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LIST OF SYMBOLS

'SYMBOL
Time (sec)
w Circular frequency (sec-l)
f£(t) Time function
Time interval (sec)

N Positive integer

n Summation integer index

At Time increment (sec)

Af - Frequency increment (cps)

: B

Aw Circular frequency increment (sec—l)

k Integer index

%(t) Piecewise linear approximating time function

£(w) Integral Fourier transform of £(t)

%(w) Fourier infegral transform of approximating function %(t)

fn Value of f(t) at t = tn

*

F(w) Piecewise linear approximating frequency function

Ek Value of f(w) at w = wk

n Integer index %
%(t) Inverse Fourier integral transform of f (W)
e® or exp (x) Complex exponential function
P(x,t) Wave function
@(x,w) Fourier transform of wave function
A(w) Complex wave number
o (w) Attenuation coefficient (in*l)
C(w) Phase velocity (in/sec)
o Stress (1b/in?)
A Particle velocity (in/sec)

iii



o Mass dgnsity (1b-sec?/in)

é Complex phase wvelocity (din/sec)

L Distance between two data stations (in.)

T First arrival time of wave at second data station (sec.)
Re{ } Real part of a complex quantity

Im{ } Imaginary part of a complex quantity

iv



INTRODUCTION

The wave equation with a complex phase velocity in one spatial dimen-
sion has been shown to govern the motion of plane waves in dispersive and
dissipative media such as (a) water containing a large concentration of air
bubble scatters' or, (b) viscoelastic polymersf to name only two. In study-
ing wave motion in such media, two types of problems are often encountered,
(1) determination of the complex phase velocity and attenuation coefficient
from experimental data obtained at two spatial locations during the passage
of the wave and, (2) prediction of the response of the medium at some spatial
location given the value of the complex phase velocity and attenuation of the
medium and the wave function at some other spatial location. In the case of
the stress wave propagating along a viscoelastic bar, the first problem cor-
responds to determining the phase velocity and attenuation parameter given the
particle velocity-time or strain-time data at two points along the bar. The
second case corresponds to predicting the stress, strain, or particle velocity
at some downstream point along the bar given the phase velocity and attentua-
tion parameter and the stress-time, strain-time, or particle vélocity-time

data at some upstream point.

In both problems mentioned above, the solution often involves taking
either the integral Fourier transform of the wave function, as in Problem
(1) above, or the inverse integral Fourier transform of some response func-
tion, as in Problem (2) above. Usually, the Fourier transforms are obtained
" numerically because the wave function-time data is such a complex function
of time that analytic expressions of the transforms are extremely difficult
to obtain. Recently Magrab® has shown that even approximate numeriéal methods
of obtaining the inverse Fourier transform in obtaining the response of a
viscoelastic bar are difficult and tedious to apply.

In the discussion that follows, an analytical-numerical method of ob-
taining integral Fourier and inverse integral Fourier transforms is discussed.
The technique has been used to obtain the approximate transforms of functions,

the real transforms of which are known.



THE ANALYTICAL-~-NUMERICAL METHOD

We are given the function f(t) (Fig. 1) which is real for 0 < t < T
and zero for t outside the interval. The Fourier integral transform for

such a function is

iwt

T
(1) f) = [ f(t)e ™ at
(o]

the inverse transform of which is

(2) f(t) =

A|e

[o0)
J Fwetdy for £(t) real.
(o]

The usual numerical method of evaluating (1) is to approximate the
function f£(t) with a time series and the integral with a finite summation;
thereby forming the discrete Fourier transform.

N-1
3) ?’(m) ~ ¥ f(nAt) pwp('im'nAf\/\i'

n=0

in which the interval 0 < t < T is divided into N-1 equal time

intervals in which

T
(N-1)

(4) At =

and the summation is performed at certain discrete values of w
at which f(w) is simply related to the integral transform of f£(t)*. For
large N this method requires a great amount of computer time and has been
replaced in recent years by the so-called "Fast Fourier Transform'(FFT)
made possible by the Cooley-Tukey5 algorithm which takes advantage of cer-
tain symmetric properties of the transform and.periodicity relations in
computing complex exponentials but still uses the form of (3) above to
generate transforms. The FFT method reduces the number of operations from
order N? to order N log N*; thereby effecting a great saving in computer

time for large N.

