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A general class of transformations of estimators is introduced which
induces a reduction in bias if any exists., The concept . is related to that
of the sequence to sequence transformations which are employed for conver-
gence improvement in deterministic cases such as the evaluation of infinite
series and improper integrals. The procedure introduced by Quenouille (1949),
(1956) and later termed the "jackknife" by Tukey (1958) is seen to be a
special case of these transformations, The general principles of the method
provide insight into the applications where the ordinary jackknife is not
trustworthy. |

To illustrate the method and demonstrate its potential usefulness several
examples are considered. For ratio estimation under a particular model a
new unbiased estimator is produced which exhibit§ a favorable mean square
error relative to existing adjusted estimators.

The existing notion of reapplication of such a procedure is shown to lack
the property for which it was designed. Proper reapplication is proposed so
as to conform to general principles. A higher order transformation is de-
fined which provides an interesting algorithm for the corrected procedure,

Possible extensions to nonlinear transformations are also mentioned.
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CHAPTER I
INTRODUCTION

'One basic problem in mathematical statistics is, given a series of

observations, Xir-Xyr eeer X

5 n’ to find a function of these,

tn=tn(xl,x2,....xn), which will provide an éstimate of an unknown pafameter
0. Properties of such éstimators such‘as efficiency, sufficiency, consist-
ency and unbiasedness are desirable or importénf in varying degrees depend-
ing upon the appliéation,' In many instances the estiﬁatofs which result
from common procedures, such as the method of maximum likelihood for example,
are biased. Whenever this bias is small relative to an associated near
minimal variance this deficiency is frequeﬁtly écceptable. This situation
exisfs since the mean square error of an»estimator is a popular.goodness
‘criterion in many cases, However, if one can reduce or even eliminate the
bias withoﬁt.incurring an appreciable increase in the variance, so as to
leave‘the mean sguare error.unchangéd or even reduced, then normally there
would be little basis fof faulting the procedure.

The purpose of this dissertation is to introduce a general class of
transformations of estimators which induces a reduction in bias. The concept
is related to that of the sequence to sequence transformations which are
employed for.convergence improvement in deterministic cases.such as the
evaluation of infinite Series and:improper integrals [see Lubkin (1952)
and Gray and Atchison (1968)]. The procedure introduced by Quenouille (1249),

(1956) and later termed the "jackknife" by Tukey (1958) will be shown to be

1



a special case of these transformations. This can shed some light upon
the problems which Miller (1964) exhibits as evidence that the:e‘are ap?
plications for which the ordinary jackknife is not trustworthy, A most
recent use of the jackknife reported in the literature is for U-statistics
with a specific application to variance component models [see Arvesen
(1969)1].

To illustrate the present method and demonstrate its potential use~
fulness several examples are considered. The problem of ratio estimation
in sampling theory provides a fruitful area of application. One of the
models which is usually adopted admits a complete correction for the bias
in the ratio estimator with no increase in the mean square error over the '
biased classical estimator or its jackknifed counterpart, which is also
biased. The estimation of a truncation point is examined and seen to lend
itself to these transformations.

The notion of reapplication of the ordinary jackknife was introduced
by Quenouille (1956) and reported by Kendall and Stuart (1961) and several
others. The scheme which was given actually falls éhort of what must haQe
been intended. This difficulty is discussed in the more general setting v
of the transformation introduced here. In this context a proper procedure
for reapplication is proposed which has the desirable characteristics which
were previously absent. An algorithm for the proper successive reapplica-
tion is given in a single determinantal expression for a large class of
estimators. This infroduces what shall be called a higher order transfor-

mation of a biased estimator.,



CHAPTER II

A GENERAI TRANSFORMATION FOR BIAS REDUCTION

2.1 Definition and Properties

Let 6 be an unknown parameﬁer, and let Xl' xz, coes Xn be n inde-
pendent, identically distribuﬁed observations from the cumulative distri=-
bution function (cdf) Fe. Suppose thﬁt the two functions t, and t, are
defined over the n observations and are to be considered as ﬁwo

different estimators of the parameter 6. Further suppose that each of

these estimators is biased such that

(2.1) Elty (%) XprenesX )] = 0 = by (0,0) # 0, k = 1,2.

The two estimators may be combined to produce a third estimator vahich

we may now define. As is customary we shall in some cases use only the

symbol for a function to denote the value of that estimator evaluated at
the observed points.

Definition 2.1

et

bl(n,e)
(2.2) R = '
bz(n,B)

where the bk are as given in equation (2.1)., Then whenever R#l, i.e. when

the biases in the two estimators are unequal, define



(2.3)

An immediate result is the following:
Theorem 2.1
When R is known the quantity 6 given by (2.3) is an unbiased estima-
tor for 6. |
Proof:

Let §n denote the n random variables, Xl,Xz,...,Xn, and then

B0 ) =50 ElE;(X)] - <5 Bt (X))

bl(n,G)— R bz(n,e)
0 + —
1-R

= e.

The variance of this new estimator depends jointly upon the value
of R and the covariance between the two estimators t1 and tz’ as well
as their separate variances. Since

- _t, - R, (&, = 8) - R(t, - 0
f-6=—e=>t-8=
1-R 1-R ’

we may write
N (¢, - 6) - R(t2 ~ 8)
Var [6] = E ‘ :
ar [0] 1R

1 -0y 2 2 -2
= 52 {E[(t1 0) ].+ R Ep(t2 9) <]

2

- 2RE[(£,=6) (t,=0) 1} '



or alternatively when R is in fact the ratic of the biases,

Var [6] = _.X {Var (t ) + R%Var(t,) - 2RCov(t ,t)} .
(l—R)Z 1 2 1772
It is desirable to consider the minimization of this quantity over all
possible choices of the estimator t,. However, since for a particular
choice of ty, its bias, variance and covariance with t each affect the
quantity, there seems to be little to be gained by a classical optimiza-
tion procedure. Within the class of estimators for which b, has a set
valﬁe and such that R is positive, it is clear that the estimator should
have a high positive correlation with t,. It ié also apparent that if the
two estimators are biased in opposite directions then R is negative and
hence ideally the estimators should be negatively correlated as wéll. The
covariance of the two estimators is an important consideration and principles
underlying the concept of antithetic variables [see Hammersly and Mauldon
(1956)]1 may prove useful in this setting. This however will not be con=-
sidered in any depth in this paper.

Since 0 is an unknqwn parameter, the values of bl(n,e), bz(n,e) and
consequently of R will in many cases not be known to the statistician.
There are many interesting situations where this is not true, at least for
R; but when it is, the possibility exists that R be estimated with some
fruitful consequences.

| Before discussing these possibilities let us note the cases in which
R need not be eétimated. Suppose the functions bk(n,e) are separable

functions of n and 6, i.e.

(2.4) E[t (X)] - 6 = £ (n)b,. () , k =1,2.
kK koK



Next suppose that the estimator t2 is derived in some fashion from the

estimator t1 such that
(2.5) b;(e) = b;(e) = b(8).

This will be the case when for example t2 is of the same functional form
as t, but is defined over a proper subset of the observations for which

t) is defined. If we omit the ilM value from the sample and take t2=t1(§. ),

-t
-

where the definition of t1 is adjusted to accomodate the subset of n-1
values, then E[t2] -0 = fz(n)bi(e). Thus when (2.4) and (2.5) hold, equa-

tion (2.2) simplifies to

(2.6)

é quantity which no longer requires estimation.

