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When sampling from a bivariate normal population, observations may
be restricted to certain fixed regions of the two-dimensional plane over
which the distribution is defined by truncating the distribution. 1In this
paper, a three-step numerical procedure is proposed to solve the maximum
likelihood equations, or equivalently the method of moments equations, for
estimating the parameters of a bivariate normal distribution truncated out-
side a rectangle {(x, y): a < x< b, ¢ <y < d}. 1In the first step, an
initial set of consistent estimates explicitly given in terms of thirteen
sample moments are found. Next, iterants are developed from the method of
moments equations, and through the use of the initial estimates as a
starting vector, an advancement to a neighborhood of the solution is made
with one or more cycles of the functional iterative method. The final
esti@ates are obtained from a single cycle of the Newton-Raphson method
whicﬁ, without any additional computational work, gives an estimate of the
asymptotic variance-covariance matrix of the maximum likelihood estimates.

The maximum likelihood equations for estimafing the parameters of
a bivariate normal distribution truncated outside the infinite strip
{(x, ¥): a<x<b, —» <y < +o} contain the ratios

S(u, v) = [¢p(W)=¢(V)1/18(v)=d(u)] and T(u, v) = [up(uw)-ve(v)1/[e(v)-¢(u)l,
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where ¢(t) is the standard normal density function, ¢(t) is the correspond-
ing cumulative distribution function, and u and v are functions of parameters
and trumcation points. Thus the maximum likelihood equations are non-

linear equations in the parameters. Tiku (1968, Australian Journal of

Statistics, 10, pp. 64-74) made linear approximations to the ratios

p(u) /[®(v)=2(u)] and ¢(v)/[®(v)-®(u)], thus simplifying the maximum like-
lihood equations so that explicit expressions for the estimates could be
found. 1In this paper, using multiple linear regression, a second-order
linear model in u and v is fitted to S(u, v) and a third-order linear model
in u and v.is fitted to T(u, v)e -~The Secorid-otder linear model provides a
bettex fit of S(u, v) than does the linear approximation and is valid for
any sample size whereas the linear approximation was constructed under the
assumption of a large sample size. [An analogous statement may be made
for T(u, v).] Using the approximations of this paper in the maximum
likelihood equations, explicit expfessions for thé estimates are obtained

which require fewer calculations to evaluate than do those of Tiku.
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CHAPTER I

INTRODUCTION

When sampling from a multivariate normal population, in many instances
observations are restricted to certain regions of the population. For ex-
ample, in Euclidean 2-space (E2), suppose rounds are being fired at a
rectangular target {(x, y): a < x < b, ¢ <y < d. If the number of rounds
fired is unknown and the only data come from the measurements of the hori-
zontal and vertical displacements with respect to the origin of the points
of impact, then in effect the data constitute a sample from a truncated
bivariate normal distribution under the assumption gunfire pattern may be
approximated by a bivariate normal distribution. If the number of rounds
fired is known with the number of rounds hitting the target a discrete
random variable, the data constitute a type I censored sample from a bi-
variate normal distribution. If the number of rounds fired is known with
the number of rounds hitting the target fixed thus requiring the rectangle
to have random vertices, the data constitute a type II censored sample
from a bivariate normal distribution. Truncation is a characteristic of the
population; censoring is a characteristic of the sample. These are two
basic ways in which observations are restricted. A complete discussion
along with a bibliography of Varioﬁs ways observations may be restricted
can be‘found in Federer (1963).

It is of interest to examine effects of truncation in a multivariate
normal distribution. Hotelling (1948) has observed that a set of sufficient
statistics for a multivariate normal distribution also serve as a éet of
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sufficient statistics for a multivariate normal distribution truncated
outside an arbitrary set of positive probability measure. Smith (1957)
has shown that under general conditions if a sufficient statistic has

one or more of the properties of completeness, bounded completeness, or ‘
minimality before truncation, then it has the samp properties after trun-
cation.

An implicit expression for the mnth product moment of the standardized
p-variate normal distribution with correlation matrix R = (rij) truncated
outside the region'{(xl v Xy gttty xp): xi > ti ,i=1, 2, «*» , p}
was derived through direct integration by Birnbaum and Meyer (1953). Un-
fortunately, the general results are left in a somewhat difficult form
with which to work if explicit expressions for moments are desired. 1In an
attempt to improve on this difficulty, Tallis (1961) found the moment
generating fumttion for the truncated distribution considered by Birnbaum
and Meyer. Thus, explicit expressions for moments were obtained through
differentiation although this becomes somewhat cumbersomeiinhhébherdtmen-
sions.