*for w = kAw, k = 0,1,2...N,



The method described below should require more computer time than the FFT
method for the same number of data points N since the method below requires
several additional computations at each value of w. However, it will become
obvious that the number of data points required to obtain an accurate numerical
approximation of the transform is less for the method below than for any
method which uses (3) as its basis and should therefore be faster than even

the FFT method provided the same efficient use of symmetry and periodicity

relationships are used as in the FFT method.

INTEGRAL TRANSFORM

Given the function f(t), 0 < t < T (see Fig. 1), we form a piecewise

linear approximation of the function between abscissa points tn and t

nt+l
corresponding to ordinates fn and fn+l respectively. An approximate descrip-
tion of f(t) between t and t 41 18 then
(
=0, t<t¢t
n
f - f
. - 2.0 N
(5) A (B): { =f +7% 1 (t-t), t <t <t .,
13 LR B II
\ 0, ¢t> Ent1

which is shown in Fig. 2. An approximation to f(t) over the entire interval
0 <t <T can then be expressed as a series of such functions or
N-1

E A (t) = £ (t)
n=0 =

6) f(r) =

in which N is the number of intervals of connected linear approximations to
f(t). The intervals are not necessarily equal. The approximate Fourier

transform of f(t) is then

% N-1 _ -
(7)) fw)y= I An(w) = f(w) where
n=0
(8) n w) = An(t) e dt.

t
n



Substituting (5) into (8) we have:

t e
n+l £ - f
9) A (w) = J {f 4 otl  no )} oWty ,
n n t -t . n
n+l n

t
n

which after integrating by parts is

- £ - f )
(10) I (W = [ e L ) ] [i oottty - ) ]
ntl n
-iw(t .-t )
s AL AL L TS
—_— e n

iw

for w > 0. For w = 0 we have from (9)

1

(11) An(o) = fn(tn+1 - tn) +"E(fn+l - fn)(tn+1 - tn)
L vEd ., -t)
2 n+l n nt+l n

Equations (10) and (11) can be substituted into (7) to obtain:

N-1 1

(0) = nEO {fn(tn+l_ tn) + E(fnJr1 - fn)(tn+l - tn)}

R

(12)  £(0)

R

a5 Fw = Fw - 3 | [-2_ml | - exo(iule = )
) wfg wi(a) ) n=0 | ':wz(tn.ﬂ_ - tn) ] [ T eXpiTie tn+1 tn

+ fn " fn+l [exp(—iw(tn+1 " tn))]

m exp(—iwtn) s

which is the analytical integral Fourier transform of the piecewise linear
approximation to f(t) composed of N-1 linear sigments connecting N data points.
Equations (12) and (13) are easily programmed for solution on a digital

computer (see Appendix) especially one having the complex exponential as a



library function. Computation of ?(w) involves executing only two ''DO"
loops after the N values of each of £ and t are read into storage; one ''DO"
loop index determines the value of W, the other, n.

An interesting comparison between this technique and the discrete Fourier
Transform deseribed by Eqn.(3) can bé made by allowing the'approﬁfmating'function
?(t) to be composed of equally spaced flat-topped segments as seen in Fig. 4.

This can be effected by permitting fn+1 = fn in Eqn. (5) and (9) and the result

of integrating (9) is

< B sin(wAt) -iwt
(14) An(w) = fn-——zazgy— e n At

where At = t "ty Substituting (14) into (7) we obtain

- N-1 .
(15) Tw) = f =(z £ exp[-iunAt]At) sin wAt

n=0 WAt
and we see in Eqn. (15) that the analytical Fourier integral transform of
the approximating function made up of flat-topped functions (Fig. 4,5) is

the same as the finite difference approximation to the integral transform

(discrete transform) of f(t), as shown in Eqn. (3), except for the multiplying
factor:

Sin(wAt) _ sin(wT/N)
16) o WI/N)

which approaches unity as wT/N +> 0. For sufficiently large N, then, the
discrete transform given by Eqn. (3) is very nearly equal to the analytic

*
transform of f£(t) described by the flat-topped functions in Fig. 4.

NUMERICAL RESULTS

Transforms of a half sine pulse and a triangular pulse were computed
using Eqn. (3) and (15). Very good agreement was achieved between the two
methods and the known analytic transforms for wT/N < 0.1. For wI/N > 0.1
Eqn. (15) yielded the better result though neither (3) nor (15) compared

favorably with the known transform.