An illustration of the method at this poiht will serve to bring out
several points concerning the procedure. If the first estimator, tl' is
a function of the minimal set of sufficient statistics, then the question
arises as to wheiher the second estimator’t2 must bf‘necessiﬁy ingroduce
superfluous variability. In some instances:this is the case and ﬁhe de;
crease in bias is obtained only at the expense of a corresponding increase
in variance, However in other cases the transformation will merely produce
an altered function of the sufficient statistics which has less bias than £
Suppose that Xi (i=1, ..., n) are independent identically distributed

(i.i.d.) as N(u,uz) and that it is proposed that we estimate o2 by taking
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where

Wi
I
=
[N
U] =]
g
"
[
.

Now
-1 2 2.1 2
E[t1]=--—o = g%==— (0%)
n n
and if t, is formed by successively deleting each observation from the
sample, one at a time, and averaging the n results we would expect

a2 _ X .2
E[t,] =0 ) (o°) .

Hence the indicated value of R is (n=1)/n and

n-1
2 _t] = n t2
o n-1
l-n
= nt1 - (n-l)t2 .

So, upon deleting the ith observation the associated estimator for the

particular subsample is



t, =
Consequently
Eftz] =
and indeed
E[tz] =

We now combine the two

a third, namely

(n=1)2 - 1 Z <2 + 2n-n? %2
n(n-1) 2 3 (n-1) 2

i=1

2
n“-2n .
P t
(n_l)Z 1

2
nc=2n .

n-2 2 ’
g
n-1
o2 -1 (0¥ .

n=-1

functions of the sufficient statistics to obtain



>

9 =nt, - (n-l)t2

n n2-2n n
= x2 = nx? - ———— x2 +D02z2n g2
1 (n-1)n 1 n-1
i=1 i=1
n
= n?-n-n2+2n x? - n?2-n-n2%+2n x2
(n-1)n 1 n-1
i=1

n
1 22 1
== —— X, . X
-1 Z ey )

i=1

which may be recognized as the uniformly minimum variance unbiased
estimator of the variance of the normal distribution. Furthermore, it
may be recalled that, with no more than the assumptions of uncorrelated

xivand each Xi having the same expectation and variance, the estimator 6

above is a distribution free unbiased estimator of the variance of X.

2.2 A Related Nonlinear Transformation

As defined in (2.3), § is a linear combination of two functions of
the sample values. If an estimate of R is employed, say R, then we obtain

a different estimator

(2.7)

This has a nonlinear flavor which suggests an interesting connection with
the nonlinear sequence-to-sequence transformations often used to increase
the rate of convergence of a sequence to its limiting value. To facilitate
this comparison the rationale behind these sequence-to-sequence transfor-

mations is included here. For a more extensive discussion see S. Lubkin
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(1952) and D. Shanks (1955), two of the early contributors to the develop-
ment of these transformations or P. Wynn (1966), who has written extensively
‘concerning generalizationé and algorithms for convergence acceleration.

Let Am and Bh be any two sequences of partial sums which have the

same limit, i.e.,

and lim Bn = lim A = S # + @,

n->o m>o

Now consider the possibility of constructing a third sequence
n

z =) z

nog K

which also converges to S but does so more rapidly. Intuitively, we might

expect Z, to converge more rapidly than Am or Bn if

(2.8) lim 2%¢ = lim EB. = 0.
, N -300
koo ak k bk

That is, on a term by texm comparison, the contributions to one sum are
diminishing more rapidly than the contributions to either of the other sums.

Thus, suppose we let
(2.9) 2k

and consider R as a parameter to be selected to achieve the desired more

rapid convergence. If
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R = 1im _kK
ke Dy
and is not equal to zero or one, then equation (2.8) is satisfied.

It was suggested in the previous section that the second estimator
t2 might be derived from the first by using a subset of the values from
ti. An analagous technique may be uéed in the present situation to remove
the difficulty involved in producing a secoﬁd sequence which is convergent

to the same limit. Let m = n+j and ak=b , So that we are now using the

k

same series twice by shifting the index. Then,

and we may replace (2.9) with

(2.10)
: _ bk+j Rbk .

In the discussion leading to the estimator in (2.7) it was mentioned that
R might require estimation since we may be unable to produce the ratio of
the biases. Similarly if there are difficulties in producing the limit R
we may approximate this limit of the ratio of terms by the ratio itself.

Hence let
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then by summing over kX in equation (2.10) and then substituting Rn for

R we have

(2.11) B .-RnB

which is the desired "third sequence". When j=1 we have the expression
of a sequence-to-sequence transformation which is usually referred to as

the e, transform or Aitken's &2 process.

b
B - n+1 B
n+l b n
n
el(Bn) = 5
' n+l
l -
b
n
Bper By 5
B n
B - B
n+l n n-1
Bn+l - Bn
l -
B - Bn-l
Bn+l Bn—l - Bn
- + B = 2B
Bn+l n-1 n

The nonlinear character of the transformation is gquite apparent in this
final form and the similarity of (2.11) and (2.7) was previously mentioned.

The motivation for defining an estimator 8 as in (2.7) was that R,
which is given by
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6 - Eft (X)]

g - E[t2(§n)]
may not be obtainable. One might therefore select R so that
E[R] = R,
but this is not necessary. The only essential requirement is that
n v
E[6] =6 .

If one employs a development which parallels that used for deterministic

sequences then instead of two estimators, t. and t2, a sequence of

1

estimators, {t(zﬁ)}' whose index indicates increasing sample size, is

required. With this sequence at hand one could take

ex) - eEx )
€X ) - EX )

-~

R =

This approach leads, as before, to the e, transformation of the sequence
and (suppressing the arguments of the functions)

- +2
tntn-2 tn--l

(2.12) 3 _ ‘
n tn+tn_2 - 2tn—l

It has been suggested by Gray and Schucany (1968) that this trans-
formation migkt be pfofitably applied to sequences of random variables.
Partial motivation for this conjecture is the fqllowing.

Theorem 2.2
If {tn}z=m is a sequence of random variables which converges in pro-

bability to Bt with respect to a probability measure P, and if the functions

" ,
{en}:=m+l as defined in (2.12) are measurable and finite almost everywhere
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and the sequence converges in probability to Y then 6,=6, a.e. (»).

The proof of this theorem will not be included here since no further
use is made of the result. The primary drawback to this approach is that
a sequence of estimators, which is derived from increasing the size of a
set of independent wvariates, is necessarily the result of an arbitrary
selection of the order in which the observations are considered to be in-
cluded in the sample. This violates any notions of invariance or symmetry
wnich are quite naturally associated with most estimators. However, there
is a way to retain symmetry.

In practice one has a sample of size n and an estimator tn defined
over the n observation values. The problem is to construct a three member
sequence associated with this estimate, in order that a new estimator be
produced by means of the transformation (2,12). The ith observation can
be deleted and the estimate, based on the remaining n-l1 observations, de-
noted ;t,_;. Next the jEE observation can be deleted from the remaining
n-1 values (clearly j#i) and the estimate, based on the n-2 observations
which remain, denoted ijtn—2' There are however n(n-1) ways in which this
can be done and in many cases this gives rise to n(n-1) distinct three term
sequences.

