). 1In this case we consider the

Bayes risk of t, where the Bayes risk is defined as follows:

R{t,G]

EG‘{R[t,u,c]}
(1.1)
Bg B, (t(%,82)Lla ,u,0] + [1-4(X,82) L(egan,00})

where EG denotes expectation with respect to G(u,02). Using Fubini's

theorem we re-order the integration in (1.1); and, collecting terms, we
have

R(t,G] = E

. {L{ao,u,o]}

- E {t(;{,sz)EG*{L[&O,U,G]-L[al,Ugc]‘;{952}} ?

where E denotes the expectation with respect to the rmarginal distribution

F(X,s°) and Ege { ‘i,s2} denotes the conditional expectation of u and o

given X and s°. Examining the second term of this expression we see that

the Bayes risk is minimized by

- 2
t (%,82) = 1, for E [L(a_,u,0) - L(a ,u,0) | X,8 ] > 0
tG(i’sz) =0, otherwise .
where \ - 2
E [L(ag,u,0) - Lay,u,0) | x,57] =
G
fé [L(ao,u,o) - L(a;,u,0)] £(x,5°|u,0) a6(u,02) (1.2)
- D ?
fé £(x,s |u,0) dG(n,02)
and

Q= {(u,gz)I -® <y <o, 0<0g<»},

Examining this expression more closely we see that



L(ag,H,0) - L(al,u,o) me P(a<x<b|n,o) - mcl[lmP(asxsblu,o)]

m(eqgteq ) P(asxsb|u,0) - me; .
Using this simplification we see that equation (1.2) becomes

m(co+cl) 6f P(asxsb|u,o) f(i,szlu,c) ac(u,02)

5 -me, - (1.3)
L £(%,5%|u,0) dG(n,02)

Since P(a ¢ x < b | n,0) = fzf(x[u,o) dx , we can rewrite equation (1.2) as

m(co+cl) s Ibf(x|u,c) dxf(i,szlu,a) dG(u,oé)
Q a
-mcl + 5 . (1,)4)
-ré f(}?,S |u,6) dG(usGZ)

Consider the integral in the numerator of the second term of (1.%). Note

that

éf fz fx|u,0) dxf(i,szlu,c) aG(n,02) =

(1.5)
6[ fz £(x|u,0) f(i,szlu,c) axdG(u,o2).

By Fubini's theorem, we can change the order of integration so that (1.5)

becomes

f: éf f(x|u,0) f(i,szlu,c) ac(u,0%)ax . (1.6)

- 2
Let fG(x,x,sa) = éf £(x|u,0) £(%,s Ju,0) a6(n,02); then we have (1.5)

that can be written as
12 £o(x,%,8%) ax . (1.7)
Next denote the denominator in the second term of (1.4) by

éf f(i,szlu,c) dG(p,02) = fG(i,sz) . (1.8)



.

Hence, equation (1.2) can be expressed as

b = 2
' - micyte,) [, folx,%,8) dx
EG*[L(B,O,LI,O) - L(a.l,u,c)lx, 32] = -mc; + 0 "1’ ‘g TG\ .

fo(%,52)

Therefore, the Bayes decision rule is, in general,

) b
+ m(c0+cl) Ie, fG(X,i,SQ) ax

t (i:sz) 2_ 0
£5(%,s2) (1.9)

G

1, for ~meq

and tG(i,sz) =0, otherwise.

In the third chapter of this paper we derive the decision rule when p and
02 have a conjugate prior distribution. For a definition of a conjugate

prior distribution see Raiffa and Schlaifer (1961). In this case u is

' 2

distributed as a normal variable with mean o and wvariance 02/82, and o

is distributed as a gamma variable with parameters y and § .

1.3 Empirical Bayes Decision Rules: A Survey

Robbins in his pioneering paper of 1955 established the empirical
Bayes approach to statistics. Paraphrasing Robbins' 1964 paper we say that
an empirical Bayes approach to statistical decision prqblems is sometimes
applicable when the same decision problem presents itself repeatedly and
independently with a fixed but unknown prior distribution of the parameter
or parameters. Since 1955 and particularly since 1962 when Neyman described
the empirical Bayes approach as being a "breakthrough in the theory of
statistical decision-making", there have been many papers published on the
subject. Before we survey the literature, we shall formulate the general

empirical Bayes decision problem to expedite the discussion of the literature.
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This statistical decision vrcblem is compriged of the following:

(a) A parameter space A with generic element A. A is the
"state of nature" which is unknown to us.

(b) An action space A with generic element a.
(e¢) A loss function L{a,\] > O representing the loss we incur
in taking action a {or masking decision a) when the para-

meter is A.

(d) A prior distribubion G of A on A. G may or may not be
known to us.

(e) An observable random variasble X belonging to a space ¥
on which a o-finite measure up is defined. Wher. the para-
meter is A, X has a specified probability density f, with
respect to u. In a typical problem the random variable
X is a sufficient statistic for the parameter A.
The problem is to choose a decision function, §, defined on X and with
values in A such that when we observe X we take the action §(x) aid

thereby incur the loss L[8(x),A]. For anv & the expected loss when A

is the parametei is
R[§ ,r] = }f( LIs(x),A] fA(X) du(x)
and hence the overall risk (or Bayes risk) when the prior distribution of

A is G is

R[§,6] = ﬁ £ L{&(x),A] fk(x) du(x) dac(a) .
Changing the order of integration we have that

R[8,G] = § { L{s(x),r] ag(r]x) fy(x) au(x) ,

where

£ (x) =1 £,(x) dG() , and

a6\ |x) 2y (x) = fx(")‘(mg“ L ty(x) = £, (0)a60)
Px(x



Hence we see that Jf L[6(x),A] aG(A|x) is the posterior conditional ex-
A

pected loss given the observation x; i.e.,
E{L[8(X),A] | X = x} = s L[&(x),A] ac(a]x) .
A

The Bayes decision rule is that decision rule 60 that minimizes
E{L[6(x), ] | X = x} for each x, and hence minimizes R[§,G].

At this point the Bayes approach and the empirical Bayes approach
differ. The Bayesian approach assumes that the prior distribution G(A)
is known and hence Go(x) can be determined exactly. However, the empiri-
cal Bayes approach seeks to estimate GO(x) from past data, because G())
is unknown. The empirical Bayes approach requires past data in the form
of a sequence of pairs of random variables, say (Xl, Al), cees (Xv’ Av).
Each pair being independent of all other pairs, the Ai having a common
prior distribution G on A, and the conditional distribution of Xi given
that Ai = A being the specified probability density fA‘ When we come to
make a decision about Av+1’ we have observed X1s eees X 4] (the values
xl, ooy Av remaining always unknown), The object of the following
literature survey is to discuss the various techniques developed to date
to estimate the Bayes decision rule.

The first empirical Bayes technique for estimating the Bayes decision
rule, 60, is applicable when the general form of the Bayes decision rule is
a known function of fX(x), say @[fx(x)] where

fo(x) = { £, (x) ac(x) .
In this case, the empirical Bayes decision rule is defined as follows

A, (x]xl, ey xv) = @[fv(x)] s



where fv(x) is an estimate of the marginal density fX(x) based on the past
).

We see that this first empirical Bayes technique relies, heavily,

data (X7, ..., X,
on the particular density function estimation technique used; i.e., the
statistical properties of this empirical Bayes technique are no better
than the statistical properties of the density function estimation tech-
nique. The most desirable statistical property for the empirical Bayes
rule is convergence in probability. Robbins (196L4), and Samuel (1963)
show that the risk for the empirical Bayes rule converges to the Bayes
risk when the empirical Bayes rule converges in probability to the Bayes
rule. Robbins defines the empirical Bayes rule as being asymptotically
optimal in this case. If ¢ is a measurable mapping, continuous on the
real line, then ¢[fv(x)] converges in probability to @[fx(x)], if fv(x)
converges in probability to fX(x). Hence we see that we need density
function estimators that converge in probability.

Fortunately, there is considerable research on density function
estimation for applications other than empirical Bayes decision rules.
Parzen (1962) develops a class of density function estimators that con-
verge in probability. Cacoullos (1966) extends Parzen's results to the
multivariate case. These two authors' results, alone, gﬁarantee us that
we can find an asymptotically optimal empirical Bayes rule when the Bayes
X(x).