In a paper concerned with estimation, Singh (1960) has derived the
maximum likelihood equations for estimating the parameters of an uncorre-
lated p-variate normal distribution from a type I censored sample with the
unmeasured observations lying outside the region {(x1 v Xy see xp):

ai < xi < bi ,i=1, 2, «++ , p}. Because of the similarity in the

likelihood functions, the maximum likelihood equations for estimating the
parameters of an uncorrelated p-variate normal distribution truncated
outside the region {(_xl R SN A xp): a; < hi < bi s i=1,2, ¢, p}
were also derived. It was suggested that the type I censored sample

estimating equations be solved simultaneocusly by iteration. The estimating



equations for the truncated distribution may be solved pairwise with respect
to location and scale parameters for each variate separately. Further, it
was apparent that irrespective of the fact whether all or only # subset of
the variates were truncated, the estimating equations corresponding to the
truncated variates were the same. The estimating equations corresponding

to the variates which were not truncated were the usual maximum likelihood
equations. It must be pointed out that the above statements pertaining

to the estimating equations for the truncated distribution are not true d4f
the variates are correlated.

Because of the complexity of the density for the truncated multivariate
normal distribution, practically all results pertaining to expressions
for moments as well as to estimation of parameters are left in rather un-
wieldy forms. For this reason many authors have restricted their attention
to problems pertaining to the bivariate normal distribution truncated over
some region in E2.

Weiler (1959) and then Williams and Weiler (1964) obtained explicit
expressions for the first and second moments of the standardized bivariate
normal distribution singly linearly truncated in both variables, i.e.,
truncated outside the region {(x, y): a < x < #®, b < y < +»}, From these
expressions charts were constructed which graphically depict the relation-
ships the truncation points a and b have with the two population means and
the proportion of the population retained after t;uncation for p = 0, + .2,
+ .3, + .4, £ .5, + .6, £ .8. Thé charts can be used in various ways such
as a.) for given population means, the required truncation points as well
as the proportion of the population retained can be read; b.) for a given
proportion retained from the original population, the most suitable com-

bination of population means can be selected along with the corresponding



truncation points; c.) for given truncation points, the population means
of the truncated distribution as well as the proportion of the pppulation
retained can be read. This last use of the charts along with a relation-
ship given by Tallis (1961) allow graphical determination for given trun-
cation points of the population means of the standardized bivariate normal
distribution doubly linearly truncated in both variables, i.e., truncated
outside the region {(x, y): al < X < a2 ’ hl <y < bz}.

Estimation by the method of maximum likelihood of the parameters of
a bivariate normal distribution singly or doubly linearly truncated in one
variable has been considered by Raj (1953) and Cohen (1955). Raj, evidently
unaware of the work of Hotelling (1948), also noted that the method of
moments gave the same results by showing that the estimating equations for
both methods were identical. Because of truncation in only one variable,
two of the five estimating equations could be solved simultaneously, it
 was suggested, by using Newton's method. Once these two estimates were
found, the other three estimates were easily obtained. Although using a
different approach, Cohen essentially did the same thing as Raj. Since the
maximum likelihood estimates of the parameters are solutions to nonlinear-
equations, no explicit expressions for these estimates have been found.
cheyer, by replacing population moments with sample moments in a recur-
rence relation for the population moments of the bivariate normal distri-
bution singly linearly truncated in one variable,.Jaiswal and Khatri (1967)
were able to find explicit expressions for estimates of the parameter in
terms of six sample moments.

Estimation by the method of moments of the parameters of a bivariate
normal distribution singly linearly truncated in both variables has been

considered by Rosenbaum (1961). He derived by direct integration explicit



expressions for the first two population moments as well as the population
peodattofobbnttyd thuntwbedruncachdevariiplequat BySeguasingxphieseioxpréesions to
corresponding sample moments, he obtained a system of five nonlinear equations
the solution to which yield the estimates of the parameters. A suggested
iterative method was given to solve the system of equations. However, the
iterants for p were obtained by solving a quadratic equation in p which

could cause considerable difficulty with tespect to convergence. Fortunately,
Khatri and Jaiswal (1963) have slightly modified Rosenbaum's iterative
procedure through the use of a linear equation in p. But the main purpose

of their work was to obtain explicit expressions for estimates of the
parameters of a bivariate normal distribution singly lineaxly truncated

in both variables in terms of eight or nine sample moments.