One possible procedure, which will restore symmetry in the resulting
estimator, is to average the n(n-1) values of 6i' which result from the

J

transformations,

2
g ijtn—z th = itn-1 ,

ij

+ tn -2t

n-1

1i3tn-2 i

to obtain
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i
i#j

B = 2: E:“‘ .
n(n-1) 83 5
J

Since each of the gij is a consistent estimate of 6, the estimator T is
also consistent. There is, however, little reason to suspect that these
manipulations have been performed without incurring an increase in the
variance of the transformed estimator. Furthermore there is no assurance
that any significant reduction of bias results from this procedure. For
practically all estimators the analytical determination of the distribu-
tion of the nonlinear combination of the correlated members of the
sequence is a formidable task.

Nevertheless, these concepts are mentioned because of the proven
success of the nonlinear sequence-to-sequence transformation in the
deterministic case. Also the procedures which were suggested to restore
invariance to the reuse of sample information are seen to be quite
naturally applicable for the case of linear combinations of these corre-=
lated estimates.

Before leaving the realm of non linear transformations, another
possible procedure should be noted. If the n valﬁes of .t,_1 are averaged

1 n-

to obtain,

(2.13) e - %Z el

then En— and tn are each estimators of 6 and could be considered as

1

adjacent members of a sequence of estimators. A third member produced in

a parallel fashion would be
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= 1 A .
- 1 n=-2
o2 T RG@-D) ZE .
i 3

i#3
At this point‘the potential of the e; transformation may again be enter-

tained and still another estimate defined by

- -2
tn—2tn tn-l
* L]
e =
theo * ty = 2t 4

Again the properties of the new estimator are difficult to establish but

the principle employed to obtain En and En— are useful. This technique

-1 2

was introduced in connection with the jackknife [see Quenouille (1956)]

and shows equal promise for the more general transformation defined in

equation (2.3).

2.3 Relationship to the Jackknife

Suppose that

t, = tn(x1'xz""'xn)'

and, as mentioned in Section 2.1, that the bias is separable, viz.,
E[tﬂ -8 = £(n) b(6 .

Further suppose that the second estimator is formed according to rules
discussed in Secticn 2.2 which led to egquation (2.13). Consequently

n

ty =L E ith-1 Za1)

ry

i=1

=}
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and
E[tzl - § = f(n=-1) b(6) .

If it is assumed that the bias in t, is inversely proportional tc the

sample size then

R = f(n) = n-1 ,
f(n-1) n
and 6 becomes
6 = nt1 - (n-l)t2 '

which is the form of the jackknife introduced by Quenouille. This
technique will eliminate the 1/n term from a bias and the justification
for the procedure which was given by Quenouille (1956) is that the bias

in t is often expressible as a power series in (1/n), 1Indeed if

7|
g{

then it can be easily shown that

E[f]l =86 - @2 + vee .
n{n-1)

If some intermediate quantities ei, i=1,...,n (these are called

"pseudo-values" by Tukey for the special case R = (n-1l)/n) are defined by

(2.14) 6, = 1 t; ~ _R
. 1 T35 T_n

.t (X )
in-=1 - ’
1-R 1-R =n-1

then
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Moreover, Tukey has proposed that in many instances these "pseudo-values"

are approximately independently, identically distributéd. If this pro-

posal holds then
1 (6,-0)2
n(n-1)

should be an (approximate) estimate of the variance of 6 and

(2.15) n 1

Vo (6-8) 1 (éi-%) 2172
(n-1)

i=

should be approximately distributed as a Student's t variate with n-1
degrees of freedom.

This technique has been used to good advantage by Miller (1968) to
construct approximate tests for scaleyparameters in the two sample problem.
Miller publishes the results of a Monte Carlo study giving observed power
functions for the jackknife test and the classical F test among others
for various distributions. In a more recent work Shorack (1969) compares
several more robust alternatives to the F test on the basis of Pitman
agymptotic relative efficiency and Monte Carlo studies of power functions.
Shorack's approximate permutation test and the jackknife procedure are
found to be most satisfactory.

Criticisms of the jackknife procedure which have been voiced for
particular applications may be found to be due to the restrictive use
of R=(n-1l)/n when another choice is more appropriate ané is indicated by
some inspection. The difficulties for estimating truncation points will
be taken up in the next chapter. The more éeneral definition of the pseudo-

values should improve the procedure in most specific situations. It is
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clear that the approximation for Var [8} will be improved according to the
degree of improvement of the bias afforded by the proper choice of R.
Durbin (1959) exhibited a class of problems in ratio estimation where
the jackknife appears to be appropriate. Both the bias and the mean
square error were shown to decrease under a reasonable model. The use
of the more general procedure can produce still further improvements
under various models.
A point that is brought out by Mantel (1967) is that if "... an
estimator had a more sérious bias, say one inversely proportional to the
root of sample size, it is not eliminated ... but it is approximately

halved." Indeed if

E[t1] - 0 = b(9)
/n
and
E[t,] - 6 = b(0)
vn-1

and the ordinary jackknife is employed to obtain

]

nt1 - (n-l)t2

then

E[6] = 6 + (VYn - /n=1)b(8) .

Therefore
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Bias (9) = vhd -/ha(n~1)
Bias (tl)

il

=

i

=
—

]
Ndlor
<]

- - i1 1 ...
=n-nll = 50= 507 Ten?
1,1 .1 e .

2 8n 16n2

However had the proper value of R,

namely

been used in the more general transformation then 8 would be completely
unbiased.

One further aspect in the evolution of the ordinary jackknife which
has an interesting relationship with the present general procedure is
Tukey's graphical method. The assumption that the bias in t; and t, as
estimators of 8 is inversely proportional to their basic sample sizes,
or nearly so, implies that the points (0,0), (&,E[t;]) and (1/(n-1),
E[t,]) lie on or close to a straight line. The two point formula for a
straight line yields the following expression for the intercept of the

ordinate axis, which would be the unbiased estimate of 0:

tl““ t2"t1

1 1

——— T e

n—-1 n

=Bl

= t, = (n=1) (£,~t))

il

nt1 - (n—l)t2 R
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The method described above suggests the possibility of fitting poly-
nomials in 1/n to the averages of estimates computed from sub-~samples
of various sizes. This possibility, successively omitting one, two,
three, ... sampling units, has been explored by Burdick (1961). This led
Jones (1963) to speculate that:
"In some applications of the jackknife method, as

when the population parameter to be estimated is the re-

ciprocal of the mean, it would seem that graphing the

polynomial might suggest expansion in powers of some

function of n other than 1/n in order to obtain adjusted

estimates with minimum wvariance or minimum mean square

error in the future applications to situations of the same

kind."
This borders upon the essence of the present technique and approximations

thereto.