However, not all Bayes rules are a known function of fX(x). This

rule is a known function of the marginal density function, f

property of the Bayes rule exists when the loss function and the density
fk(x) have some special and hard to define relationship. An example of

this can be seen in Robbins (1955). In this paper Robbins derives the
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empirical Bayes estimate of the parameter in a Poisson distribution, when
the loss function is squared error loss. Semuel (1963) discusses some loss
functions that yield decision rules that are known functions of fx(x) when
fk(x) is in the exponential family. Rutherford and Krutchkoff (1969) de-
fine families of distribution functions F(x|\A) that yield Bayes rules of
this form when the loss function is squared error.

The second empirical Bayes technique for estimating the Bayes rule

involves estimating the prior distribution G(A). This technique involves

approximating dG(A) by a step function dAk(A) vhere

Ay <A< Aj+l s, 3=1, ..., k-1 . This yields an estimate of FAk(x)

defined by F, (x) = fr(x|a) dAk(k). The.xj's are chosen to minimize the

k
difference between FAk(x) and Fv(x) where Fv(x) is the sample distribution
function defined as

= Yx
F\’(x) = —\’-

where Vg is the number of past observations of (xl, ooy xv) less than x.
For a detailed description of this technique see Maritz (1970). Once this
estimate of dG(A) is obtained it is used to determine the Bayes rule as if
it were the actual prior distribution.

The third technique involves estimating G(A) also, but is distinctly
different from the previous method. For this technique we assume that at
each realization of the process we have a sample of say n observations.

That is, we have the sequence of random variables

(xll, cers X xl) s eees (xlv, cees X )
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where for eadh J=1, ¢e., v the x.i

J
and the Aj are independently distributed G(A). This technique assumes

are independently distributed FAJ,

that a statistic t(xlj’ cesy xnj) exists such that t converges in proba-
bility to Aj. When n is sufficiently large, this technique uses

t(xlj, cees an) as if it werg AJ and proceeds to estimatg g(1) vhere g

is the probability density function associated with G()A). The probability
density function g is estimated using the density function estimators
discussed for the first technique. This estimate for g(A) is used in they
Bayes rule as if it were the correct g(A). For a more detailed discussion
of this technique see Lemon andAKrutchkoff (1969).

Our empiricai Bayes technique for estimating the Bayes decision
rule in this paper is more like the first technigue discussed in this
survey in that we show that the Beyes decision rule (see equation 1.9) is
a known function of fG(i,sz) and fz fG(x,i,sz) dx . We are sble to rely
on previous research for estimating fG(i,sz), but we must find end jJust-
ify a method for estimating fz fG(x,i,sz) dx . Hence in Chapter II when
we discuss our empirical Bayes decision rule, we develop and justify a
method for estimating fz £Ux. 5 coes xk) dxl vhere f(xl, ceey xk) is any
uniformly continuous multivariate probebility density function. We show
in Chapter II that our empirical Bayes decision rule converges in prob-
gbility to the Bayes rule.

This survey is in no sense comprehensive or complete, but is
ihtended to summarize the different empirical Bayes techniques. We make
no attempt here or later to discuss which technique is better in eny
sense. If the reader is interested in a more complete survey, see

Maritz (1970). ’



CHAPTER II

THE EMPIRICAL BAYES DECISION RULE

2.1 Introduction

Now we seek to estimate empirically the Bayes decision rule (see
equation 1.9) for accepting or rejecting the lot. We assume that in the
past we have inspected v lots taking a sample of size n from each lot -
calculating X and s2 and measuring at least one other item in each of
the lots not in the samples. That is, we assume that we have had v past
realizations, (ui,ci) i=1, ..., v, of the unobservable random variables
(u,02) which are distributed according to the unknown joint distribution
G(u,oz). At the ith realization, m + n items are produced with character-
istics Xil’ Xi2’ cens

Xi(m+n) which are identically and ;ndependently

distributed normal variables with mean e and standard deviation oy -

From each of these realizations a sample of size n is taken, ii and S%

are calculated, and one more sample is taken from the lot and its charac-
. . bl 2

teristic measured. Hence, we have the past data (Xi’ Si’ Xi,n+l)

i=1, ..., V.

Using this past data we want to estimate empirically the Bayes

decision rule

_ fz fG(x,i,sz)dx
t.(x,s2) = 1, m(c.+c, ) -me. >0
G 0% - 1
fG(x,s )
(1.9)
tG(i,sz) =0, otherwise .

12
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This is possible since the decision rule is a function of the joint margi-
nal density function of the random variables (i,sz,x) (see section 1.2).

Let the Bayes decision function be defined by

- b 2
TG(x,sz) = m(co+cl) fa fG(x’g’s )ax - meq (1.9a)

_ fG(i,sz)
We estimate TG(E,sz) by Tv(i,sz), which is determined by estimating

fz fG(x,i,sz)dx and fG(i,sz) from the past data (ii, Siz, xi) i=1l, ..., V.

2.2 Estimation of fG(i,sz)

| The question now arises as to how we propose to estimate
f: fG(X,i,sz)dx and fG(i,sz). First we discﬁss the estimation of fG(E,sz).
Parzen (1962) developed a class of density function estimators fn(x)
of a univariate density function f(x) on the basis of a random sample

Xys +ees X from f(x), where fn(x) is of the form

n
1
£ (x) = I x X'X-]
O [ﬁ
and where

1) lim h(n) = 0
n-+ o

it
8

2) lim nh2(n)

n > «©

3) 1lim nh(n) = «

n -
) S K(yday =1

5) 1im |y| |k(y)|=0

y+oo
6) £:|K(Y)|dy <o , and.

7) sup |K(y)] < =
"w<y<°°



1k

Parzen (1962) presented the asymptotic properties of this class of
estimators. In particular, Parzen showed that fn(x) is asymptotically un-
biased, consistent in quadratic ﬁean, and converges uniformly in probability;
i.e.,

lim E[fn(x) - f(x)]l1 =0

n - «

Lin B{(£_(x) - £(x)1%} = 0 , and

n-> o
for any € > O
lim P{sup [f(x) - f(x)|>e} =0
n > ® —0<X<®
if £f(x) is uniformly continuous.
Cacoullos (1966) extended Parzen's results to the multivariate case.
He developed a joint density function estimator, fn(xl, cees xk), of

f(xl,...., xk) of the form

'_l

=}

Tk X5=Xy g
fn(Xls e ey xk.) o jZl iEl hi(n) K hi(n)

where (Xij’ cees xkj) J

k~dimensional random vector (Xl, ey Xk)‘ Cacoullos' class of kernels, K(y),

1, ..., n are n independent observations on the

is the same as the one developed by Parzen and the h;(n)'s have the same
properties as Parzen's h(n). Cacoullos showed that his multivariate density
function estimator was also asymptotically unbiased, consistent in quadratic

mean, and converges uniformly in probability, if f(xl, cees xk) is uniformly

k

continuous, limn T hig(n) = ® , and
n-> o i=1
k

limn 1 hi(n) =
n -+ o i=1
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Epanechnikov (1969) restricted the class of kernels considered by

Parzen and Cacoullos by adding the further constraints of

1) K(y) = X(-y)
2) _{: ¥ K(y) dy =1 , and

co

3) / K(y) y" dy < ® for O <m< e,

-00

In this restricted class of kernels, he was able to find a kernel that
minimizes the asymptotic relative global mean square error regardless of
the density function and the dimensionality, where the relative global

mean square error is defined as:

[ 7 E{[f(xl, cees xk) - falxy, ooe, xk)]z} dxy ... dx

R f2(x s eees xk) AXy, +eey QX

He further compares the asymptotic relative global mean square error of
this optimum kernel to the asymptotic relative global mean square errors
of other kernels in this class.

After studying these three papers, we decided to estimate fG(x,sz)

by using the following kernel,

_ 1 —1/2 ye
K(y) = T ©

Hence, the estimate of fG(x,s2) is defined as follows

2
- = 2 N
-._X_l 22 (V) exP{-2[<h(ﬂl) 50 ] (2.1

J

-2y _1
fv(x,s ) = ”

where

1) n(v) = BT, ena
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2) v is the number of past realizations of (u,o)

ielding data (X .S =1, ...
yielding e«et('j'j j,n+1)j R » V3 i.e.,

number of past lots.
We did not use the optimal kernel of Epanechnikov, because it is possible
for fv(i,sz) to be zero. Furthermore the ratio of the relative global
mean square error for the normal density function kernel to the relative

global mean square error of the optimal kernel is 1.051, asymptotically.