However, all of the aforementioned moment as well as parametric
estimation proglems pertaining to a truncated biwariate normal distribution
deal with distributions which are special cases of a more general distribu-
tion -- the bivariate normal distribution doubly linearly truncated at
known points in both variables. Presumably because the number of terms
involved in the estimation of the parameters of the general distribution
more than quadruples the number of terms involved in the estimation of the
parameters of the special cases, no apparent attempt toward estimation in
the general distribution has been made. Furthermore, one cannot generalize
the results for the special cases to handle the more general case because
of the additional terms. Thus, this paper will be concerned with the para-
metric estimation problem in the bivariate normal distribution doubly

linearly truncated at known points in both variables.



CHAPTER II

DERIVATION OF THE ESTIMATING EQUATIONS

1. Density Function

The dénsity function of a two-dimensional random variable (}:(, i)
having a bivariate normal distribution doubly linearly truncated in both

variables is given by

1 1 |' -1\ X\ (YU ¥y 2
3 Bxp - 2(1-p2)|_ o, -2 o o 1S
zﬁdxcydl‘ﬁ Y ¥
g(x,y) = FY

2 2
x— - - -
2 a o o o
a 21rcxoy\’l—p2 2(1~p") X X y Y

a<Ek<d

Q

c <y <d
= 0, elsewhere, (1)

where a, b, ¢, and 4 are known conksah&s.
So that expressions will be more concise, the origin in the xy-plane
is translated to the lower truncation point. The density function of the

transformed varikble (3_{", 5_-[-_') = (3:( - a, ’;_! - ¢c) is
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2. Maximum Likelihood Equations

The likelihood function for a sample of size N from this population

is given by
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X Y
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Taking the logarithm of the likelihood function, differentiating partially

with respect to £, n, ox, Gy, and p, and equating the partial derivatives

to zero yield the following maximum likelihood equations, the solution to

which are the maximum likelihood estimates E, ﬁ, G R G R 5

where

X
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Note that in the simplification of the expression for é_lgg_é., the

following result was needed.
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The bivariate density f(x', y') belongs to the regular exponential

family of distributions since

5
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'"4(5.1 ns Cxl g+ p) =T—l""_ ’ t4(x', y') = Y'2 P
Y 2¢g (l—pz)
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Hence, for a sample of size N we see that

N N N N N
Ioxo Loy boxie dove Loy 1)
1=1 1=l =1 =1 =]

is a minimal set of jointly sufficient statistics for the parameters
(£, n, Tt O p). Furthermore, a convex natural parameter space in E
can be easily found so that if N > 5, then (21) is a jointly complete
(minimal) set of sufficient statistics. The existence of such a set
ensures that the maximum likelihood equations (6) through (10) have a
unique solution, and that this solution maximizes the likelihood function.
This result is due to Huzurbazar (1949) who showed that, under regularity
conditions, the same was true for any exponential family of distributions
admitting a set of jointly sufficient statistics.

Since (21) is a minimal set of jointly sufficient statistics, then
by the factorization theorem of Neyman and Pearson (1936) the likelihood

function may be written as

N N N N N
Le=pl 1 X, ) ¥, )l X% ) w2, L oxi¥ii &m0, o, pjalx', ¥
i=1 i=1 i=1 i=1 i=1
N
where q(g', ¥') = 1 h(xi, yi) does not contain £, n, O cy, p. Clearly,
’ i=1
the £, n, ax, Gy, 6 which maximize L also maximize p, and since the maxi-

mum likelihood equations have a unique solution, the maximum likelihood
estimators must be single-valued functions of the minimal sufficient
statistics. Using this fact and keeping in mind the form of the minimal
sufficient statistics, one might suspect that the estimates of the para-
meters of £(x', y') found by the method of moments are equivalent to the
maximum likelihood estimates. That this, in fact, is the case was evidently

shown by Hotelling (1948).
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3. Method of Moments Equations

We shall find it necessary to work with not only the system of non-
linear equations inen by the method of maximum likelihood but also the
equivalent system of nonlinear equations given by the method of moments.
We begin the derivation of the method of moments estimating equations by.
first finding the population moments about the origin from the moment
generating function of f£(x', y'). Denoting the moment generating function

of £(x', y') by M_, .,(t. , t,) and noting that
Y 1 2

Mo yr (&g # £)) = Mx'/cx+g, ¥'/g 4 (0, 8y » o t)exp(= o 8t = oonty) ,  (22)

we need only find the moment generating function of the standardized
distribution.