The Fourier integral transform of the triangular function shown in
Fig. 6 was calculated on a digital computer using Eqn. (12) and Eqn. (13)
for T = 10_4sec. and N = 100, The values computed using the analytical-
numerical method were found to be the same for either N = 3 data points
selected at -T, O, and +T or for N = 100, and the values were found to agree
with the known analytic values of the integral transform of the function to
six significant digits out to WT = 5 (five zeros of the transform), where the
calculations were terminated (see Program One output, columns two and four).
Computed values using the discrete-finite difference method of Eqn. (3) for
N = 100 agreed with the exact values to three significant digits over the
interval 0 < Wl < 5 (see Program One output columns four and six). This test
case is perhaps the most dramatic example one could use to show superiority
of the analytical-numerical method since, because f(t) in Fig. 6 is comprised
of linear segments only, Eqn. (15) is exact. Less dramatic superiority was

indicated in computing transforms of nonlinear functions. This is demonstrated

in the next section below.

INVERSE INTEGRAL TRANSFORM

An—approximate—inverse—Fourier—integrat—transformof 7 function £(o)
can be obtained in the same manner as the approximate transform was obtained
for the function f(t) in the previous section.

Given the function f(w) (see Fig. 7) the inverse integral transform of

the real function f(t) is, after taking advantage of the symmetry of the trans-
form,

(17)  £(t) = %( Tw) Mt au
(o]

* As in the previous section for f(t), we form an approximating function
f(w), which approximates f(w) by means of piecewise linear segments at regular

or irregular intervals, as shown in Fig. 8. Then

* M
(18) f@) = fW = I 3§ (W)
k=0



in which 0 , w< W
£ .- : :
= = [ Tktl k .
(19) § (W) =9¢ £, +——m w , wk < w 5-wk+1
k o e
L_O s wk+1 <w

which is described in Fig. 9. The inverse integral of f(w) is then approxi-

mated by
~ M
(20) f(t) = f(t) = X dk(t)
k=0
where ‘ “
- 41 k+1 iwt
ak(t) - [ Sk(w) dw
W
w f - f
(21 _ 1 {k+1 {E O = R S RO L
m I L T Tt P
Wy

After integrating Eqn. (21) by parts, we obtain

(22) 8, (t)

!}
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for t >0

Equation (22) can be substituted into Eqn. (20) which can be used to

compute the analytical transform f(t) of the approximating function made up



of piecewise linear segments. The series of §, (t) functions is computed

for each value of t until the convergence criterion is met,
(23) |6n(t) - Gn_l(t) <e , n=0,1, 2,...
where e is a preset error. The approximation to f(t) is then

U T S )

(24) £(t) 3%1_ z ooy |1 el Wy — 9t
k=0 k+1 k
i(w - W)t
fk —Afk+l e T k+1l k i t
- - ek
it
for t >0

Note that Eqn. (23) must be satisfied for each value of t so that 1 is not
constant and must be computed for each value of t, or prescribed in the com-

putation scheme in which case the convergence criterion Eqn. (23) is not

necessarily met at each value of t.

NUMERICAL EXAMPLE OF INVERSE TRANSFORM

The function below

0 - o<t < =T

(25)  £(t) = 1-t/T -T<t< O
1+ t/T 0<t< T

0 T<t< o

the analytical Fourier integral transform of which is

= _.sin wr/2,2 .

(26) f(w) = T(—————mT/2 ) (Fig. 7).

was used along with Eqn. (24) to generate an approximate inverse transform,
or approximation to Eqn. (25) above for t > 0. The value of n was preset at

500 and the data points were equally spaced over the interval 0 < w < 10w ,
T



or five zeros of the transform. The numerical results are shown in Table (1)
for the case in which T = 10_4 sec and n = 500. One observes that the approxi-
mate inverse transform ?(t) differs from f£(t) (computed from Eqn. (25) above)
in the third digit over the first 9/10 of the time interval, and in second
digit over the last 1/10 of the time interval. 1In Table (2) the results are
listed for n = 1000, T = 10_4 for the same data point spacing, i.e. over ten
zeros of the transform. An additional digit of accuracy was picked up for
each of the time intervals, three digit accuracy for the first 9/10 of the time
interval 0 < t < T and about two digit accuracy over the last 1/10 of the time
interval.

In Table (3) are the results of nine cases in which inverse transforms
of Eqn. (26) were computed using Eqn. (24) and using a finite difference ap-
proximation to Eqn. (17), or a discrete inverse transform. Both computed
transforms were compared to the analytic value given by Eqn. (25). The relative
error* range for each computed transform is shown in the fifth column of Table
3 for the piecewise linear approximation and in the sixth column for the dis-
crete, or finite difference version. One can see that the piecewise linear

method is more accurate than the discrete finite difference method for the

same number (k) of data points of f(w) used in the computations and that the

difference in accuracy becomes more pronounced as k decreases.