2.3 Estimation of fg £ (x,%,5%) ax

Next we discuss the estimation of fg fG(x,i,sz)dx. First we note

that with h(v) and (ij,sg,x ) being defined as in 2.1 we can estimate

J.m+l
fG(x,i,sz) bty

v x—X x—i 2 2-82
fv(x,i'c,SZ) =%— v 3 ’- —‘_ 5T0) m‘}-) + h(v) :l}
§=1 (21r)/2h3(v)
(2.2)
Intuitively we are tempted to estimate fz fG(x,i,sz)dx by fz fv(x,i,sz)dx.
In this section we show that this estimation procedure yields an estimator
which is asymptotically unbiased, consistent in quadratic mean, and con-
verges uniformly in probability under very general conditions. We proceed
to prove these properties in the following theorems.
Theorem 1: |
Let fv(xl’ cens xk) be an estimator of f(xl, cees xk)-where fv(x s eoes kk)

is defined as follows:

1 v ok [‘z’yz]
£ (X5 cees X )= ——— F HKTT’-
vl "k vhk(v) J=1 2=1 hiv
and

a) )s J?l, «ees v represent a sample of v independent

(ylja"'s ykj

observations from the distribution with Joint probability

density f(xl, cees kk).
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b) K{y) has the following properties:
(1) K(y) is a Borel measurable function

(1) sup |K(y)]| < =
- <y <

(1i1) K{y) >0
K K
(iv) 2im [y|" @ kly,1 =0,

lzl > o 2=1

where |y| = (yi 4 ess & yﬁ) %
(v) [oK(y)ay=1
(vi) XK(y) = K(-y)

c¢) the spreading coefficient satisfies
(1) lim h(v) =0

AV IR e ]

(11) 1im va(v)*E = =
v > o

s . b
Then at every continuity pqlnt of fa f(xl, evey xk) dxl,

‘ b b
vlipm E{Ja fv(x%, cees xk) dxl} =/, f(xl, cees xk) dx; .
Proof':

1) First we note that, since (le’ cees ykj) J=1, ..., v are all
identically distributed |

b —
E{fa fv(xl, cres xk) dxl} =

1 o o p E xz'yi k
Jeeel S T K ax. fly., sees ¥y, ) T dyl .
() o == a T EGY T S

and since fv(xl’ cees xk) is non-negative and integrable we can apply

Fubini's theorem,

b =
E{fa fv(xl’ cees xk) dxl}

fa, £oo....'£oo I K m f(ylo seey Yk) Hl dyl d’L.L_ ’

hk(v) =1 2=
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2) Letting u, =¥y =X 2=1, ..:, k, we have

A +)
E{fa fv (xl, cees xk) dxl}

Xk k
1 b b
fa foeef T K[h z:I, f(ul+xl, ceey uk+xk) I duzdxl .

) 27 =1 IRl 2=1

3) Next we consider

b b
= lfa f(xl’ LI xk) dxl - E{fa f\’(xl, LI Y xk) dxl}‘

_ b 13
A, = ]fa f(xl,...,xk)dxl hk(v) 2 f K[; v:]du E{f f (xl,...,xk)dx H,

. -1 7 ul s, =
since h(v) _;fw K[m-\—)-;-] du =1,

I OLeCxysenesx ) = £lu 4xy 500w 4x, ) axy dul
v lhk(v) —o = 1 "k 1 N E 2—1 hv

4) From this point on our proof parallels that of Cacoullos' (1966)

proof of theorem 2.1. We divide the region of integration with respect . .to

(w, ..ey uk) into two regions |u| < 6 end |u|> & where

lu] =/ul?+ +u.k2 .

Then we consider

K -
l u
A = I ff [£(x. 5eeesx,) = £lu +x, ,...,u +x, )]dx_ I K| "2 Bu
v h (v) luj<s & 1 x 171"k Tk 11 Be L
kK [y
N T veeenX ) = £(u ity e utx Vlaxy TR 2 b,
n (v) |ul>s @ 1 1= (h(v
L k —u
A < [oof f [£(Xy5000sx ) = £l 4% ,00.,u +x )]dx, T K| 2 Fuz
Y h(\))'\ll<5& 1 xk. ull ukxk l= L:.'h\)

l f"‘ff f(u L 5 SN +x )dx IIK ]du
a 1 Wy
W (v) ful>s Le=1 |n(o).

+
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1 k "
'+ AR f f(x ...,xk)dx IKl ¢ |du
5 (v) |u|>5 & =1 [B(v) | *
A < max If [f(x ,...,xk)-f(ul+xl,...,uk+xk)]dxl|f e du
Y |u|<6 |EJ_§ h v
f ff f(ul+xl,. Ry +Xk 1 l l k ul—‘
m T |K ) dupv
[u|>6 Iu! ( ),Q, 1 .
fb ( )d Jrof a
+ F(X;5000, b4 u
a El lu |>5 n (v g=1 h(v) g
un
Let Z,=—4— 3=1, ...,k ,
J n(v)
then u., = h(v) Z

It |EJ < &, then

|z] < 8/n(v)
and X
A < max |f [f(xl, ,xk) fxy+up, ,xk+uk)]dx [eS T |K[Z,]
lu|<s lz]< & 2
hiv
1 K & k
+==—  sup |z|* n K[Z ) J£oees | flugbxy eyt )| T duy
k 17 kK "k
s lz|> s =1 |ul>6 g=1
hvv)
k
Jf(x ,...,x )dx feooS o |K[Z ] dz.,
¥ ‘ 1 KoLzl s e=1 .
h(v)
5) Next we note that
k . L k
feeeS 1 ‘K[Z ]le < L eeef T 'K[Z ]'dZ =1.
§ g=1l AR TER o me ol AR
|2]<

Examining the other terms of the above inequality that involve h(v) and

taking the limit of Av as v > « we see that
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1 k E
a) lim 3K sup A K[z,1 | =0
vV > o 'Z_l> Q=
hzvs
by property b(iv), and
- k
b) 1lim Jooof I K[le de =0
v |Z]> 8 2=1

hiv
Hence we see that

lim A < max
v lul<s

Fale(xysene s )= (x by e kb ) Jax '

6) Next we take the limit as 8§ - 0 and we see that

lim max
6+0 |ul<s

fz[f(x1’°"’xk)"f(xl+ul"'"xk+“k)]dx1 =0 .,

Hence we have that

. b .
Lin E(g £ (%500 esx )axy) = J2 £lxy,eenxg)ax
\, (-]
(i.e., we have an asymptotically unbiased estimator).
Also we consider the following corollery to this theorem.
Corollary:
If f(xl,...,xk) is uniformly continuous on Ek then
R b b 2 _
llm max E{fafv(xl,.o.’Xk)dxl}- Iaf(xl’o -n,xl‘)dxl - 0 .
V> o (x2,...,xk)eEk_l
Proof:

L b
1) By propertles b;y» by,» and b, we have that Iafv(xl,...,xv)dxl

is uniformly continuous.
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. b ’ b .
2) Since fa fv(xl,...,xk)dxl and faf(xl,...,xk)dxl are uniformly

continuous, then

. ) .
max B/ T (X, 9eeesx )X} = f £(x_400.,x, )dx, |2 < o,
(xz”"’x'k)sEk-]_ a 1 k 1 a 1 xk 11

3) Since the point at which the maximum is obtained is a continuity

1°"

b
point of faf(xl,...,xk)dxl due to fo(x .,xk)dxl's unifqrm continuity,

we have that

o o b ‘

: . b 2 -
;1m . max : E{fafv(xl,,..,xk)dxl}-faf(xl,...,xk)dxl = 0.
VvV > o (x2,...,xk)€Ek_l _

‘Before proving a theorem about ﬁhe mean square convergence we must
'define‘some new terms and establish some new relationships. First we seek

to éxpress fv(xl,...,xk) as a function, of the sample characteristic function,
v

k
le =2 221 quzj} (2:3)