The joint density of (U, V) = (X'/ox + £, Y'/oy + n) is

—t exp[— S - (w2 - 2puv + v2)]

2
h(u, v) _21r\ll—p2 2(1-07) £ <uc< E+Rx/ox
' - R R ' '
R<E,E+a—’5.n,n+o—y-;p> n<v<n+Ry/oy
X Y
=0 , elsewhere . (23)

Thus,

+R /O +RR/C
exp(tlu+t2v)exp - (u"-2puv+v’) fdudv
2 2(1-p")
£ 2n1¥1-p

= 20
MU,V(tl’ t2) - < R R )
R .

X
£, £+ g_ s Ny, n + gz'; P

x Y (24)

However,

2
u - 2puv + v2 - 2(1 - pz)(tlu + t2v)

) .
=u - 2(1 - pz)tlu - 2puv + v2 - 2(1 - p2)t2v



13

2 2
u 2(tl+-pt2)u+-2p(t2+ ptl)u 2puv+ v 2(t2+pt1)v+2p(t1 pt2)v

2 2
- + - - + - + - +
u 2(tl ptz)u 2pf[uv (t2 ptl)u (tl+-pt2)v] v 2(t2 ptl)v

2 2 2
u®-2(t, +pt)ut (£ + pt)) (t, + pt,)

- 2p[uv-(t2+-ptl)u'-(tl+ ptz)v+-(t2-+ptl)(tl+-pt2)-(t2+-pt1)(tl+ pt2)]

2 2 2
- + - +
+ v 2(t2 + ptl)v + (t2 ptl) (t2 ptl)

2
[u - (tl + ptz)] - 2pfu - (tl + ptz)][V - (tz + Otl)]

2 2,2 2
+ [v - (t2 + ptl)] - (1 -9 )(tl+ 2ptlt2 + t2) .

So the double integral in the numerator of (24) becomes

+ +
) ) n Ry/dy 2 Rx/ox .
exp[l/2(tl + 20t .t + t2)]

172
n £ ZB’l—pz (25)

| 2 . _ 2 |
) exp{_ 2(1-p°) [(u —tprety) *2p(umty —pt ) (vt mptpdtlvat, - ot)) ]}duqv,

By making the transformation
(u -t

1 T ety -ty - pty)

1—p2

and integrating iteratively with respect to z and then (v - t, - ptl), the

2
double integral in (25) reduces to

R
X 2
+R + =X - v - (- 2
n y/dy £ o, pv = (1-p )tl E=pv-(1-p )tl
pv-t, - ot ) e - @ dv
2 2
n 1-p 1-p
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Hence, from (22), (24), (25), and (26)

1, 2.2 2.2
= -gt - + = + 2 t.t. + 0t (27)
Myr,yr (€1 By) = expl-agEt -o nt, + So.t) + 200, 0., + 0 t))]
R R
R{E-0 t.=po t., E+—=-0_t.-po ., n-0_t.—po. t , N+ —=~0 t -po_t. ;P
x 1 POy 27 Ty x1"y2 vy 2" x1' cy vy 2 x1
8 R R !
R(é, E+—=—,n nt ;1 3 o)
x y
where

R R
X X
- - + — - . — — + - t - t H
R(g o‘xtl poytz, £ 5, oxtl °°yt2' n oyt2 pcrxtl, n p o] pox 1 pp)

2
v y
(28)
mR /o -0 t -po_t Rx
+—=-g_t.-po_t, -pt
Yy Y2 x1 2 x x1 pcy 2P g—oxtl—pc tz—pt
= ¢(t) [} - ¥ dt.
2 2
- - 1-p 1-p
n "ytz pc’xtl
The population moments about the origin may be found from the relation
R R +
Y (x 97 My, o (E] L E)
uu = J x.ry-sf(x.’ yl)dxldyl = ’ . (29)
r,s r . s '
at. 3t
0] 0 172 t. =t _=0
172
The following results will be needed.
+ - -
n Ry/csy oyt2 POty = xtl_pcytz_pt
—%—at j d(t) o dt
1 " 2
n"o'ytz"po'xtl 1-p N
- Xl (1-02
EX. . Yp<n+oy)> (lp)cxtl
= e + - -
POy din 3 cytz po t.]0 -