CHAPTER IIT

APPLICATIONS TO BIASED ESTIMATORS

3.1 Ratio Estimators

In sampling theory there is a greater emphasis placed upon the use
. of auxiliary information than there is in most other branches of statistics,
One method of interest is the use of auxiliary information to improve the
precision of estimates through consideration of a population ratio,
p = ¥/X., The use of lower case letters for random variables and capitals
for population values is conventional in sampling theory. Frequently a
situation exists where the ratio of a variable y to another variable x is
believed to be less variable than the y variable alone. Suppose for example
one were interested in the value of Y (population total). Rather than
estimate this total directly from the sample it may be better to estimate
p from the sample and then multiply it by the known total of x to estimate
the total for y. This is called ratio estimation. An instructive hypothe-
tical example is given by Raj (1968) as follows:

Suppose it is desired to estimate the total'agricultural area, Y,
in a region containing N communes. There are very big communes and very
small communes which causes y to vary tremendously over the region. But
the ratio, y/x, of agricultural area to the population of the commune (per
capita area) would be less variable. If the population figures are known
for each commune it would bé preferable to estimate the ratio of agricul-
tural area to the éensus population from the sample of communes and multiply
this figure by the known census populatioh‘total of all the communes in the

22
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n n
region. If a random sample of n communes gives E:yi and E:)L as the
i=1 i=1 *

totals for y and x, respectively, the total of ¥ for the region is estimated
by

~ n n

Y =X ,Eyi/zxi ¢

i=1 i=1

where X is the known total for x for the region. If the census data on

x is not emploved, then

. n
Y=N v. /n .
; i
i=1
The above ratio estimator is biased, though in many situations only
negligibly so. On the other hand the bias may be considerable in surveys
with many strata and small or moderate samples within strata if it is
deemed appropriate to use separate ratio estimators. When it is considered
to be important that proper confidence statements be made, it is often
necessary that the bias of an estimator be negligibly small. Consequently,
in recent years, considerable attention has been given to the development

of unbiased or approximately unbiased ratio estimators.

The following theorem shows that

r = i=1 - %
gh X
2 X,
i=1 t

is usually a biased estimator of p. (Goodman and Hartley, 1958).
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Theorem 3,1

In simple random sampling, the bias of the ratio estimator, r, is

given by
Elr]=p = —[E(Q)]_ICov(r,E)
Note that the bias associated with the estimate
Y = X(¥/%)

for the total of y is

Bias(;) = XBias(r).
Also note that practically speaking r is never unbiased since this occurs
only if r and X are uncorrelated, a situation in which the ratio estimator
is not employed.

The decision to use a ratio estimator in hopes of improving the
precision is ordinarily based on consideration of the coefficients of
variation for the variables x and y and uéon the correlation believed to
be present between the two. In general the ratio estimator is useful if
the characters x and y have a correlation coefficient which exceeds 1/2.
The variable y must be nearly proportional to X or other schemes such as
difference estimators or regression estiﬁators may be dictated.

After the decision to use a ratio estimator has been made, the
evaluations of the various modifications to the classical estimator which
exist will, of necessity, depend upon the assumed model for the relation-~
ship between y and x and for the family to which the distribution of x
belongs. Several authors have examined under two general models the bias

and approximations to the mean square error (MSE) of various estimators.
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Durbin (1959) examined ratio estimators of the form r=y/x where the
regression of y on x i1s linear and where x is normally distributed. He
considers an application of Quenouille's method which splits the sample

into two halves to yield

where

1 (y,+y.)
5 12

l_(x1+x2).
2
Then the new estimate, R,, of p = E(y)/E(x) is

Ry, = 2r - %_(rl+r2).

Secondly Durbin investigates r and ﬁz assuming X has a gamma distribution.
These two models form the basis for most of the work done in the area of
bias reduction for ratio-type estimation.

Suppose
y = atbx+u,
where the Var (u)=§8, a constant of O(n‘l), and E[u|x]=0. Hence,
p = E(y) = b+ta/E(x)
E{x)

and

(3.1) E(r) = aE(x"1)+b.
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3.1.1 Normal Auxiliary

Suppose that x is a normal variable with variance h, which
is O(n"l), and the units of measurement are chosen so that E(x)=1, and

then let x=1-f; for sufficiently large n we have
E(x"L) = B(1+g+E2+83+..0) .

Taking the first four non-vanishing terms we find

(3.2) E(x~1) = 1+h+3h2+15h3+0(n"%).
Similarly
(3.3) E(x™2) = E(1+2£+3£2+483+...)

1+3h+15h2+105nh 3+0 (n~4) .

At this point we see that if (3.2) is substituted in (3.1l) the bias

in r may be determined as

E(r)-p aE(x‘l)+b—(a+b)

a (h+3h2+15h3),

[}

neglecting terms of 0(n"4). Further, since Var (x1)=Var(x2)=2h, we may

replace h by 2h in (3.2) and (3.3) and obtain

E(le)

il

1+2h+12h2+120h3

and

_2)

E(x] 1+6h+60h2+840h3 , i=1,2.

h

Thus if t,=(r,+r,)/2 then its bias is given by
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E(t,)~p = a(2h+12h%120n%,

Hence if the principles introduced in previous chapter are employed to

obtain a proper combination of

t1 = r
and
ty, = 1(r +r,) ,
2
of the form
tl-th
_—— r
1-R

then to eliminate the bias to terms of order 0(n‘4) the appropriate choice

of the combining parameter is

(3.4) R = 1+ 3h + 15h?
2 (1+6h+60h2)

Selecting R:% leads to the estimator ﬁz given by Durbin. For small h the
above expression for R is quite near 1/2. The importance of (3.4) becomes
clear when it is recalled that the auxiliary character x is being used be-
cause its distribution is known. Therefore h is not an unknown and this

improved value for R may be used to yield

_ 2(1 + 6h + 60h?%)xr - (1 + 3h + 15h%) (r; + rp)

R3 )
1 + 9h + 105h
Using (3.3) Durbin has shown that, not only is the bias of iz smaller

than that of ¥, but Var(ﬁz) < Var{(r). The estimator R3 combines the same
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two quantities, t1 and té , in the same fashion with a further improve-
ment in the bias., J. N. K. Rao (1956) has'éhown that the bias and vari-
ance of the jackknifed classical ratio estimator are both decreasing
functions of the number (g) of subsets into which the:sample is split,

In other words, let the sample of pairs (yi,xi) (i=1,...,n) be split at

random into g groups each of size m, then we get the estimator
R, = y./X.

from the sample after omitting the jth group, where

e}
Il

(ng-mF ) / (n=m)

"l
It

(m'—{'mi—!j )/ (n=m) ’

and §j and Ej are the sample means for the jth group. Then Quenouille's

estimator is

(3.5) RQ =qgr - Rj

N g-l g
9 9

‘and Bias (R.) and Var(RQ) are both decreasing functions of g. For g=2

Q

we have R2 given and studied by Durbin. Consequently, the indicated

optimal choice of t, is (corresponding to g=n)

However, the appropriate combining parameter should not be (n-~1l)/n, contrary
to standard practice. Since the value of h is assumed to be known and h
is O(n-l), we shall consider the case in which h=c/n for a known constant c.

This requires us to choose
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g = 2alh + 3n2 + 15n3]

2 3 )
c o] c
g + 15
a‘n-l |‘3(n~--l)2 1 (n—l)3i

-1% [n? + 3cn + 15¢2 )
n nZ + {3¢-2)n + (15c2-3c + 1)

as the proper parameter in the estimator

]

~ t]. - th
R =

4 .
l1-R

Nevertheless, because the purpose of this section is one of illustrat-
ing a procedure and its potential usefulness rather than introducing the
optimal ratio estimatér, we shall avoid the complications of iu and give
the variance of ﬁg, which can be compared.with the variances of r and ﬁz.

Durbin (1959) gives the following:

a(h+3h%+15h°) = aB(r)

Bias (r)

Var (r) a2 (h+8h2+69h3) + & (1+3h+15h2+105h3)
= 2
= a Sl(r) + 6 Sz(r)

Bias (Ry)= a(6h2+90h3) = aB(R,)

a2 (h+4h2+12h3) + §(1+2h+8h2+108h3)

1]

Var (ﬁz)

_ 2 A~ ~
= a Sl(Rz) + 6 SZ(RZ) .