< |+

.¢\’(u1a_' oo ’uk) =

and (ylj""’ykj) J = l,...;v is a’Samplé of v independent observations
from a distribution with density £(xj,...,x.). Let

k o k )k _
i J[uz] = {m"'{mgxp i) uzyzizflK[yQ]dym, i.e.,

=1 =1

k

1 'J[uQ] is the Fourier transform of the product of the kernels. Let
=1

?v(xl, cees xk) =

k k k

o L, exp’—i P uzxz} 1 gMh(vu,1e (w, -ovs w) T au

g=1 g=1 g=1 *

. or
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o) . = .
\)(Xl, ° )S{)
o't expi-i ) u,(x -vy,. IJMn(viu ]l 1 du
Lo Lo ' L)
& = 2=1 V) = Pt
Let 7, = h(\))u2 2=1, ..., k, then
q)\)(xl’ L] }LK) -
v k X -y k
1 bl ©
= z Lot L, exp)-i 2 7 % 23 I J[Z,] az, .
2mvhf(v) j=1 g=1 ¥\ biv) flo_
k X —y‘ R k.
. 1l = 0 . L Y3
Since —= [ .- [ expi-i ) m J[z,]1 8%, =1, ...,v
= p 2 2 s s
o = 2\ h(v 0=1
k xz-yz.—
is the inverse Fourier transform of 1 K e ,» Wwe see that
=1 -
k X =y .
1 v
8,k sexy ) = = Lo KFfl(vQJ
vh(v) j=1 ¢=1 L
Hence we see that
Too(X., veuy xk) =
v
1 (2.4)
L . ) ; s ) 1 i
— [P expl-i ¥ u,x 1 J[h(v)u Uy gese,nll I du,, i.e.,
oo Lo Lo P[ Zzl 2.2}2=l R sUy g1 L

we have expressed f (xl,..,xk) as a function of the sample characteristic
Y

function. To simplify notation we define

i
u'x = u,Xx
- = L7
=1
i
u'y, = ) wy J=1lyeeesv
5 g2 % 2.4
k
J[h(v)u] = =1 J[h(v)uz] s
2=1

¢\)(E) = ¢\)(ula°--auk) s

by

d_1i= Hdul Py
=1
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and denote {:--- [: by {:

so that equation (2.4) can be expressed as

-iu'x

fv(xl""’xk) = 5%-{: J[h(v)gj¢v(3)dg . (2.k4a)

Taking the expected value of ¢v(E) we see that

< |-

lhe~1<

Bl (w)] Y ar(y)

J=1

fo]

= 17 & ar(y) = ¢lu)

where ¢[u] is the characteristic function of F(xl,...,xk).
Studying the sample characteristic function further, we derive the
variance of ¢v(g). This will be of value when we prove the mean square

convergence theorem. First we must consider |¢v(g) - E[¢_(u)]]|2 - the

AY

square of the modulus or absolute value of the difference between two

complex variables.

o w - mle 117 = [+, -sts (] [F0FE @] (e

where ¢v(g) - E[¢v(3)] is the complex conjugate of ¢ (u) - E[¢,(u)].

Furthermore

[}

¢,(w) - E[¢ (w)] = ¢ (u) - E[¢ (u)]

¢, (w) - ¢{u)

Also we note that

2
_ |¢\)(g)-E[¢v(y_)]! = ¢v(p_)¢v(35 - ¢v(g}m— yWe(u) + ¢(u)o(u)

and



ol

""" v v _ v=1 v s My 4!
o (WD =4 ] epliluyuylt+2 ] ] SEHTE
Y V7= V731 p=iel
1 2 Vot in'yy -iu'y
e L L SRR

Taking the expected value of equation (2.5) we see that

) o | |
B{ oy (w) - Elo, (w1]2} = = + Y1) ()TTET - 26 (wFTE) + o(w)TTD)
Vv v \)2 _
=LA, or
=101 - e(w)]2] . (2.52)

Also of later use is the following lemma.

Lemma: If {: [J[h(v)gj[du < © , then
;- 1atnto)ul] Jo,() - o(w)|2au < o -

Proof:

i

1) ¢ (w) - Elo (W] = ¢ (w) - ¢(u)

2) o (@) - o < [o, (] + [o(w)]

3) Next we see that

lo(u)| <1
L vV iuv .
o ] <5 1 Je =
J=1

lo (W] <1 .

loy(w) - ¢(w)] <2
lo,(w) - ¢(u)]2 < b
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L) Hgnce we see that ‘
£ |3ln(val] 1o, - Ele (w1|%an < b £° |3[n(v)allan .
Therefore if {Z |3[n(v)ul] du < =, then
17 |aln(v)al] |o,(w) - Blo,(w)]|%m < = .

With these results established we proceed to prove the following
theorem on mean square convergence.
Theorem 2:

If f(xl, cens xk) is uniformly continuous, fv(xl’ cees xk) satisfies

all the conditions of thecrem 1, and
[~
I, |9n(vul{an < =,

we have that

lim max E{(f:fv(xl,...,xk)dxl - f:f(xl,...,xk)dxl)z} = 0.
V> (:’cz,...,ack)eEk__l
Proof:

1l. PFirst we note that
X yax, - e Jax, |2} =
E lfa f\’ xl,...,xk l"' af xl,oo.,xk' l -
b b Yax 9
E{Ifa £,(x ,...,xk)dxl - E[fa fv(xl”"’xk l]l }
+ {E[fb £ (x )ax, ] --Ib £(X. 5e..,x, )ax }2
I S R s T | g D\ Epree R JE

2. By the corecllary to theorem 1 we have that

. b b -
lim ( max ) {E[Iafv(xl,...,xk)dxll - faf(xl,...,xk)dxl}2 0
Voo xz,...,xk EEk-l
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5. Text we study E(|/° £ ( ) X Jax, 1|2
3. Next we study B ja MESPTRTP Y dxl - E[Iafv(xl,...,xk dxl]l }.

Since fv(x ,...,xk) is non-negative and integrable we can apply Fubini's

theorem. b

fa fv(xl,...,xk)dx1 - E[f: fv(xl""’xk)dxll

£ aey(xyeeeax ) - Bt (x40 ) iy

1 bf o -iu'x
E;fa{fu e " Jh(viu] ¢ (wau

o =iu'x

- “'J[h(u)ngt¢v<g)1agj ax,

= L2 T E Sn(vynd [ (w) - o(wlau axy

. b b
4, Since fa fv(xl,...,xk)dxl and E[fa fv(x ,...,xk)dxl] are

continuous and bounded; i.e., F(x ,...,xk), we have that

b b
2, LYY -lt. k—l

Ib=el /7 |stn(viad oyt - o(wla

5. ‘Applying the Cauchy-Schwarz inequality and the lemma we see that

lb-a]

22l 7 |atatoud| ley(w) - s(wlan <

(2.6)
b-a { w ik L »
_2%$£w[|'1[h(v>y.]lz]2d2t2 gf,, [IJ[h(v)p_] F o, ()-6(u) l]zdy_f% .
6. Squaring and taking the expected value of (2.6) we see that

E max Ifb £ (Xqg00.oXy)dX, ~ Etfb £ (X geeeoX )dxl]|2 <
(x b oX )EE a Vv o "k 1 8 \’vl’ "k -

2 k' Tk
(2.7)

2 (o .
('b;a-—% E{[.,, |9tn(v)uljan s |3[n(vIul] |é(w) - ¢(B_)|zd9_} )
o ‘



7) Examining the dominating term of (2.7) we see that

( 2 » "
i’Z) E(/_[|sln(v)ullan £, [3ln(v)ul] o, (w) - ¢(w)|?au} =
ki -

— 2 w oo
Q%l [ |3lntviulan £ [3ta(v)ul|E(]e (2) - ¢(u}|2}au

n
Recalling equation (2.5a)
B(]4,(w) - Eloy(@)}|2)= T 11 - Jow)|?] ,
we note that
E{]¢y(n) - ¢(9.)|2}5.%
and, therefore |

(-

-]

2 o
Z) rJatn(viullan £ |3In(v)ul|E(] s, (u)-¢(u)|2}au

— 00

2 (o4
f.ib:%l“‘ [;m [J[h(v)gjld%]z .

ho v

Ly

8) Letting Z, = h(u)uz_ £=1, ..., k , we have

h{vlu =2,

Z

h(v)

u= , and

it follows that

£ Jatn(v)ulan = =2 — £ |9Tz)|az. .
e h(v)

9) Since by property c(ii) of theorem 1 we have

2
1im vh k(\:) = » and therefore ,

v > e
2 o
_(b-a)” [;m 'J[Zjld%]z = 0

1lim »
vor® hw?vhzk(v)
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10) Since this term dominates the left-hand side of (2.7), we have

lim B max If £, (X, 5eeesX, ) E[fbf (Xy 9000,%x, )dx_ ] 2} =
v i?m {(xe,...,xk)sEk 1 g ) &'yl Ll |

Therefore by the results in steps (2) and (10) of this proof we have that

b
. - 2y = . 3
vli?;F:{ max e Ifafv(x ,...,xk)dxl faf(xl,...,xk)dxll } 0; i.e.,
(Kgse ek )eB .
we have mean square convergence or consistency in quadratic mean.
Since mean square convergence implies convergence in probability we

have the following corollary.