1-p
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2
Y-pn-(1-p )0 _t

x 1

= - -a -0 t_-po t

+-pox¢(n cryt2 ocxtl)¢ . x¢(Y xtl P v 2)
1-p
&
+ - — -—
n o} ey (1-p )0 t n-py- (1—p )O t2

x 1o L ; (30)

1—p V :

+ - -
3 N RY/OY OYtZ poxtl Y- cxtl-po t2—pt
S $€t) 0 M

ot 2
n—cytz—pcxtl 1 p .
Y-p n + EX' - (1-p )0 £
= -g ¢<ﬁ + EX-— o t —pc t y
Y _pz
Y-pn—(l-p )cxtl
+ oy¢(n-oyt -po tl)® - po ¢(Y—oxt —pOytz)

2 "x ‘[;:;5 g 1

R
A
+ - - (1~
" 9, ey — e )0 ©2 n=py-(1-p") g t,
x o L ; (31)

l—o l—p2

~

R /o -0 t.-po t
2 MRy/0y=0,E37P0, Y-0,t =00 t, =0t
— $(t) o Y at
3t§ n—cytz-pcxtl \Jl-p2
R
= R (n+ 51) ~(1%p )o ti
22 X X X
= - + - - + - -
p Ox n dyt2 pcxtl ¢{n p oyt2 pcxtl )
y Y . 1_02

2
Y=pn-(1-p )oxt 5
~00 t + - -
oo 1)@ OX(Y ot OOytz)

2 x ﬁ x 1

2
n+-§z.- oY = (1-p%) o t,

2 2
+p Gx(n-cyt2~poxtl)¢(n-oyt

2
n-py—(l-p)o t _
~pot ) 0 ¥ 2) o|l—x

1
Y ql—p2 1—92

x¢(y-ao,.t
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By 2
R Yfﬁﬁb+ o > ~(1-p o,y
2 2 - - v

+ PN1-0T © ¢ n + X _5t -p0 t_1¢

cy y 2 x 1 \[———-

y-pn—(1-p )c t

2 2
- p¥l-p 0x¢(n-oy LA 1)¢ (32)

n+Ry/oy—cyt2—pcxtl Y‘Oxtl‘pc tz—pt
s o () o L at

l—p2

Q
N

NN

ot
n oyt2 pcrxtl

R R =0 [n+ X}~ (1-p° oty
2 X A Y
= - + - - + - -
o,\ntyg o, t,7PO t foIn + = o t,mpo t )¢
Y —p

2
2 Y-pn-(1-p )oxtl 5 o

- - - - + - - B}
+cy(n cyt2 ocxtl)¢(n cyt2 pcxtl)¢ - o Gy(Y °xt1 ocytza

1-p

R
2
n-py-(1-p")o t ntgo T ey - (reot,

-po_t,)|® 21 -5 Y

s Jl—o2 1—02

2
n+ -py-(l-p7)o_t

[———— n—pY-(l-pz)c t o y 2
-p 1-02 0§¢(Y—Uxt -pcytz) ¢ ¥ 2 -9 z ;

1
l-p2 l—pz

X ¢(Y-oxt

(33)

. N _ _
32 n Ry/oy Gytz poxtl Y—Gxtl-po tz-pt
s §(t)d b4 at

Btlatz

2
n oyt2 pcxt1 1-p

R
éﬁ--x> (1-p> Jot,

R R g
= - + L - - + L. - Y
paxoy nt - oyt2 pcxtl o(n 5 cyt2 poxtl ¢
Y 1-o
2
y-pn—-(l-p )o_t
- - - - + - -
+pcxcy(n cytz poxtl)¢(n cyt2 pcxtl)Q pcxay(y cxtl pg§t2)

1—02
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R

2
n_pY_(l_pz)o N n + ;X"OY‘(l‘O )oyt2
-pC tz) ¢ y 2 il b4

1y ,’l_pz 1/1-92

x ¢(Y—0xt

3 n-py-{(1-p )c t2
- dl—p c c ¢(Y—o t —po t ) -¢
\, 2 2
-0

(34)
Differentiating (27) partially with respect to tl yields
M, o (k) E)
x X 1 2 (~a g+02t +po % t, M e, )
1 X',y 1 2
ot
1
2.2 2.2
- +
exp[c gt o] nt2 + 1/2<0 tl+290 cytlt2 cytZ)]
Rx
R,€+5“,mn+gy';p
x Y
Rx
- - +—-—-— -—
x Btl R[E cxtl poytz,é Gx oxtl pcytz,n o] t2 pC tl
_X._ - R
nt 3 cyt2 POty p) . (35)
b4
Using (28), (30), and (29), the first moment about the origin of X' is
given by
: oM (t, , t.)
X', ¥y' "1 2
! = = - + - + -p ;
ul,O ng 0xGl oxG2 poxG3 poxG4 !
oty t =t =
1 72
which we write as
] = e +
“1,0 v OXE onl,O ; (36)
where
=G, - G, + p(8 G,) . (37)