The estimator Ry is unbiased to O(n"4). In order to derive the variance

of R3 let

where c = 1 ,; d= R ; c=d=l.

. [er—

1-R “R
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(Note that for RZ; R= 1, c¢=2, d=1.)
2
Using the linear model introduced previously and splitting the sample

as before we have uék(u
2
that E(uilxi)=0 and E(u%[xi)=25.

1+u2), yi=a+bxi+ui and ri=yi/xi, i=1,2, and further

Now we may write

3>
I

d d
cb+&.(a+u) ~db--S—(a+u ) = e (at+u,)
3 x( ) 2x1( 1 2x9 2

=b+ajlc-4dfl + 1 + cu-4d fu u .
x ?(;; ;) x 3(::“%)
- 1 2 *1 2
Hence
(3.6) E(R3—b) =agE )Jc _ 4 §.+ 1 ,
b 4 2 X, x2

and when R is given by (3.4),

2(1+6h_+60h?) 4= 1+3h+15h?
1+9h+105h? ! ~ 149h+105a2

gnd therefore
A _ _4
E(R3—b) = a+0(n 7).

Next consider

|

|0
1
N s

i
1=

2. 2 2
ST MY (R N MR = ST |
x2 4 X, %Xy 2 1%y

= c2(1+3n+15n%+105h%) + @2 (1+6h+60n2+840h°)
Z

+ (dz- ch) (1+2h+12h2+120h3) 2
ba ]

£



and

(3.8) EE
X

Il
o]
o
=33

W

Ef2c?
x2

2
s (L, L _4cd(l)]
hl X2 xlxz

s gc2(1+3h+15h2+105h3) + d2(1+6h+60h2+840h3)

~2cd (1+2h+12h2+120h3) } .
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Hence substituting approximate expressions for cz, d2 and cd we obitain,

after some algebra,

o 2
E(R _-b
(3)

Consequently

Var(Ra) = Var(R3~b)

[

1+26h+435h2+4098h 3-1

2
1+18n+291n +1.89Oh3J

- -

1+28h+471h2+4680h3

L1+l8h+2 91h2+1890h3

-

1+8h+117h2+2046h3

l+18h+291h2+1890hz

<y

Fl+28h+471h2+4680h3

1+18h+291h2+1890h3
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Since direct comparisons of the variance expressions are difficult
the values of the coefficients, S, of a? and § have been tabulated for
several values of h. The coefficients of a in the expressions for the bias
are also given here in Table I. No bias was calculated for §3 since all
terms containing the fourth power and higher in h have been neglected in
the original approximations and §3 is corrected for bias to this degree.
Because of the approximation the entries in the lower half of the table
are subject to considerable error. For instance the error in B(r) for
h=0.50 is greater than 6.0. In spite of this, the large values of h have
been included for two reasons. First of all these larger values are not
unusual in ordinary practical applications. Evidence in support of this
contention may be found in Rao (1969). He lists 16 natural populations
and includes the coefficient of variation of the auxiliarf-vatiablé #.
Recall that h is the square of this coefficient. Six of 16 populations
exhibit a value of h greater than 1.0 and only two have a value of h less
than 0.2. Secondly, note from Table I that even at h=0.1 the bias in ﬁz
is greater than that of r; a disturbing result since éz was proposed from
a bias reduction standpoint. ' The biases continue to exhibit this behavior
to a greatef extent for iacreazingly larger values of h,

The breakdown of the necessary approximation for the normal model
for the realistically large coefficients of variation is one inducement
to examine a different model., Furthermore, since practically all auxiliary
random variables, x, which are used in real problems are positive the normal
model is not realistic when h is near 1. The gamma distribution has re-

ceived more attention in the recent literatﬁre; possibly due to some of

these arguments,
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3.1.2 Gamma Auxiliary

Iet (yi,xi), i=l, ..., 0, dencte a simple random samﬁle from a
population assumed to be infinite and let V and ¥ denote the sample
means. Let yi=a+bxi+ui where E(ui]x)=0 and E(ui|x)=n6 where as before
§ is a constant of O(n~l). ILet the variates Xi/n have the gamma dis-
tribution with parameter h so that ¥ has the gamma distribution with

-parameter m=nh, i.e. the density of ¥ is
T Lexp(-R) /T (m), ®>o0.

It follows that

l‘._ — —:.L...._ .]-'- - -—-——1‘.—.—.—.——— *
F(,;)‘ w1 (;Z) (m=-1) (m-2)

Proceeding as in the previous section we assume that n is even and the

sample is randomly split in half. Let §. and §j (j=1,2) denote the sample
3

means within the two groups. Hence %gl and %iz are independent gamma

variables with parameters m/2, and

L 1 1 1 , J=1,2 .
E [ | — )= —
X, m-2 and E 22 (m=2) (m—4)
J j
Here we have p = b + a/m and since
y a_
E 1= b) = m-1 !
X
the bias in r = §/§ is
a a .

. a
Biag(r) = = = = =
m=1 m m (m—-1)
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Furthermore the MSE of r is

M(x) = a? m+2 + 8§ 1 .
m? (m-1) (m=-2) (m=1) (m~2)
1 1 ?1 3-?2
Now let t, = = (r,+r,) - —  + as before and then
X X
1 2

E(t2-—b)=i(l T T
ol e

Thus

Bias(tz) = a i _ 2a
m—2 m  m(m=2)

A
Consequently, instead of choosing R = 1 which leads to R, studied by
2
Durbin and more recently by P.S.R.S. Rao (1969) it is obvious that the

proper choice is

Bias (r) - m-2
Bias (ﬁz) 2(m=1)

R =

As in the previous section the result is

PN Y, +r
R3 = cr-df ! 2)
2

where c = Eif:il and d Ei% .
m

It follows that R, is unbiased for p and using the development of

equations (3.7) and (3.8) we have
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2 2
- c d 1 1
E(R3—b)2 = a2E]— &+ Z:—(—— + ..._.)+

= 22| e2 + a2 , d%/2-2cd
(m-1) (m=2) 2 (m=2) (m=4) (m=2) 2

L8 2c? 232 _ _4cd
2 | (D) (m-2) T m-2) (m=2) (m-2)2

_ a2 | s(m1l) , (me2) _ 7m®-20m+12
2m2 (m=2) (m—-4) (m=2) 2
§_|8(m-1) . 2(m=2) _ 8mZ-24m+16 .
2m2 (m=-2) m—4 (m=-2)2

After more algebra we obtain

a2 (m-3) + § (m~2)
m2 (m—-4) m2 (m-4) - !

2 2
E(R3-b) =

and therefore the MSE of Ry is

E(R,~b) 2- a2

M(R,)
)

1]

a2 L sme2) .
2 (m=4) m2 (m-4)

Durbin compares the MSE of r to that of R, and determines that

M(R2) < M(r)
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provided that m > 16 and that the inequality might hold true for some
values of m between 10 and 16. In order to attach some meaning to these

values recall that
E(x) = Var (x) =nm

and hence the coefficient of variation of x is m'l/z. Iet us make this

Y
same comparison using the new estimator Ry. Now

PN 2 _‘

m(my = a2 (m+2) - A
M(r)-M(R3) ) |:(m—l) (m=2) (m-4) |
+ s 1 o m2)
(m-1) (m-2) m? (m=4)

3 gf‘ (m-10) + §__ m2-8m+4
T 2| (m-1) (m=2) (m-4) 2 | @=1) (m=2) (m-4)

which is certainly positive for m > 10. Moreover, since the roots of

(m%2-8m+4) are real, positive and less than 8, the inequality
M(RS) < M(xr)

may hold for some values of m between 8 and 10, and is surely valid for

m > 10.