ANALYSIS OF WAVE PROPAGATION DATA

It is well known that a one dimensional wave propagating in a relaxing
medium such as a linear viscoelastic polymeric material (eg. low density
polyethylene(Z)) or water containing a large concentration of air bubbles(l)

obeys the wave equation having a complex phase velocity or

27) %(x,t) _ 1 %(x,t) .
9x2? ’éz ot?

The wave function Y(x,t) can be stress, strain, or particle velocity for a
viscoelastic wave or pressure for a compression wave in a dispersive fluid.
Taking the Fourier integral transform of Eqn. (27) we obtain, for zero

initial conditions,

*relative error is analytic value minus computed value all divided by
the analytic value.



(28) '§f%§§¢91 - @G, = 0

in which P(x,w) is the Fourier transform of P(x,t) and A(w) is the complex

wave number defined by

(29) Aw) = o) + iw/Cw).

*
(Note: by virtue of Eqn. (27) that A% = -w?/C?)

The solution to Eqn. (28) is
(30) P(x,w) = Ae " + Be

in which A and B are constants to be determined from boundary conditions. If
Y is finite as X increases without bound then B must be zero. Assuming that
the wave function at x = 0 is a known function Y(0,t), transforming and then

substituting into Eqn. (30) yields A = ¥(0,w). Equation (30) becomes
(31) PG,w) = 9(0,w)e F&/C L 50wy oM.

If the wave function at some other spatial location is known, say Y(L,t),

10

then 0 and C can be obtained from the transforms ¢(0,m) and Y(L,w) by employ-
ing Eqn. (31). If we define

(32) G(w) = P(L,w)/P(0,w)

then Eqn. (31) yields

(33) a(w)

- %f tn(|cw) )

and

(34) C(w) wL/cos_l[Re{G(w)}/lG(w)l]

After C and o are obtained, Eqn. (31) then is the source of the transform of

the wave function at any coordinate x provided the material really does obey

Eqn. (27). The wave function at any x coordinate Y(x,t) can then be obtained
by inverting Y(x,w).

For convenience in data reduction the function Y(L,t) is translated to
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the time origin by changing variables. Letting t' =t - Tp, where Tp is

time of first arrival of any disturbance at x = L, it can be shown that

F3
(35)  BE,w = e

*
in which P(L,w) is the Fourier Transform of. the time translated version of

P(L,t) or Y(L, t' + Tp). The formulae of 0 and C then become

(36) o = - 2= (&)
(37)  C() = C_/I1 + 1 cos™! (Re{E @)1/ [E)[)]
P
where *
(38) () = PL,w)/P(0,w)
and

(39) Co = L/Tp

NUMERICAL EXAMPLES

(2) (6)

Recently Stevens and Malvern and Norris

have published experimental
data obtained from one dimensional viscoelastic wave propagation experiments
with different types of polyethylene filaments. In each experimental program
o(w) and C(w) values were measured by means of sinusoidal steady-state vibra-
‘tion experiments. The results for each program can be seen in Figs. 10 and 11
for Stevens and Malvern and for Norris, respectively. In each case, a smooth
curve was fitted to the ¢ and C data and values derived from the curves were
used to predict the wave function at another point by employing a finite-
difference numerical inversion scheme to evaluate the inverse transforms. Norris
used a measured stress—time function at x = 0 to predict particle velocity
V(x,t) at three locations by numerical evaluation of

(40)  V(x,t) = -11; Re J %é%’w%)‘ exp (-0x) expliw(t - x/C)]dw

(o}

Stevens and Malvern used a measured particle velocity-time curve at one station

to predict the particle velocity at another by numerically integrating
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(41) Vv(x,t)

%.J Re {7(0,w)} cos (w(t - x/C))

(o)

Im {7(0,0)} sin [w(t - x/C)] e ™ du

where

(42) V(0,w) = Re{¥(0,w)} + i Im{T(0,w)}

which was obtained exactly by means of a piecewise linear approximation of
V(0,t). Eqn. (41) was not evaluated exactly, however. Instead a finite dif-
ference numerical integration scheme was used.