Q1,06 ~ 6% 37~ Sy
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Differentiating (27) partially with respect to t, yields

2
Mye yo {8+ 8))

3t2

= + t
(ecyn PO O

2
g l+oyt2)M ‘,Y"tl P ty)

2.2 2 2)]
- - +2 t.t. to t
N exp[ oxgtl cyptz + l/z(oxtl poxgy 152 GX 2)]

R R
R<€,E+‘l:n:n+gy';p

a
x Y

X

ot x1 1 2’ 2 1’

. R
X
- - + —-= - -3 t_- t
R R(‘; g t pcytz,g Ox oxt poyt n cy pox

R
+ X - ; .
n Oy —cytz poxtl é) (38)

Using (28), (31), and (29), the first moment about the origin of Y' is
given by

aMx',Y'(tl' tz)
= = -oyn+00 G

v 1
ot, t.=t_=0

-po_G.+3_G.-0_G
Y

] .
0,1 2 %y°3 %y 4’

which we write as

! = - + .
0,1 on * 9,9, ¢ (39)
where

= p(G1 - G2) + G, -G, . ’ (40)

9,1 37 S

Differentiating (35) partially with respect to tl

yields
82M (t t,)) 2
X',¥y'"71 Y T2 2 2
= ~ (=g E+ + t
2 ch ( C‘xE cxtl pcxoytZ) jMX',Y"tl ! 2)

1

at

My yolty o B))

atl

2
+ 2(=g E+ +
2¢( cxg o tl pcxoytz)
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2.2 2.2
- - + (o tT+ +
exp[ chtl oynt2 1/2(0x 1 2pcxcytlt o t})]

2 'y 2
+ Rx R
R<€,E+U—:mn+gx;>
X y
32 R.x R
- - + —— - - - :
X 5 R(% Gxtl poyt2,£ 5 oxtl poytz,n+o§e2 pcxtl,
at v
1
'
n+ Oy —Oytz—pdxtl;p> . (41)

Using (28), (32), and (29), the second moment about the origin of X' is

given by

2
_ 0 MX',Y'(tl ! tz)

2 2,2
! =0° -0 - 20 -0 + 0
u2,0 atz b4 xg 2 xg( xg le,O)
2 t.=t =0
12 2 2 Rx 2 .2
+ 0 - —
xEGl O £ + T Je, + e oan3
X
R
2 2 Y 2
- o .
Y
which we write as
2 2,2 2 2
' =0 o - 20 + O
M0 T Tt TR T 29,50 6+ 9.9, 6 (42)
where
2 Rx 2 &y
92’0 = E(G1 - G2) + P n(G3 - G4) =5 G, ~PTgE6, + Py . (43)
X Yy
Differentiating (38) partially with respect to t2 yields
azmx (t t.)
'Ly 17 "2 2 2 2
= - (= + +
at2 [dy ( oyn poxcytl oytz) ]MX',Y'(tl , t2)
2
2 aMx' Y'(tl ! tz)
+ 2(~0 ntpo o t.+o t.) .
y! %%y 1y 2 ot

2
2.2 2.2
- - +
exp[cxitl qxnt2 »1/2(cxt1+2°°x°yt1t2+°yt2)]

R R
rz(%, E+ X n, n+ X, é)

g ! 5]
X Y
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2 R
9 X
X 5 R<€-cxtl-pcyt2,£+ - oxtl poytz,n gytz poxtl,
ot b 4
2
e
n+ Uy -g y 2—po tl' a) . (44)

Using (28), (33), and (29), the second moment about the origin of ¥Y' is

given by
32 (t t.)
" - Mx-,y' 1’ “2 - O2 _ G2 2 25 n(- + 0 )
0,2 8t2 Yy yn yn 0yn 0y 0,1
2 t,=t. =
12 2 2 2 Ry 2
+ G, - e G
0 oy£ 1 7P 9 g o > o, nG3
2
+ -
y( >G4 po g5 i
which we write as
2 22 2. 2
! = + -2 L “q . 45
Ho,2 T % T 9T 998,11t IyRes2 ¢ (45)
where
2 2 % s
Q0,2=p g(Gl—Gz) +n(G3—G4) -0 EGZ—OY G4+pg5 . (46)