~

Further evidence of the superiority of R3 over R2 is apparent in the

comparison,
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~ A 2 R 3 2
- _ a m”=-5m“+12m+16 - 1
M(Ry)~M(R3) -7 L}m—l)(m—2)2(m-4) (m-4):]
+ 8|mEo7mrls _ _(m=2)
(m=1) (m=2)2 (m=-4) m2 (m=4)
_ a? (4m+20) N 8 (20m-8) .
" m2(m-1) (m-2)2 (m~4) m2(m-1) (m~2) 2 (m~4)

which is positive over the entire range of reasonable values for m. There-
fore, utilizing the general procedure introduced in the previous chapter
we have realized a strict improvement in the bias and MSE of the ratio

estimator under the assumed model.

3.2 Estimation of a Truncation Point

In many practical applications of statistical theory the random
variables which enter the mathematical model are restricted to a finite
range; even though the distribution, which has been satisfactorily assumed,
may ordinarily be defined upon unbounded random variables. In these in-
stances the estimation of the bounds may be of definite practical impor-
tance.

Suppose an estimate éf a truncation point, 0, is desired; and we
have a random sample of size n from the distribution F(x) which has been

truncated to x < 0, i.e.
X v FB(X) = F(x)/F(9) .

A natural choice for the estimator is the largest of the n observations,

that is let

t, = max {xl, X, ...,Xn} = X .
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Following Robson and Whitlock (1964) the bias in t; may be computed if

we first make the probability transformation
Y = Fe(x(n9= F(X(n))/F(e)
so that

X(n)= HF ).
6

Secondly, the function HF (Y) may be expanded in a Taylor series about

9
the point Y=1, to yield (omitting the subscript for H)

: L] (Y-l)z n (Y-l)B tee
(3.9) X, =06+ (Y-1)H (1) + -~ H (1) + H ()+...,
(n) 21 31

where

H(1l) = © ’

] FV
H (1)= —',Le—)- ’
F (8)
B - - | B Bl
F (6) F (9)

1 3 " 2 tee
gy = ?(e) 3 F'(G) _ F : (0)
F (6) - F(6) F (0)
and so forth.
Since (1-Y) is distributed as Y; the smallest of a random sample of

size n from the uniform distribution over (0,1l) we have

e(r-1)% = (-DK¥e(YY) = (-nk kin!
(n+k) !

and therefore
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(3.10)  E(Xp,) = 6 - A\w ) + 1 u'@) - _nl g ' (1)+...
. n+l (n+1l) (n+2) (n+3) 1}

Miller (1964) draws upon this general problem to illustrate the pit-

falls of universal application of the ordinary jackknife. Let

1
t=w ;81
1=1

as in the previous chapter, then recall that the jackknife always employs

R=(n-1)/n to vield
6 = ntl—(n—l)t2 .

When t; = X this procedure produces

(n)

+£:!‘.. (X

0= X(n) n

(n) x(n-l)) ‘

Miller considers three classes of distributions as to their behaviour near
the point of truncation in order to demonstrate various departures from
the desired asymptotic properties of a Student-t-like statistic.

Aside from these considerations it should be slightly discouraging

that 6 remains biased even when X has a uniform distribution over (0,0).

In this case where
F (x) =% ’ O0<x<8 ,
® 8

. \J
since HF (1)=6 is the only nonvanishing derivative in equations (3.9) and
6 .
so (3.10) becomes

E(X, ) =606 -1 \=_2_56
(n) (n-l-l) n+1

as is well known.
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Hence if we take R to be the ratio of the biases in t1 and t2 then

)

and

(3.11) Gl

il
)
+
I_l
>

1
=]
>
+

8-

]
N
>

which is completely unbiased for 9 in this uniform example.

Interestingly, Robson and Whitlock (1964), almost concurrently with
Miller's study, through consideration of (3.10) proposed the estimator
given in (3.11l) as being "modified to fit the factorial series rather than
the power series in 1/n". This appears to be one instance in the litera-
ture where the principle of the transformation is used instead of the rule.
The results of this are generally good and Miller (1968) later refers to
this alteration as "satisfactory" performance of the "jackknife", although,
strictly speaking, it is no longer the jackknife,

Note that 8 as given in (3.11) should be used for all distributions

in the class under consideration and the bias will be given by

B(6-0) = - — 1. ® (U+ .20 w'@ -_3 5@+,
(n+1) (n+2) (n+3)! (n+4)!

An interesting reapplication of the technique for this problem is given

at the end of the next chapter.

Using the proper R the estimate for the variance which we obtain

from the "psuedo—values"is

)2,

1 0 2 N2

. (n) *(n-1)
i=1
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and Robson and Whitlock suggest a good approximate confidence bound for

0 of the form

Also note that for the uniform example it may be recalled that

_6)2] = 20°
(n+1) (n+2)

MSE(tl) = E[(X(n)

and, even though the inner order statistic X( is introduced in 6 and

n~-1)
hence the new estimator is not based on the sufficient statistic alone,
we have

MSE (5) = Var(é) = 202 .
(n+1) (n+2)

Furthermore we may use the Rao-Blackwell theorem to obtain

" N n+l
8 =E[6[X(n)] =—-r—1~— X(

RB n)

which is the unique minimum variance unbiased estimate of 6 for this

simple example.



CHAPTER IV

HIGHER ORDER TRANSFORMATIONS

4.1 Reapplication and Motivation

In one of the earliest articles on the ordinary jackknife proce-
dure Quenouille (1956) suggests a reapplication of the method in order
to eliminate the 0(n~2) term which remains after an initial application.

When the assumed model for the bias is

E[tl]—6=a1+§_2_+§_3_+ cee 4
n2

E*
t, = t and 8 = nt.,-(n-1)t

then 9§ is biased by terms of order O(n_z). Specifically

E[0]-6 = - as - (2n-l)az - ...
n(n-1) n4(n-1)2
which, because
1 1 (1+1+1 + ...0) '
n(n-1) n2 n n2

Quenouille and later Kendall and Stuart (1961) choose to write as

E[0]-6 = - a, + 0(n™")
2

=]

Hence the form given in their works for a second application is

43
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5(2) = n2 5 - (n-1)2 6
n2-(n=-1)2

which, as they state, ié unbiased to terms of order 0(n’3). The serious
flaw in this particu;ar rule is that if ak=0 for all k > 2 then é(z) is
not exactly unbiased as one would have desired.

In order to clarify the symbols employed in the discussion of re-

applied transformations recall that for R = (n-1l)/n

~ n
6 = ntn - n-1 1tn-1
n z :
i=1

so that if the jth unit is omitted from the sample the corresponding

statistic is

~ n
0, = (n-1) .t n-2 .. t .
=]l -— n-2
] Jn=l =3 ji
i=1
i3
Hence averaging over j yields
- D o~
(4.1) 6 =1 aj
n
j=1
= 1 N t n-2 t
=D DL = D) DETs
j=1 i3

(n-1) tn_l—(n-2) tn_2 .