Two numerical examples were chosen to demonstrate the numerical method
of wave propagation data analysis. This author has taken the data at the first
two stations of both Stevens' and Malvern's data and Norris' data and, using
the previously-discussed technique of obtaining exact Fourier transforms of
piecewise linear approximations to the data, obtained the values of a(w) and

C(w) numerically from the wave propagation data by means of Eqn. (35), (36)
and (37) . The d.

by straight lines to form the piecewise linear functions approximating the
smooth curves. The calculated values of a(w) and C(w) and the Fourier trans-
form of the data measured at the first station were substituted into Eqn. (31)
to obtain the Fourier transform of the wave function at any downstream station.
' This transform was inverted numerically using Eqn. (24) to obtain the wave
function (particle velocity) at a particular spatial location. The predicted
numerical values are superposed on the measured curves in Fig. 12 and 13. For
both sets, fairly good agreement with experimental results are obtained. In
the case of Norris' data, slightly better agreement was achieved using this

method than was achieved by Norris using another scheme.

COMPUTER PROGRAM

The computer program which calculates the numerical transforms at two
locations, computes a(w) and C(w), and predicts the wave at some downstream
point is listed in the Appendix as Program 3. A complete listing, sample

input and output data, and a detailed write-up is available from the Author

on request.
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CONCLUSIONS

A method of computing Fourier integral transforms of continuous data by
approximating the data with piecewise linear segments, the exact Fourier
transforms of which are known, leads to a more accurate method of approximating
the Fourier transform of the tontinuous data by means of a series of exact
transforms, rather than by finite difference numerical integration methods,
or discrete transforms.

This method of computing Fourier transforms has been applied to the
analysis of viscoelastit wave propagation data and the material properties of
the viscoelastic medium calculated. In addition, the method of computing
inverse transforms has been applied successfully in the prediction of wave
motion along a viscoelastic¢ bar and the results have been shown to compare

favorably with existing published experimental data.
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TABLE 2

TIME =~ ANALYTIC VALUE COMPUTED VALUE  ERROR DIFFERENCE
to(sec)  £(t) £t) £(t) - £(t)]
.000000 .100000+01 .989869 .202310-02
.100000-04 .900000-00 .899590-00 .410080-03
.200000-04 .800000-00 .799876-00 .124410-03
.300000-04 .700000-00 .699931-00 .693500-04
.400000-04 .600000-00 .599945-00 .548288-04
.500000-04 .500000~-00 .499950-00 .500455-04
.600000-04 .400000-00 .399955-00 .449158-04
.700000-04 .300000-00 .299970-00 .304617-04
.900000-04 .100000+00 .100175+00 .174774-03
.990000-04 .100000-01 .109761-01 .976073-03

n=1000 , T 1074 sec
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r(t)

ty and t,, %0 be approxinated by straight line.

Dp(e)

Figure 2. Approximating "alias" function for f(t) between t, and t

n+l®
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*
()

to tl t2 ootn tni—l....'.....

Figure 3. Piecewise linear approximating ("alias") function replacing

f(t) before taking transform. Analytic transform of "alias" function is
known.

(t)

Y

Figure L. Approximating function compriased of rectangular pulses. Transform
of this "alias" function is related to a discrete transform in Eqm. (15).
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T(W)

2

/ ) = T (smwr/z)

wT/2

in Fig. 6. Transform is symmetric about the ordinate axis. Numerical
inverse Fourier integral transforms are obtained for this function.

hd
(W)
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\l \ ! \ /"\ <
. |
\ \ AR WA PN
O Y -7  4m 61 81T 1017 w
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Figure 8, Linear "alias" function approximating the transform function
is shown connecting data points fk and fk ac
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Figure 9. Linear approximating function. Function is zero outside interval
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22




23

*CT puB 21 °*3Ity uy uees sesnd
OM] 3SITJ U3 JO Suojjouny ,SeiTe, o SwmIoFsueIy T80 JIsuMu~T80 134 T8UB WoXJ
peute3qo sentea peandwon °s83809 __.:ws JuTpuels ) UOTQIBIQTA 99818 Lpvals
ATTSPTOSNUIS WOJIJ SINTeA pedns i )l * (peysep) se13700794a esvyd pegndmoo

pue (8eUuTT PIT08) £0T3700TeA eseyd pginssew ATTBjuswiIedXs °QT oINITg

®*(ANOD3S ¥3d) AON3NOIAH v INJYID
el 0! | Ol

—-QGGM

1
©
Al

1
@
QaJ

o)
| M
(03s/MN10001)° D ALIDOT3IA ISVHI

1
Q\
M

~©------ ©- " wm_mw_o NOd4 d4LNdINOD -9

|
q-
M



O
W
©)

O
™
)

O
N
O

O
®

0.05

ATTENUATION COHFFICIENT, @ (Per INCH)

24

—® COMPUTED FROM STEVENSZ
"-.A COMP FROM NORRIS®/_
‘ AN

B ch ,,—(:j —Q 2
NORRIS

o .0

STEVENS?