Corollary:

If f(xl,...,x ) is uniformly continuous, fv(xl,...,xk) satisfies all the

k

conditions of theorem 1, and

s, |aln(viulau < =,
fb £ ( )a i bability t fb £( )ax
af, Xys eers X Xy converges in probability to . Xys eoes X 1

2.4 The Empirical Bayes Decision Rule Estimation

With the estimation of fG(i,sz) and f: fG(x,i,sg)dk established, we
seek to estimate the Bayes decision rule as defined by equation (1.9). Our
estimate of the Bayes decision rule (i.e., the empirical Bayes decision
rule) is defined by
=1, for T (i,sz) >0

5 v (2.1)
0, othervise,

ct

—~
it

-
0n

~
|

»
-
1]
~

"

where the empirical Bayes decision function is
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f: fv(x,i,SQ)dx

l) %\)(55152)

- 2
Tv(x,s ) = m(cyte - me;

b - 2 -
and, fa fv(x,x,s )dx and fv(x,se) are defined in sections 2.3 and 2.2.
. b - 2 - 2 . i b - 2
Since [, fv(x,x,s )dx and fv(x,s ) converge in probability to fafG(x,x,s )ax
and fG(i,sz), respectively, we have that Tv(i,sz) converges in probability

to TG(i,sz) and, consequently, tv(i,sz) converges in probability to
tG(E,sz). Hence we have established that our empirical Bayes decision

rule converges in probability to the Bayes decision rule.

2.5 The Empirical Bayes Risk

The next question that arises involves the convergence of the
empirical Bayes risk to the Bayes risk. The Bayes risk is defined by

equation (1.1). The empirical Bayes risk R[t ,G] is as follows
v

R[t,,0] = EglL(ag,n,0)] - BX(E, [t (x,s%)] x

EG[P[aO,u,G] - L[al,u,c]lg,s%]}

where E¥ denotes expectation with respect to (i,se) and Ev denotes expec-
tation with respect to (il,sel), cees (iv,82v) - the past data. The empiri-
cal Bayes decision rule is considered asymptotically optimal if

lim R[t ,G] = R[t,G], i.e., if it exhibits

v > o v
risk convergence. This is a desirable property for an empirical Bayes rule,
bgcause it says that as the past data increases, the empirical Bayes rule
becomes as good as the Bayes rule.

To.prove that our empirical Bayes rule (2.1) is asymptotically opti-

mal we rely on a theorem proved by Samuel (1963). Samuel shows that if

T\Ki,sg) converges in probability to EG[L(aO,u,c) - L(al,u,c)|§,52], then



lim R[tv,G] = R[t,G] .

v > o

Recalling our derivation of the Bayes rule (see Chapter I eq. 1.9) we see
that TG(i,sz) = EG[L(aO,u,c) - L(al,u,c)li,sz].. Since we established in
section 2.4 that Tv(i,sz) converges in probability to TG(i,sz), we have

that our empirical Bayes rule is asymptotically optimal.



CHAPTER III

THE BAYESIAN DECISION RULE WHEN u AND o

HAVE A CONJUGATE PRIOR DISTRIBUTION

Consider the case where u and 0 have a conjugate prior distribution;
i.e., u given 02 has a normal distribution with mean & and variance o2/82,
while 0-2 has a gamma distribution with parameters I% and % . The general
theory of a conjugate prior is presented in Raiffa and Schlaifer (1961).

Expressed in functional form

-2 -
dG(n,02)= g (u,0 | @3B,v,8) du do 2 .
where 4 (3.1)
-2y - _ B2 )2 (y8)2(c~2)%" . Yoma
g(u$° :aasaYsG) 0/271? exp 202 (u a) X 3 -§. exg 5
2* I(3)

Recalling the general expression for the Bayes decision rule we see that

it is
(]
= o2 b = .2 1 = .2
t (X8°) =1, for f_ £ (X,X,8°)dX > +—— £5(X,8°)
a G cate
tG(}—(,Sz) =0, otherwise.

Hence, if we are to determine the Bayes decision rule, we must first deter-
= 2 - :
mine fu(X,X,S ) and fG(X,Sz). Recalling equations (1.7) and (1.8) we see

that - ) - D
£,(X,X,8%) = sJ;J' £(X |u,0)0(X .S |u,0) aG(n,o)
£,(%5%) = 1 £(%,8%1,0)a6(u,0)

31
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When G(u,02) is the conjugate prior we see that

7 - 2
£q(X.%,8%) = 177 = expi'%ﬁ_u]z} = Xp{__l_[—}ﬂ 1

0~* V210 I-G Vom0 ) 2 o/Vn
n-1 1
- -1 =(n-1)
(5212 (02 7 ) s g exp{_ _si(u_aﬁz
22;& (s 242 V210 2g2 (3.2)
2

S
y (YS)-Z(G—-E-;Z ' exp I_ x_cS%__z}dudc_g
2% I(

Proceeding to evaluate this integral, we collect exponential terms invol-

ving X and X. These are

(e -]

—%E{Xg - 2uX + u2 + nX2 - onuX + nuz}, or

- - - 2
= _i_T{XQ + nX2 - 2p(x4nX) + u(n+1)} .
Adding
2 - 2 2 _ 2
1[)( + on¥X + 0 Xo X +2nXX+n2X]___O Have
=z 1 — 1 , we hav
that
> _ -
x-uY , o(E-uf¥ - 2 -x2+2nxx+n2x2+xz+n}-(2
g o] g2 n+1
2 3 222 -
T [X tenkX +n X op(x+nX) + u2(n+lz‘ ;
g2 n+1

- - 2=2
= 1 (n+l)(X2+nX2) - X2 - 2nXX - n X
g2 n+1l

1 [ (xnXP Lo (X0 =2
= [(m) 2u n+l(m’+> + n+1)] g

o)
2 - =2 = 2
= 1 [?X - 2nXX + nX 1 | XX _ /n+l ,
g2 n+ 1 g2 Wieal




=12 = 2
n [X=X]° : 1 ~— (X + nX
= + yn+l| =21 _
| o2 n+1 cz[n (n+1 “)] » OT
finally '

n (X-)_()2'+n+l [X+n}_(_ ]2
g2 n+ 1 g2 n+ 1

_X + nX
=57 > then (3.2) becomes

Let

~ © -2 \
205,87 = 2 J e eXPt - u-u)z‘exp = 5 }

20 202 B F n+ 1
n-1 1
== -1 =(n-1)
e Ln=2821° ()2 ° | -(n-1)s?
n-1
2” ()

2 r(§)

Collecting exponential terms involving 0_2 not involving u we have

eXP{_é(—];E o (X—X) + (n - 1)8 "'y(S:I:

- 2
Let U=ﬁ-£_1—f(X-X)2+(n—_l)S + 8
_]_ -1 _5_
=2y _ [ —1)S ] (Y6)2 vn ® ® n+l 2
then £ (X,X,8%) = —yrS) To Lo eX0)= =5 (u-u)
> 2 (b r(d)

2 } n-1+6 -2
x 8 exp {- B (u—oa)z} X (0-2) e exp { A } dudcr-2
/27 202 >

Collecting terms involving u we have

§ o5l 2
x 52'1?3“ exp g - -—B-z- (u—oc)z} (y8) (0 7) exp —{Yac }dudc 2
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(n#1) (u=1)2 + 82(u=0)2 = (n#1) [v2 = 2pu + 12 + 82012 - 2ep + a2)

and completing the square, we have that

(n+1) (u-p)® + B2(a-p)® = (n + 1 + 82) |y -

(n+1)u + 82%]2

1’1+l+82

82(n+1) [u - a]°

n+l+82
2
0 - ST TT o . {ntl)u + BZa
Let | 1 n+1l1+23R 3 n+l+82’and_
_ B/n + 1
02 = T T a . so that

' 2 2
(1) (w-1)° + B2(u=0)” = 0,°[u-0512 + 0, [u-a]?
n-1 4 8

_ [(a-1)52] 2 (v8)2 /a

and hence fG(X,X,Sz) = ) (y —
7 -

2 r&h 1) «

B 1 2 2
- —= 106 u-0 + 0

2(u—oc)2]

X (0-2) 2 expi- __U02 dpdo

2

2
Letting 6, =v+0 (u - a)2

b

2
the expression for (3.2) becomes

n-1 §
— =1 -
2

27 2
T

2 -
x [ expi- %"—"'(“'93) dudo , or
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§ n-1
n+8+1 5 - -
- TS g | am1)s?) 2
fG(X,X,S ) - n—1 ) X 0 X n+6+l M (3-3)
. m TGTTJ FQQ 1 OM“TZ_'
Similarly, we evaluate fG(i,Se)
£ (%,82) = /2~ .o | X
G 0 - GVEF'eXP 262 | O
n=1l 3 l(n-1)
_11a271 2 -242 112
. [(n-1)s°] — (c7%) expl_ (nziZQS } (3.14)
22 (%)
) S 5
2 2 (,—2)2 - -2
x B_ expl- £= (U’a)2 x (y8)= (o77) exp{- Y89 Yaudo
oV2rm 2g2 g. s 2
2 1(3)