Therefore the reapplication suggested by Quenouille may be written

2 — (he1)E 1y 2P (o1 B
N [, - DE,_ ) - eD2[e-nE )
2 2) =

n2- (n---l)2

- (n-2)En_2]
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n3t .- (2n%2 - 2n + 1) (n-1)E _, + (n-1)2(n-2)t

1 n-2

2n-1
It may now be seen that

£(6(*)1 _ n3-2n3+4n2-3n+1+n3-4n2+5n-2
2n-1

n2-2n2+2n—l+n2—2n+1 a

+ 2n-1 1

(n2-n) (n-2) - (2n2-2n+l) (n-2) + (n—1)3a

+ (n-1) (n-2) (2n-1)

+ 0(n~3)
=0 + 0.a
1

+ n3-3n2+2n—2n3+6n2-5n+2+n3-3n2+3n—l a
(n-1) (n-2) (2n-1) 2

+0(n”3) .

And as mentioned previously, if a; and a, are the only two nonzero terms
in the power series expansion in 1/n for the bias, it would be desirable
for 6(2) to be unbiased. However, in this event

E[é(Z)] -6 _ a,
(n-1) (n=2) (2n-1)

when the reapplication is carried out according to Quenouille.

A more recent attempt to prescribe the reapplication technique was
made by Mantel (1967). In this instance the author elects to retain the
value R = (h-1)/n for each;étep of the procedure. Hence

9 = nt = (n-1) t
n n-1
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and

5(2)

no -(n-1) 8

I

n2t -(2n-1) (n-1)t _+(n-1) (n-2)%
n n-1 n-2

Clearly both of these procedures are lacking because the essential worth

of the parameter R is overlooked or ignored.

After a single application of the ordinary jackknife we have,

E(6] - 6_ 22

— _ 2n-l)az _ ...,
n(n-1) n(n-1)2

which indicates a propef value of

R = 1 /// 1 - n-2
n(n-1) (n=-1) (n=-2) n

if the combining second estimator is to be obtained as in (4.1).

Hence
8(2) _ng_(n2) §
2 2
2 T . 2 I
n< t n(n-1) t (n-1) (n=2) t (n-2) t
—— S —————————— f— — TR — — R —————— —2
(4.2) 5~ B > n~1 ) n-1 + > n
2¢ - o(ne1)2 T -9) 2%
n tn 2(n-1) tn—l+ (n-2) tn_2
- 2
In this jinstance, if a, and a, are the only two nonzero coefficients

in the power series, it may be shown that

m[p(2)] =02 » 2(1)2 +_(-2)2,
‘ 2

+ n-=-2n+ 2 + n-2

al
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Since this formulation of the reapplied transformation appears to be
consistent with the basic aim of the procedure, the subsequent re-
applications must not be ignored. An algorithm for computation of the
kth iterate of the procedure would be advantageous if the evaluation
of the appropriate R for each step is avoided. Consideration of this
question leads to what will be called a higher order transformation.
Recalling the straight line formulation of the problem within Tukey's
graphical method, suggests the possible use of a determinantal equation.
Upon examining the use of determinants by Shanks (1955) or Gray, Atchison
and McWilliams (1970) an alternative form of the ordinary jackknife be-
comes apparent which furthermore is suggestive for a logical extension of

the method. Note that

t, &

8 ~1l/n_1/(n-1)
1 1l

1/n 1/(n-1)

or more generally, if

Elt;] - 6 = £,(n)b, (8)
and
Elt,] = 8 = £,(n)b) (8) ,
then
(4.3) t, ot
" _1f1 o
=T 1
£, 5
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_ fat) - f1t2
£

1
=TR ¢t

since R = £;/f,. This is sufficient motivation to consider an extended

version of the transformation.

4.2 Definition and Properties

L3

If there exist (k+1l) estimators of 6 (k<n) with distinct non zero

biases based on n observations such that
E[tj] -0 = ; fij (n)bi(e)’ j=l,...’k+l

then in many instances the following quantity will exist and prove use-

ful in estimation problems, at least for small k.

Definition 4.1

The determinant in the denominator of the following is nonzero,

define the kth order generalized jackknife G(k) by



49

—_— t t, eeee t

ll 12000- fl'k-{-l

f21 22°°°° f2,k+l

b £ il
A (k) k1 k2 kk+1
(4.4) 9 = .
1 1 .... 1
fll flz"" fl,k+l
£ £ f

21 22°°°° 2,k+1

£ ceer £
kL k2 K, k+1

~ ~
Examination of 6 1) will produce the conclusion that 6 as given in

equation (4.3) is special case of e(k) and therefore we denote 0 =6(l).
Also, if Ci denotes the cofactor of tj in the determinant of the numerator

then we may write

One indication of the propriety of this definition may be obtained

by examining 8 (2 when



£, .
i,j+l =

In other words, consider

t=ty, ty=t

50

1
(n=3) ,

-1 and tj =t _,

so that
tn tn--l tn-2
1 1 1
n (n-1) (n=-2)
1 1 1
6(2) _ |n2 (n-1)2 (n-2)2 .
1 1 1
1 1 1
n (n-1) (n-2)
1 1 1
n2 (n-1)2 (n-2)2
Here

A R

1 - 1
2 [(n—l) (n-2)2

B (n-l)2(n—2{] T =12 (n=2)2

? = - L -
2 n(n~2)2

3 _ | 1
C =l nn—1)2

and thus the

1 o

n2 (n=-2) n2(n=2)2
U U B S

n2 (n-1) n2 (n~1) 2 !

determinant of the denominator is
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n2--2(n-l)2+(n-2)2
n2(n-1)2(n=2)2

.
] w
l—J
Q
N e
|

2
n2 (n-1)2(n~2)2 :

Therefore

n“t =-2(n-1 t +(n-2 t
~(2) n (n=1) n-1 (n-2) n-2

) B 2

which is identical to the expression obtained in (4.2) for a proper
second application of the general procedure., This fact and the discussion

of the previous section indicate the validity of the following:

Theorem 4.1

If 6(k) exists and either

i) fij(n)=0, j=1, ..., k+1, for all i>k
or

ii) bi(e) =0, for all i>k

E[é(k)] =6 .

then

In other words, if

.
E[ty]-6 = iz=:l £, )by (9), i=1, ..., k+l

and e(k) exists then it is unbaised

Proof:

Since



t t cese
1 2 Cre1
fa Fiz eeer By g
f21 f22 eeo o0 f2’k+l
£ £ cees £
Y k1 fx2 K, k+1
0
Kl
o3
K
j=1

it is clear that

-Mx‘
Hh
o

=
i
l—‘

il i

E[é‘kﬂ = 0+ .

£
kl

i=1

f12 e 0o 0

f22 e e 0 0

f o e 00
k2

k
zg.fi,k+1bi

=

£, k+1

2,k+1

£
k,k+1
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k+l  |-1
j
22 -
j=

Now the determinant in the numerator of the second term is zero since the

first row is obviously a linear combination of the other k rows.

The (k+1)St

row being multiplied by a negative b, and the sum over i(i=1,...,k) added
1
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to the first row produces a row of all zeroes, Therefore
e[o®i] =9

as was to be shown.