O 20 40 60 80 100

CIRCULAR FREQUENCY,® (I000reR stc)

Figure 1ll. Experimentally measured attenuation coefficients (solid

curves)

and computed attenuation coefficients (dashed curves). Measured

values obtained from sinuséidally steady state vibration (standing wave)
tests. Computed values obtained from analytical-numerical transfarms of
"alias"functions of the first two pulses seen in Fig. 12 and 13.
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APPENDIX




PROGRAM I

Fourier Transform

The first computer program listed below permits computation of the
Fourier Transférm of the function given in Eqn. (25) for T = 10—4 sec and com-
pare the results to values of the analytic transform given in Eqn. (26) and to
values of the discrete transform computed from Eqn. (3), over the range of
frequency 0 < f 5_105 ps in increments of Af = 103 cps. Output colummns, 2, 4,
and 6 are the numerical values of the analytical numerical method, discrete
finite difference transform, and the known analytic value, respectively. As
the columns indicate, the analytical-numerical values agree with the analytic
values to the fifth or sixth digit while the finite-difference discrete method
yield values which agree with the analytic result only to the third digit. As
Eqn. (15) suggests, the error of the discrete method increases with frequency.

Running time on Univac 1108 was 43 sec.
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FOURIER TRANSFORM

DIMENSION TRANM(1000),TRANO(1000),FREQ(1000),TRANC(1000)
1DIF2(1000) ,DIF1(1000)
COMPLEX TRANM,TRANO,AJ,BJ
COMMON TR

READ INPUT DATA

READ 80, NSETS

FORMAT (14)

DO 51 J=1,NSETS

READ 80, K, NH

READ 81, ERR

FORMAT (F8,4)

READ 82, TR, TL
FORMAT (2E10,3)

N=NH/ (2%ERR)

DELTAT= (TR-TL) /N
DELTAF=NH/ (K* (TR-TL))
P1=3,14159265

DO 50 KK=1, K
IF(KK-1)11,10,11

DO 54 NN=1,N

TIME2=  NN#DELTAT+TL
TIME1=TIME2-DELTAT

TRANM (KK) = TRANM(KK)+AFC*DELTAT

AJ=(0,1.)

BJ-AJ*(—l)

DO 20 NN=1, N

TIME2=  NN*DELTAT+TL

TIME1=TIME2-DELTAT

W=2%PI* (KK-1)*DELTAF

T1=TIME1l

T2=TIME2

DT=DELTAT

IF(KK-1)61,62,61

TRANM (KK) =TRANM (KK)+ ( (FCN(T1)-FCN(T2) )/ (W&*2*DT) * (1-CEXP (BJ*W*DT))
1+ (FCN(T1)~FCN(T2) *CEXP (BJ*W*DT) ) / (AJ*W) ) *CEXP (BJ*W*T1)

TRANO (KK)=TRANO (KK)+ (FCN(TIME2)+FCN(TIME1) ) /2.*CEXP ((~1)*AJ*

1 (KK-1)*DELTAF*2*PI*TIME] ) *DELTAT

CONTINUE

IF(KK-1)14,13,14

TRANC (KK)=TR

GOTO 15

TRANC (KK)=TR* ( (SIN(PI*TR#* (KK~1)*DELTAF) )/ (PI*TR* (KK-1) *DELTAF) ) **2
DIF1 (KK)=1-TRANM (KK) / TRANC (KK)

DIF2 (KK)=1~-TRANO (KK) / TRANC (KK)

FREQ (KK)= (KK-1) *DELTAF

PRINT 80, NSETS, K, NH, N

PRINT 82, ERR, DELTAT, DELTAF

PRINT 84, (FREQ(I),TRANM(I),TRANO(I),TRANC(I),DIF1(I), DIF2(I)
1,1=1,K)

FORMAT (1HO, 8(4X,E13,6))

CONTINUE

END
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PROGRAM II

Inverse Fourier Transform

The second computer program listed below permits computation
of the inverse Fourier transform of the function given in Eqn. (26)
for T = 10_4 sec and compares the result to the known analytic in-
verse transform given by Eqn. (25) for t > 0. Two outputs of the
program are listed in Tables (1) and (2). Running time on Univac
1108 was 48 seconds.
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INVERSE FOURIER TRANSFORM