Collecting terms involving u, we see that
- 2 2 - - 2
n(X-u)" + B2(u-a)” = nX° - 2nXp + nu” + p2p2 - 2p2%ap + B2a2

and completing the square, we have

- 2
= \2 2 nX + g20 ng? - 2
n(X-u)" + 2(p-a)” = (n+82)|"—=—= - + [X -a]
/Fmrn o g2en

so that (3.4) becomes

- 2
—_— © o gyn + B2 |nX + B2
£,(x,87) = s /O Bm eXP{- pntB [n o _ u] }

0 ™% 4/or 252 B2 + n
n-1 _ Lin-1) S
L o112 (6782 L (y8)?
n-1 %
or 2% (5 2 ()

X

§ -1 -2
2.5 2 e -
(672)2 expl- E’.é_l:m-l)sz + v +_B.g.8.._ (X—a)%‘ }dudo 2

+n
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Let @5 = vn + BZ . .
6 a2 ’
B + n -
2 -
and 97 = (n-l)s2 + y8 + ——-—-an (x-oa)2 s
B2 + n
T 2y [(n-1)8°] 5)28
then fG(X,Sg) “‘f% . éls)

0 " ovaer o2
n+d
oy L 0.,5~2 -
x (¢72) 2 exp{- 7; }dudo 2
n=1 _7 %
= 2y _ [(0-1)821 2 (v5)28
£ (X,8%) -‘[; E;Q
-1
JESROR
nts
422 9 -2
x [ (c72) @ exp{— 7; }
* 1 S . 2
x [ expl- —2_ 0, - 2 dudo
Py 0 ( 6 u) } udo
n-1 §
-1 = n+6
LE52) = [(-1)s?1 2 (v6)2 1(Z) 5
n-l 5 n+o (3.5)
r(s) es 0

Returning to the decision rule (1.9), we see that we must evaluate one

more integral before we have an explicit expression for the decision rule;

. 'b - 2
i.e., we must evaluate fa fG(X’X°S Yax
b (n+6+l) 5 n—l -1
P (X,%,8%)ax = ngﬁ) [(n-1)s°]
a G 2ﬂ2 ’ n-1- S
() k) e (3.6)
_n+8+1

b 5
x f O)-l ax
a
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‘ . = 2
n =\D 2 B(n+l) | X + nX _ o
where y D+l (X-X)% + (n-1)8" + v6 + ntl+g2 | n + 1 >

_y2ln g 8 _ nX_ _ nXg aB

or Oy =X [;+l (n+l+82)(n+l):] 2X|:n+l (n+1+g2) (n+1) * n+l+8%}
2 2=2 -
+ DX _11a2 B(n+l) | n°X _ 2onX 2
7t (p-1)87 + s+ wirg? | (2wt T |

Let

_.n B

W1 =01t Toeieg2) (oe)

nX nX8 af
W, = -2 [;+1 T Toeeg2) (L) n+1+8%]

=2 2_0 -
nX 2 B(n+l) |n X 2anX 2
= ==— + (n-1)S< + y§ + - £
WB n+l ( ) ¥ n+l+82 ‘(n+l)2 n+l +a
ot L2 « .
@h(x; =V KT Wy Xk W3
-n+6+1
b E > .
Next we seek to evaluate the integral fa Oh dX for the following

two cases. TFor the first case, § is an integer and n + § is an even integer,

and we have
b -n+§+1 b
2 ax
i eh(x) ax = s Sy .
a a VW X5 + WoX + W3]

Using the integral tables by Ryzhik (1965), formula 3, page 83, we have

—1'l+5+l -n+8+1
2 2

(n+5-1) [UHy Wy — Wp2]

L(n+s)-1
L2y B nes) - )(aee)-2] + - [Flaee)-k] M (D)

k=1 (n+6-3) (n#6-5) +++ (n+8-2k-1)[bWpg -Wy2 1"

For the second case, 8§ is not an integer and/or n + § is not an

even number. In this case, we may not be able to evaluate the integral
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explicitly. However, since the integral ié definite, we can approximate
the value of the integral by any one of several numerical integration
schemes.

Since fG(x,i,sz) is continuous and finite, either Simpson's rule
or Gaussian 24 point quadrature could be used, for example. Hence, we
should always be able to determine the Bayes dicision rule when we have

a conjugate prior distribution.



CHAPTER IV

EVALUATION OF THE BAYES RISK FUNCTION FOR THE

CASE OF A KNOWN CONJUGATE PRIOR DISTRIBUTION

Recalling the expression for the Bayes risk function, equation 1.1,
we seek to determine the Bayes risk when the optimal decision rule, equation

1.9, is used, given a known conjugate prior distribution.

Let
%, = {i,szltG()'c,sz) = 1} , or equivalently
¥ = {%,82|/° £,(x,X,8%)ax > L, (x,52))
0 >7 e TG =Cp*c1 "G’ ’ (4.1)
and :
£ ='{i,82|tG(i,SQ) = 0} , or equivalently

oH
I

- 2, b = 2 ¢1 s 2
y = X.87|s £o(X,X,5%)ax < sovoy fa(X.87)}
The Bayes risk function becomes
BLt,6] = E{Lags,0) - BB (Lagu,0) - Llayu,0)| (R 82)exy]] (1.2

Since E[?G[L(ao,u,c) - L(al,u,o)l(i,Sz)exoﬂ is a constent with respect to

G(n,02), equation (4.2) becomes
R[t,G] = E[L(ay,u,0)] - E{E,[L(ay,u,0) - L(al,u,a)l(i;sz)exol} .

Examining the first term of the left hand side of equation (k.2),

we see that

' ® ® b -
E[L(ag,us0)) = [, o/, £(x|u,0)axg(u,0]a,8,v,6)ac"2du

39
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b [+ [+ ) -2
fa I fo f(§|u,o)g(u,0|a56,y,d)dc dudx

8 41 = S+1
5 2 2
_ 189715 « [P Ei(}i—a% + YE‘ ax
r($) /r(1+g2 B

Considering the second term on the right hand side of equation (L.2), we

have, recalling equation (1.3),

E{EG[L(aO,u,c) - L(al,u,c)](i,s2) exb]} =

w w b
Ir m(CO+Cl) O fa f(XIUSO)de(X S 'U,U)g(u,g'a BaYsG)dG f_H

X I f £(X,8 Iu,O)g(u,OIu B,y,6)dc “au

x fG(X,S )dSedX

Changing the order of integration, we have

E{Eg[L(ag,u,0) - L(al,u,c)](i,sz) eXgl} =

b
ff{m(co+cl) ! f f £(x|u,0)8 (X5 lu&g(uaclaﬁ,v,d)dc dpdx mc}}

f (X,s2)
XO G

- D -
x fG(X,S )dsedx

m(cgte, ) JII£,(X, X,5°)ax]as?ax - meq ff fG(i,se)dsgdi . (L.3)

) X,

To evaluate equation (A.B), we see that we must integrate over the region
XO. Re-examining the region X,, we see that from equation (4.1)
= {X,s° | f £ (X,X,5%)ax > -——l—-f (X,82)} . (k.4
G €01
Whenever the prior distribution is a conjugate prior distribution, the in-
equality in equation (L4.l4) must be considered for the two cases considered

in Chapter 3. TFor the first case where § is an integer and n + § is an



41

even integer, the inequality is

+ +l -6— n-1 _ ‘ -n+5-l
F r -é—-) | _B(Y5)2 [(n—l)82] 2 N 2[2W1'p +W2] eh(b)
2n? 1(BYr(3) 0 (n+6-1) [bWyWy - Wy2]

'12'( n+68)-1
)

s ek[;}(nw)-l‘m«(p-a)-e] ‘o [%—(n-sﬂ)-k] ¥ 6,5 (v)

k=1 (n+5-3) (n+8-5) *-* (n+6-2k-l)[’4W1W3 - sz]k
‘ ~n+§-1
2[ow,a + W,] 0)(a)
[ 18 »] ey(a o
(n+8-1) [ bWy Wy - Wy2]
(n+8)-1 x.1 1 1
14+ 'nz ) 8k[2(n+6)-1][2(n+6)-2] *++r [2(n+8)-k] Wlk o, (a)
k=1 ok
(n+§-3)(n+8-5) *** (n+s-2k-1)[4W W3 ~Wo=]
n-1 8
Bl 1 2 p-1+8
. JELeas2? 02z s
=~ J; 1 s n-1+8 corey >
Ne.
}"(T) r(3) o7 ©
where
o, =/A+ 1+ Y
= 2
-2 1 X
0(8) = 22r (a-0)2 + (n-1)s? + v8 + 2L} E‘;ﬁ,‘l - o]
- 2
- _n =2 2 B(n+1) E>+nx _ ]
@h(b) = T (b=-X)" + (n-1)s + vS + n:"l:"Bz RSy o
0, = (n-l)S:2 + y8 + \.nBZ (X - )2
T 82+n
- = B
et n+l * (n+1+g2)(n+l)

Wo = =2 ni.‘_ nXg _ a8
2" n+l = (n+l+g2)(n+l)  n+l+g2
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z2 2=2 =
_nX 2 B(n+l) {n" X~ _ 2unX . 2
and Wy = =7+ (n-1)s" + y8 + nilig? [(n+1,)2 Tt

Examining this inequality for this case, we see that no simple explicit
relation between X and 82 can be dérived algebrgically that will allow
the integral in equation (L4.3) to be evaluated.