We may give a general expression for the bias in e(k) by employing

the argument offered in the above proof to obtain

[oe]

1w 5 T K1 g
e 2 filbi+ck2 £, b, + ...+ CETD £

b
i 1
g6y - g o —iskel iskil 12t imke1 TrRHL
i+l
J
=1
(4.5)

J
¢ £, b,
_ 3=l izksl k7ij .
k+1
cJ
k
j=1

This expression suggests a special result when there exists a power series
expansion in (1/n) for the bias in t1=tn(§n) as a consistent estimator of

8. And furthermore when the required accompanying estimators tk have been
obtained by averaging the analogous estimators evaluated over all sub-

‘samples of set size, i.e.,

t =t X k<n.
k1 nek X7 n

In this case the following theorem applies.
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Theorem 4.2
If fi j+l = (n—j)_l then the higher order transformation reduces
r

" the bias to terms of order k+l in 1/n, i.e.

g[8k -9 = o(n~(k+1)y,

Proof:

From equation (4.5) above

oo

k+l
Y, ¢

DX TRl
a(k), _ 9 = =1 i=k+1
E[6 1 k+1
2
j=1
(4.6)
RUE k-1 ¥ i-1
Y ¢ (3T 2 by, /(n=j+l)
_ J=1 i=1 .
B k+1
2.q
K
j=1

Because all of the elements of the cofactors are positive and less than

¢’ are bounded above by one.

unity, the ”

Furthermore the Ci can each be

written as a Vandermonde determinant,

k

cl=| 11 1
1=0  "ni)
i#3-1

1

=Rl

%4H

1 PN

1 ceee

(n=3)

1 cava 1
1 1
n—1 (n=3+2)
1 ceea
1 (n-l)k"1

1 1
5+ &l ekl

—rm——

(n=k)

1
(k)L

. (=1)

j+1



The series

i+1
- 1 RS U ST
i=0 (n-1) ¢ > m n-4% n-m
i#j-1 L ,mAj-1

2 by, i/ (n-3+nitl
i=1
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is clearly of order 0(l) and therefore, consideration of the last expres-

sion within the algebra of order relations allows one to conclude that

as was to be

e(0®)1-¢ = o(nk"1),

shown.

To illustrate the use of this higher order transformation consider

the estimation of the parameter Uu

u

normal distribution N(U,Oz). That is, suppose the

and 9=ulP and

and hence if

X, are i.i.d. as N(u,0%)  i=l,...,n

it is proposed that t, = . We know that

242 4
6U“0 30
E[t;] R s

I
=

n
ot B e
2~ n ] (n_l)q (nx Xy ’
l=

=2 ol (nRex;-x )b
37 nmD) 2: E: CE T e L
i > 3

t

from a random sample of size n for the



and
P S 2 2
9 = 5 (n“t;-2 (n-1) to+(n-2) “ty),
then
E[6] = 6.

Also recall the estimator for a truncation point and the expres-

sion for its bias as given in equation (3.10). For this problem we have

= max{Xl,...,Xn} = X(n) ’

and again omitting subsamples of size one and averaging,

n-1
t2=—-—- X

n (n)

1
+ - X ’
n (n—-1)

and then all vossible subsamples of size two,

-2 (n-1) (n-2) _
n(n-1) 2 X(n) + (n=2) X(n—l) + X(n—2) .
In the notation of this chapter
1 1 \
£ . (n = f(n)s —————
1) n+l 2f (n+1) (n+2)
and thus
A § - 1
Fim=g . £ M= T ’
1 _ 1
5 gn)_ a1 5,0 D .

Hence



57

tl t2 t3
1 1 1 3 -1
a(2) _ | - — 3
0 = —
n+l n n-1 . E C2
j=1
1 1 1
(n+l) (n+2) n(n+l) n(n-1)
where
C% = i l — l ) = l
n2(n-1) n(n-1) (n+l) n2(n-1) (n+l)
2 - 1 _ 1 _ -2
2 (n-1) (n+1) (n+2) n(n-1) (n+l) n(n-1) (n+l) (n+2)
and
C3 = _._._l.......,. - —--————]—'.———-—-— = 1
2 n(nt+l)?2 n(n+l) (n+2) n(n+1) 2 (nt+2)
Now
3 .
cl = 2
:E: 2 n2(n+l)2(n-1) (n+2)
j=1
so

D
N
I

=

-
(n+l)(n+2)t1—2n(n+l)t2+n(n—l)t3J

|

\]
N[=

(n+l)(n+2)—2(n+l)(n—l)+(n—l)(n—Z}} K(n)

= 3X(n) - 3X(n—l) + X(n—2)

This is the same estimator which Robson and Whitlock (1964) derive
by adhering to the proper principles for reapplication of a bias reduction

scheme. In the notation of section (3.2) the bias of G(Z)is



E[g(?_)]_e = -

which is clearly 0(n~3).

n!

(n+3)!

H

(1) +

3n!

(n+4)!

g™ (1)-...

58



CHAPTER V ’
SUMMARY AND DISCUSSION

The general transformation of an estimator, which may be classified
as the re-use of sample information, has been shown to be helpful in sev-
eral applied problems. In the cases where the ordinary jackknife is appro-
priate the present procedure will incorporate it as a special case. For
those applications where Quenouille's method has been used and the more
general approach is appropriate, a definite improvement has been demon-
strated, e.g. ratio estimation and truncation points.

The fact that some applications may be found for which the bias
reduction is accompanied by a decrease in MSE or even in variance suggests
the desirability of a characterization theorem. In other words it would
be helpful if one could characterize the distribution of the estimator ti,

say, for a fixed method of producing t, such that

MSE (6) < MSE (tp) .
If the problem of linear combination of two correlated estimators
is examined from the viewpoint of minimizing the variance of the combined
estimate then the proper coefficients are well known. To minimize the

variance of 6 without regard to the restriction that R be the ratio of the

biases we take

A

(5.1) g = LVar(t2)-Cov(t,tp)lti+[Var(t1)-Cov(ti,tp)lty
B Var (t;~t,)

59
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Next suppose that for some constant ¢ > 0O

" "
Var(t;) = & , Var(t,) =
2 2

n (n-1)
and

=S
n(n-1)

Cov(t_ ,t o
( X 2)
An estimator, t;, exhibiting this character may be said to be super-
consistent, a phenomenon occasionally associated with estimates of a
range parameter. The correlation of t1 and t2 is near unity when t,
is the same estimator as tl but evaluated for suobsets of n-l as has

been previously discussed. Regardless of how such variances might arise

the equation (5.1) becomes

. n-(n-1) (n-=1)-n
5. =DZn 'Y i) 2
1
n2(n-1)2

ntl - (n—l)tz ’

the ordinary jackknife. The example mentioned as a possible source of
superconsistency is one in which the value of R = (n-1)/n has been shown
to be inappropriate.

The major objections which have been raised against the special case
(jackknife), of the present technique are mainly concerned with asymptotic
properties. The asymptotic distribution of a test statistic derived from
the pseudo-values is not crucial if one is primarily concerned with im-

proved point estimates. The difficulty for median estimation reported by
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Miller (1968) which is due to Lincoln Moses is again one which is related
to the asymptotic distribution. Moses (1970) states that in his study;
"the estimated variance turned out to be the reciprocal of an estimate of
the squared density at the median (as it should be) but multiplied by the
wrong constant." Even though the more general parameter R may not re—
move this difficulty, the difficulty is not one which pertains directly

to the improved point estimate.
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