Differentiating (35) partially with respect to t2 yields

2
3 NS{, (e, t))
b Y 1 2 2
—* = looa @0 E¥o titeo, Oy t)) (- 0y N*P0 L0 tl v 2)]Mx Y' t, . t)
ot,at
1”2
aMxl ,Y'

ot

(tl ’ tz)

2
+ (- + +
( ng 0xtl poxoytz)
2
aMx',Y'(tl ! tz)

2
+ ( + t.+ t )
—oyn 00 oy 1 o
atl

2.2 2.2
- - +
. exp[ O’XEtl o'yntz + 1/2 (o'xtl 2pgxgytlt2+gyt2)J

R R
Iiéh E+t—,n.nt X, p>
Oy Iy
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32 Rx
R<€—0xtl‘90'yt2:€+ g 'Uxt -0 _t.,

p . G ——
ot 9t % 1 y2
Sy
+ - ; . 4
n-—cytz—poxtl,n Gy —cytz pcxt1 p> (47)

Using (28), (34), and (29), the joint moment about the origin is given by

2
T =8MX.’Y'(tl't2) =po. 0. - 0.0 &n - 0. (-0
1,1 St. ot Xy xyn b4
1" 72

+ a0
" yQO,l)

- + +
oyn( oxg chl,O) poxoyF,Gl

|5”

»

- +
poxoy<£ + p >G2 DoxcynG3

R
- + X ;
pcxoyé °y>G4 + crxoyg5

which we write as

ro= + - - + ;
ul,l poxcy 0xc’ygn OxOyE’QO,l chyan,O c’xcle,l (48)
where
®x &
Q1,1 = oE(Gl - G2) + pn(G3 - G4> -p g; Gy =P G, + g5 - (49)

Finally, we obtain the method of moments estimating equations by equating

population moments to corresponding sample moments.

M1,0 = 7 945 T 0,01 0 P,0 ¢ (50)
Mo,1 = T OyN * 00y 1 = Mg,y | (51)
3,0 = °i * Oigz - 20iggl,o * Jin,o =M,0 7 (52)
Mo,2 = °§ * 03“2 - 20;”Qo,l * °§Qo,2 = My,2 7 (53)

= + - - = .
Hl,l ngoy oxoyEn UxoyEQO,l oxoyan,O * Oxonl,l m1,1 (54)
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That the two systems of nonlinear egquations given by the method of
maximum likelihood and the methods of moments are equivalent is seen by
recalling that the maximum likelihood eguatiocns have a unique solution

and noting that from (6)-(10) and (50)-({54)

k!
AL 2 2 1,0 1,0
i g (1-p7) g (1-p7)
x Y
Blg s - 2 : 2 0 o 0 H9,1 70,1
K o (1% o (1-p°) ’ ’
X ¥
dlogL| —N{f-pn) 0 N 0 S R Y T —
o | 2 2 3 2 2 2= 2,0 2,0
x g (1-p7) g {1-p7) g o {l-p7)
x X Xy
¢ logL 0 “Nn—-pd) 0 -N Np R
3, o2 (102 03(1-02) o o2(1-02) 0,27, 2
Y Y Xy
2
dlogl| |-N{(n—pE)-p (Epn)] N[(E-pn)-pin-p&}l Np Np “N(1l+p ) N
e 2.2 2.2 2 2.2 2 2.2 2.2(]71,1 1,1
L ox(l-o ) 0y(l P Ux(l 0 ) cy(l*o ) oxoy(l-o )
{55)

where the determinant of the square matrix in (55) has a value of

w2 /070> (-7 # 0
Xy




CHAPTER III

SOLUTICN TO THE ESTIMATING EQUATIONS

1. Proposed Numerical Procedure

The system of nonlinear equations (50)-(54) given by the method of
moments (or the equivalent system (6)-(10) given by the method of maxi-
num likelihcod) can be sclved numerically by either the Newton-Raphson
method or the functional iterative method. Both methods are described
with conditions for convergence in Isaacson and Keller (1966, pp. 109-122).