- For the second case‘whefé § is ngt+§n integef and/or n + § is not
an even integer, the integral f: eh(xsn dx must be determined by numeri-
cal integration. Here again the inequality can not be manipulated algebra-
ically to determine a relation between i and 82 so that the integral in
equation (4.3) can be evaluated without the aid of a computer. TFor this
reason we do not try to compare the risk of the empirical Bayes risk to
the Bayes risk in our Monte Carlo study. Also, since the region of inte-
grétion is a function of the costs ¢y and cys any numerical results are -
'dependent on the costs and cannot be talked about in general without exten-
sive tabulation.

Moreover, since we have shown in Chapter II that the convergence of

the eﬁpirical Bayes rule to the Bayes rule implies risk convergence, it is

sufficient to demonstrate only the convergence of the empirical Bayes rule.



CHAPTER V

MONTE CARLO SIMULATION

5.1 Introduction
In this chapter we present some examples to indicate how well the
empirical Bayes decision rule approximates the Bayes decision rule as the
amount of past data increases. Examining the Bayes decision rule (see

equation 1.9), we see that it is a function of the costs cg + cp and the

term

b

;] f (x,i,sz)dx
a G

— (5.1)
fG(x,s )

Since the term (5.1) is the only part of the rule that is actually esti-
mated from the data, we restrict our study to the estimation of fG(i,sz),

b
fG(x,i,sz)dx/fG(i,sz) by the estimators described
a

b - 2

fa fG(x,x,s )dx? and [
in Chapter II. For each of the examples presented we let G be a conjugate
prior distribution as defined in Chapter III. 1In the next two sections we
discuss the computer program used to generate the examples. In the fourth

section we present and discuss the examples. The fifth section contains

the concluding remarks of this paper.

5.2 Random Number Generation

To generate examples, we must simulate the Bayesian process as des=-

cribed in Chapters I and IT and estimate the Bayes rule by the procedure

L3
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developed in.Chapter II. Hence the computer program must genérate at

random (u,o_z) according to the conjugate prior distribution G{u,02); i.e.,
(u,o-z) must be jointly distributed normal-gamma with parameters (0,8,1%320,
Then the computer must generste observations (Xl, cevs Xoo xn*l) according
to a normal distribution with mean u and variance o2 - calculating X and

s2 from the first n observations.

The computer program accomplishes the simulation by using first a
subroutine that generates random numbers from a uniform probadbility dis-~
tribution and then using another subroutine to transform (a function of
several of these uniformly distributéd random variables) to a normally dis-
tributed random nuﬁber with mean 0 and variance 1. The random variable
0"2 is generated by first generating 6 independent random variables, say
Zl’ cens 25’ which are normelly distributed with mean 0O and variance 1.

Then by letting

2

-2
Z; (5.2)

-—-1-
° =33

} ~100

J=
-2 i x8 8,
we have generated ¢ ~ with a gamma distribution with parameters ( 25"

That is, we have that

S 25 -2

f(o—2) = ('YG)G (o 7) x exp’ ﬁ_‘é’___ . (5.3)
- 8
27 r(3)

The random number u is generated by generating a normally distributed

random variable u, say, with mean 0 and variance 1. Then by letting

WEadug o, (5.4)

we have that y is distributed normal with mean a and variance ¢2/g2. And

finally the observations xl, ooy Xn’ Xn+l are generated by genersting n+l
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independent random numbers, Ups eses U 0s S8Y, normally distributed with

means O and variances 1. Then by letting

X; =vo+u i=1,...,n4 (5.5)

we have that the X; (i =1, ..., n+l) are normally distributed with mean u

and variance o2.

5.3 The Computer Simulation

To study the convergence of the empirical Bayes decision rule to the
Bayes decision rule for the various examples, we performed the simulation in
~the following manner.
We read in the parameters of the conjugate prior along with the limits
(a,b), the sample size n, and the integer constants setting the limits on the
number of iterations in the simulation. The simulation then procedes by
performing the following steps.
Step I: Generating the Bayes Decision Rule
We generate the random variables (u,‘o, Xl,...,Xn) by the method
described in section 5.2 and calculate X and 32. Then we caléulate fG(E,SE),
f: fG(x,E,se)dx as they are defined in Chapter III.
Steg IT1: Generating the Past Data and Determining the Empirical Bayes
Decision Rule

We generate the random variables (u, o, Xl,...,X Xn+1) by‘the

n’
method déscribed in section 5.2 - calculating xi and 52i from the first
n.xi's. We repeat the process 20 times where each repetition is indepen-

dent and different from all others. At the first, fifth, tenth, fifteenth,

. - b - 2
and twentieth repetitions we calculate fv(x,sz), S fv(x;c,s )Jdax and
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b -2 = 2 = 2 b = 2
fa fv(x,x,s )dx/fv(X,s ) where fv(x,s ) and Iy fv(x,x,s )dx are defined
- b -
in Chapter II. That is, we estimate fG(x,s2) and [, fG(x,x,se)dx (which
were calculated in Step I), with one past observation, five past obser-

vations, etc. Also we calculate

- 2 . -
by = £6(%8%) - £ (,67)
_ b - 2 b - 2
By, = fa fG(x,x,s )ax - fa fv(x,x,s )ax
and b .
- 2 b - 2
A - fa fG(X,X,S )dX _ fa f\’(X,X,S )dx
3v £,(%,s°) £ (%,5%)
Step III:
We perform 100 iterations of Step II accumulating the sum of the
Aiv's and the sum of the Aivz's for i =1, 2, 3 and v =1, 10, 15, 20.
' 100 100 5
That is, we calculate ) Ajyj end ) Bjyy  fori=1,2,3endv=1,
j=1 j=1 '
10, 15, 20 where A'v is the i*P gifference for past observations at the
ivj :

5*B iteration. At the end of the 100" iteration, we calculate

_ 130
Aey, = A
v vj/1l0
i e ivj/100
szA.v = l§0 A2,
i 351 ivj/100

for i=1,2,3 and v =1, 10, 15, 20, where

1) Ziv and SzAlv are the bias and mean square error, respectively,

= 2
of fv(x,s ),

2) Zév and s2A2v are the bias and mean square error, respectively,

b - 2
of fa fv(x,x,s Ydx, and

- 2
3) A3v and s A3y

of fg fv(x,i,se)dx/fv(i,se) .

are the bias and mean square error, respectively,
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Step IV

We perform 20 iterations of Steps I and III accumulating the sum of
the mean square errors. At the end of thevtwentieth iteration we calculate
the average of the mean square errors. That is, we have the average mean

- b - b -
square errors in estimating fG(x,sz), fa'fG(x,x,sz)dx, and fafG(x,x,sz)dx/
fG(i,sz) for 1, 10, 15, and 20 past observations, when G is a given prior

conjugate prior distribution.

5.4 Examples

In the following set of examples we present the.average_mean square
error of the estimators of fG(i,sz), f: fG(x,i,s2)dx, aﬁd foG(x,i,sz)dx/
fG(i,sg) for several different conjugate prior distributions agvthe number
of past observations increase. For our first set of examples we fix the
values of all the othef parameters and vary only tﬁe mean of the conjugate
prior. In particular, we fix the parameters as foilows

n=>5 y=1

g =1 § =2

a = -1 b=1 .
We then vary o from 0 to -2. This lets us study the estimation procedure
as the mean of the prior varies from the center of the specification limits
to a point outside the limits. Since the distributions are symmetric, we
do not have to study values of o greater than zero. These examples are
presented in Tables I through IV.