1 DIMENSION F(1000),TIM(1000), INT(lOOO) ER(1000)
2 REAL INT
3 COMPLEX AJ
4 PI=3.14159265
5 T=1,0E-04
6 AJ=(0.,1.)
7 DF=1,0E+02
8 N=100
9 K-1000
10 DW=2%PI*DF
11 DT=1,0E-06
12 DO 1 I=1,K
13 W=(I-1)*DW
14 Fl=(I-1)*DF
15 F2=I*DF
16 IF(I,EQ,1) GO TO 2
17 F1BAR=((SIN(PI*T*F1))**2)/((PI*F1*T)%%2) *T
18 GO TO &4
19 2 F1BAR=1 *T
20 4 F2BAR= ( (SIN(PI*T#F2))**2)/ ((PI*F24T)**2) *T
21 DO 3 NN=2,N
22 TIM(NN) (NN—l)*DT
24 1AJ*DW*TIM(NN)) ) - (FlBAR—FZBAR*CEXP(AJ*DW*TIM(NN)))/(AJ*TIM(NN)))
25 2*%CEXP (AJ*W*TIM (NN) )
26 INT(1)=INT(1)+(F1BAR+F2BAR)/ DF
27 1 CONTINUE
28 DO 5 NN=1,N
29 F(NN)=1-(NN-1)*DT/T
30 ER (NN)=F (NN)-INT (NN)
31 5 PRINT 6 TIM(NN),F(NN),INT(NN),ER(NN)
32 6 FORMAT (4(10X,E13,6))

33 END
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PROGRAM 3

PROGRAM VISCOWAVE

1 DIMENSION T1(1000), F1(1000),TR1(2000),T2(1000),F2(1000),TR2(2000)
2 1,ALFA(2000),C(2000)
3 COMMON T1,T2
4 DOUBLE PRECISION C
5 COMPLEX TR1, TR2
6 COMMON/TWO/NH, K, NP , TMAX , TIM2
7 READ 99,NSETS
8 99 FORMAT (I5)
9 DO 100 II=1,NSETS
10 READ 1,N,K,NH,M,NP,ERR,EX,TMAX,EX3,TIM3,TIM2
11 1 FORMAT (515,5F10,3,/,E10,3)
12 PI=3.14159265 .
13 PRINT1,N,K,NH,M,NP,ERR,EX,TMAX,EX3,TIM3, TIM2
14 READ 2(T1(I),I=1,N)
15 READ 2(F1(I),I=1,N)
16 2 FORMAT (7E10.3)
17 READ 2(T2(I),I=1,M)
18 READ 2(F2(I),I=1,M)
19 READ 3,HSHIF1,VSHIF1,HSCAL1,VSCALL
20 READ 3,HSHIF2,VSHIF2,HSCAL2,VSCAL2
21 0
DO 4 I=1,N
23 T1(I)=(T1(I)-HSHIF1)*HSCALL
24 4 F1(I)=(F1(I)-VSHIF1)#*VSCAL1l
25 DO 5 I=1,M
26 T2(1)=(T2(1)-HSHIF2)*HSCAL2
27 5 F2(1)=(F2(1)-VSHIF2)*VSCAL2
28 PRINT 32(T1(I),F1(I),T2(I),F2(1),I=1,M)
29 32 FORMAT (4 (6X,E13.6))
30 CALIL TRAN(T1,F1,N,ERR,TR1,KP)
31 CALL TRAN(T2,F2,M,ERR,TR2,KQ)
32 CALL MATPRO(TR1,TR2,EX,KP,KQ,ALFA,C,KR)
33 100 CALL PREDIK(ALFA,C,TR1,EX3,TIM3,KR)

34 END
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1 SUBROUTINE TRAN(T,F,N,ERR,TR,KP)
2 DIMENSION T(1000),F(1000),TR(2000),FREQ(2000)
3 COMPLEX TR,AJ,BJ

4 COMMON/ONE/PT

5 COMMON/TWO/NH, K, NP , TMAX , TTM2

6 IB=0

7 PI1=3.14159265

8 1  DELTAF=NH/(K*TMAX)

9 DELTAW=DELTAF#2%PT
10 DO 84 KK=1,K
11 84  TR(KK)=(0.,0.)
12 NC=0
13 KN = N-1

14 DO 50 KK=1,K
15 IF(KK-1)11,10,11
16 10 DO 54 NN=1,KN
17 DT=T (NN+1)-T (NN)

18 54 TR (KK)=TR (KK)+ (F (NN)+F (NN+1) ) / 2*DT
19 11 AJ=(0.,1.)