For our second set of examples, we consider the situation where we
have one-sided specification limits; i.e., a = -» or b = +», Again because
of the symmetry we need only to consider a = -». This particular case is
hard to justify theoretically; however, in practical situations our random

variables have truncated distributions. This allows us to apply the mean
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value theorem for integrals which is necessary in the proof of mean square

convergences (see Theorem 2, Chapter II).‘ For this case we again fix

n=5 y=1
B=1 § =2
b=1,

and set a = ~100 in the numerical integration subroutines. Setting a = -100
is a close enough approximation to -~ . For this case we let a range from
+2 to -2. The examples are presented in Tables V through VIII.

For each of the tables we use the same sequence of random numbers
so that we can compare the tables. However this procedure has the defect
that since we are only'varying o we do not change the value of fG(i,sz)
or its estimate fv(i,sz) at each point in the sequence of random numbers
- even though the X's are shifted for different a's. Examining the

expression for f (%,s2) (see equation 3.5) we see that fG(i,sz) depends

G
on o only through (%-a)2. Recalling equations (5.L4) and (5.5), we see
that if we use the same sequence of random numbers for the cases o = a'

and o = o¥, then

X! —a! = X% - g =
i i i i

Yla

n

v, -2

1=+ 2B

We can show that a similar situation exists for fv(i,sz). Hence the

mean square errors for the estimation of fG(i,sz) does not change as

we change o alone in the generation of our tables.



TABLEI o =0

Average Mean Square Error of Estimator for
Number
of Past b ’ 2
Observations fG(J—(,Se) ' fafG(x,i,s Yax f:fG(x,SE,sz)dx/fG(:—c,sg)
v=1 0.00140128 0.000575120 0.11978479
v = 10 0.000387369 0.000237644 0.07Lh19104T
v = 15 0.000307876 0.000200854 0.069786057
v = 20 0.00026243L 0.000180082 0.066457283
TABLE IT o = -0.5
Average Mean Square Error of Estimator for
Number
Of Past _ b - b
Observations fG(X,sz) fafG(x,x,sz)dx fafG(x,ic‘,sz)dx/fG(i,s2)
v=1 .00140128 0.000580229 0.11k32559
v = 10 .000387369 0.00020170k 0.07420357T
v =15 .000307876 0.0001716646 0.070694492
v =20 . 000262435 0.000154207 0.0661178kLY




TABLE III o = -1.0

50

Average Mean Square Error of Estimator for

Number
Of Past - o b - 5 b - 5 . 5
Observations fG(x,s ) fafG(x,x,s )dx fafG(x,x,s )dx/fG(x,s )
v=1 .00140128 0.000359378 0.10312916
v = 10 .000387689 0.000125544 0.075513902
v = 15 .000307876 0.00010L4830 0.070527272
v = 20 .000262435 0.000093696 0.064L437037
TABLE IV o = =2.0
Average Mean Square Error of Estimator for
Number
Of Past »
Observations fG(i,sz) f:fG(x,i,s2)dx f:fG(x,i,sz)dx/fG(i,se)
v=1 .00140128 0.000140291 0.068035281
v =10 .000387369 0.00003256k4 0.058352L461
v =15 .000307876 0.00002L4451 0.050630522
v = 20 .000262435 0.000020658 0.047986813




TABLE V o = 2.0

Averasge Mean Square Error of Estimator for

Number
Of Past .
- b - D _ -
Observations fG(x,sg) fafG(x,x,sg)dx fafG(x,x,se)dx/fG(x,sz)
v=1 .001ko127 0.000206711 0.14k49965k
v = 10 .000387369 0.000483362 0.10796042
v = 15 .000307876 0.000350282 0.098308038
v =20 .000262435 0.000029162 0.091224067
TABLE VI o = 1.0
Average Mean Square Error of Estimator for
Number
0f Past - b R b _ _ 5
Observations fG(x,sg) fafG(x,x,s Ydx fafG(x,x,se)dx/fG(x,s )
v=1 .001ko127 0.000529031 0.19127kLok
v = 10 .000387369 0.000161203 0.13069978
v = 15 .000307876 0.000122711 0.11387686
v =20 .000262435 0.000104212 0.10458592




TABLE VII o = 0.0

52

Average Mean Square Error of Estimator for

Number
0f Past
Observations f (i,sz) fbfG(x,i,s2)dx fbfg(x,i,se)dx/f (%,s°)
G a a G
v=1 .001401277 0.001017486 0.1835680k4
v = 10 .000387369 0.000339964 0.10138556
v =15 .000307876 0.000272740 0.085L42496T7
v = 20 .000262435 0.000236L86 0.080254470
TABLE VIII o = -1.0
Average Mean Square Error of Estimator for
Number
Of Past
A - _ b - -
Observations fG(X,sg) f:fG(x,x,sz)dx fafG(x,x,se)dx/fG(x,s2)
v=1 .001Lk0127 0.00120762L 0.15238552
v =10 .000387369 0.000340257 0.062985934
v = 15 .000307876 0.00026L461L3 0.052881798
v = 20 0.000222983 0.050728625

.000262435
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5.5 Discussion of the Tables

Examining the numerical results presented in the tables we see that
as the prior distribution changes fhe convergence rate for the estimates
of foG(x,i,SQ)dx and f:fG(x,i,SQ)dx/fG(i,se) changes also. This is proba-
bably a good indication of what can happen in practice. Hencé for v < 20,
the empirical Bayes decision rule can be very poor for not too uncommon
prior distributions, and, for certain pathological prior distributions, the
empirical Bayes rule could be poor for v > 20.

However in all cases the estimator of f:fG(x,i,sz)dx had a mean
square error of relatively the same magnitude as the estimator of fg(i,SQ).
In some cases (see Tables IV and V), the mean square error of the estimator
of foG(x,i,s2)dx is almost an order of magnitude smaller. We find this
particularly encouraging as this is the first time (as far as we know) that
any one has ever tried to estimate f: X7, «0ns xk)dxl. This may indicate
that the slow convergence of the estimator of f: fG(x,i,sz)dx/fG(i,sg) nay
be due to problems in estimating £,(%,s).

Another possible explanation of the large mean square error encoun-
tered in estimating f: fG(x,i,sg)dx/fG(i,sz) may be due to our choice of
the spreading coefficient h(v) (see Chapter II, section 2). The results
of Parzen (1962), Cacoul%os (1966), and Epanechnikov (1969) indicate t?at
we should let h(v) = v 6 when we estimate fG(i,sz) and let h(v) = v 7 R
when we estimate fz fG(x,i,sz)dx. Whenever we tried this approach we
found that we got estimates of f: fG(x,i,s2)dx/fG(i,52) which sometimes
were greater than one -~ clearly an unacceptable result. Hence we chose

1
-7

. b _ i o
to use h(v) = v in estimating both fa fG(x,x,sz)dx and fG(x,sz). ‘This
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choice guarantees that f: fG(x;x,s2)dx/fG(i,s2) will be less than one,
because this causes the estimate of IZ fG(x,i,sz)dx to be a sum of terms
each of which is less than or equal to its cofresponding terﬁ in the esti-
mate of fG(i,se). This choice may be an explanation of why the mean square
error of the estimator for fG(E,sz) was larger than the mean square error
of the estimator for fz fG(x,E,sz)dx. Since the theory behind choosing
the spreading coefficients was developed for density function estimation

only, there may be better ways of choosing the spreading coefficient for

this problem.

5.6 Conclusion

Although we prove in this paper that an empirical Bayesian approach
to a variables sampling plan problem is possible, there are many unsolved
problems left and possible improvements that can be made. For instance,

b - -
when we estimate the Bayes decision rule fa f (x,x,se)dx/fG(x,sa), we are

G
in fact estimating P[a<x<b|i;s2] -~ a conditional probability. To do this
estimation we had to rely on the estimators of multivariate density functions.
By concentrating a study on the problem of estimating conditional density
functions, we may find better estimators of conditional probabilities. An
unsolved problem can be found in determining how large a sample should be
taken out of each lot to insure that the risk is less than some specified
value. If the prior distribution is known, this would not be a problem.
Another problem involves the case where, when each lot was sampled in the
past, the same sample size was not drawn.

Finally we note that our results may be useful for other empirical

Bayesian problems where a similar loss function is involved. That is, the
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loss function is a function of the probability that the observed random
variable (or some known function of the observed random variable) will be

within certain specified limits.
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