20 : BJ=(-1)*AJ

21 DO 20 NN=1,KN

22 DT=T (NN+1)-T (NN)
?

24 IF(KK-1)61,20,61

25 61 TR (KK)=TR(KK)+( (F (NN)-F (NN+1) ) / (Wk*2*DT) * (1-CEXP (BJ*W*DT)) +

26 1 (F(NN)-F (NN+1)*CEXP (BJ*W*DT) ) / (AT*W) ) *CEXP (BJ*W*T (NN) )

27 20 CONTINUE

28 FREQ (KK)= (KK-1)*DELTAF

29 50 CONTINUE

30 PRINT 99 (FREQ(KK) ,TR(KK) ,KK=1,K)

31 99 FORMAT (3(6X,E13,6))

32 KP=K

33 RETURN

34 END
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1 SUBROUTINE MATPRO(TR1,TR2,EX,KP,KQ,ALFA,C,KR)

2 DIMENSION TR1(2000),TR2(2000),ALFA(2000),C(2000)
3 1,FREQ(2000),¢C(7)

4 3,T1(1000),T2(1000)

5 COMMON T1,T2

6 DOUBLE PRECISION C,ARG,D,E

7 COMPLEX TR1,TR2,GW

8 COMMON/TWO/NH, K, NP, TMAX , TIM2

9 COMMON/ONE/PI
10 KR=MINO (KP,KQ)
11 C(1)=EX/TIM2

12 DO 1 KK=2,KR
13 FREQ (KK) = (KK-1)*NH/ (K*TMAX)

14 W=2*PI*FREQ (KK)

15 GW=TR1 (KK) /TR2 (KK)
16 D=REAL (GW)
17 E=AIMAG (GW)
18 ALFA(KK)=0, 5/EX*DLOG (D¥*2+E*%2)

19 DO 3 IP=1,7

20 IPP=IP-4

21 ARG=D/ (SQRT (D**2+E**2))

22 3 CC(IP)=C(1)/ (1+C(1)/ (W*EX)*( -DACOS (ARG)+2*IPP*PI))
23 C(KK)=C(1)/ (1+C(1)/ (W*EX)*( DACOS(ARG)))

24 9 PRINT2,FREQ(KK),C(KK) ,ALFA(KK), (CC(IP),IP=1,6),ARG
25 2 FORMAT (1X,E11,4,1X,D11,4,7(1X,E11,4) ,1X,D11,4)
26 1 CONTINUE

M
28 END -
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1 SUBROUTINE PREDIK(ALFA,C,TR1,EX3,TIM3,KR)
2 DIMENSION ALFA(2000),C(2000), TR3(2000) ,F(1000),T (1000)
3 1,TR1(2000) ;LAMDA (1000), S(1000)

4 DOUBLE PRECISION C

5 COMPLEX TR1,TR3,LAMDA,AJ,F

6 COMMON/ONE/PI

7 COMMON/TWO/NH, K, NP , TMAX , TIM2
8 DELTAF=NH/ (K*TMAX)

9 AJ=(0.,1.)

10 - DELTAW=2*PI*DELTAF

11 KR=KR-1

12 DO 2 NN=1,NP

13 T (NN)=(NN-1)*TMAX/ (NP-1)+TIM3

14 S (NN)=T (NN)-EX3/C (KK)

15 DO 2 KK=1,KR

16 W—(KK—l)*DELTAW

17 CW=C (KK)

18 LAMDA (KK)=ALFA (KK)+AJ*W/CW

19 CWD=C (KK+1)

20 LAMDA (KK+1)=ALFA (KK+1)+AJ* (WDELTAW) / CWD

21 TR3 (KK+1)=TR1 (KK+1) *CEXP (-LAMDA (KK+1) *EX3)

22 TR3 (KK)= TRl(KK)*CEXP( LAMDA(KK)*EX3)

24 l*DELTAW*T(NN))) (TR3 (KK)- TR3(KK+1)*CEXP(AJ*DELTAW*T(NN)))/
25 2 (AJ*T (NN) ) ) *CEXP (AT*WT (NN) )

26 PRINT 9, (T(NN),F(NN),NN=1,NP)

27 9  FORMAT(3(10X,E13.6))

28 3  FORMAT(2(10X,E13,6))

29 RETURN

.30 END
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