The Newton-Raphson method is quite laborious and cumbersome for. the
method of moments system {(or the maximum likelihood system) since at each
cycle of the approximation, the first partial derivatives of the Ui,j (cx
the second partial dérivatives of the logarithm of the likelihoed function)
with respect to £, n, O Uy, and o must be evaluated at the approximate
solution given by the preceding cycle. Furthermore, since squares, products,
and higher powers of the corrections are neglected in the Taylor series
expansions of the estimating equations about a vector near the solution,
the Newton—-Raphson method, if it converges to the solution, tends to do
so slowly during the first few cycles when the atarting vector [i.e., the
initial approximation of (£, n, éx, 8y' 5)] is distant from the solution.
If the starting vector is in a close neighborhood of the solution, then
convergence to the sclution is generally assured and is rapid, usually of
guadratic order. Obviously, th#s '"closeness" is often impossible to

realize in practice.

If the functional iterative method converges to the solution, it

23
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tends to do so in an opposite fashion from that of the Newton-Raphson
method. The functiconal iterative methed advances more rapidly toward

a neighborhcod of the solution during the first few cycles than dces

the Newton-Raphson method, but then advances much slower than does the
Newton-Raphson method as the solution is approached. In this method,
convergence generally depends on the functional forms of the iterants as
well as the grarting vector. However, at each cycle of the approximation
to the solution only the Ui,j {or the first partial derivatives of the
logarithm of the likelihood function with respect to &£, n, Ux' Oy’ and o)
must be evaluated.

Because of the computational reguirement at each cycle and the con-
vergence behavior of these two methods, the following numerical procedure
to find the maximum likelihcod estimates is proposed., Through the use of
a sultably chosen starting vector as an initial estimate of the solution,
we advance to a close neighborheood of the solution with one or more cycles
of the functional iterative method, then obtain the final estimates with
a single cycle of the Newton-Raphson method. Of great importance is the
fact that by using the Newton-Raphson method for the final cycle we not
only increase the accuracy of the estimates cbtained from the last cycle
of the functional iterative method, but also without any additicnal com-
putational work we obtain an estimate of the asymptotic variance-covariance

matrix of the maximum likelihcod estimates.

2. Starting Vector

Rather than just choose any starting vector, we loock for one which
might possibly reduce the number of cycles required by the functional

iterative methecd to reach a close neighborhood of the solution. It is
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well known that under regularity conditions the joint maximum likelihood
estimates converge in probability as a set to the true set of parameter
values, i.e., the joint maximum likelihood estimates are consistent. If

, 6., £t , £, , £t of consistent estimates,

we consider any other set t 5 3 4 5

1
then in large samples such estimates will tend to be fairly close to the
maximum likelihcod estimates.

Wilksr(1962, pp. 380-381) has defined the asymptotic efficiency of
ary set T of consistent estimates having a limiting multivariate normal
distribution as the ratio of the asymptotic generalized variance of the
maximum likelihood estimates to the asymptotic generalized variance of the
gset T. Obviously, the maximum likelihood estimates have asymptotic
efficiency unity. Furthermore, Geary (1942) has shown that, asymptotically,
the jeoint maximum likelihood estimates minimize the generalized variance
of any set of consistent estimates. Hence, any set of consistent estimates
having a limiting multivariate normal distribution which differ from the
maximum likelihood estimates will have an asymptotic efficiency ratio less
than one and will be termed as asymptotically inefficient estimates.

Therefore, we seek a set of asymptotically jointly normal consistent
estimates of &, n, Gx, Oy, and p which can be computed without a great
deal of effort from the sample data. Most likely, this set of estimates
will be asymptotically inefficient. But of course, the higher the asymptotic
efficiency ratio, the closer this set of estimates will tend to be to the
maximum likelihood estimates in large samples. That such a set of
estimates can be found has been suggested by Khatri and Jaiswal (1863).

We first establish recurrence relaticns for the moments about the

origin of f£(x', y'). Taking the first partial derivatives of f(x', y')

with respect to x' and y' vields
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E
af(xI; !l) — ﬁ__l_____xl + 2 yl - _.g_rgﬂ—_—f(x'I y') (56)
ax' 2(1.-2) g ag (1 2) a (Lﬂz)
L o, (1o Ly P x
and
-
LT Bt -y - e, v k0 57)
Lgxcy(l—p ) oy(1~p ) oy(l—o )

Upon multiplying both sides of (56) by x'"Yy'S , integrating, and using

(29) we obtain

R

YT s BE(x', y') A p
1 |s_,____y___ t LI +d'_r-'—1—*‘—- S
.[ J. x'Ty e dx'dy R ;E"ijﬁifmg*lﬁsy )O c (l—p2T1E"5+l
0 0 xfg © Xy
____Ej.n_z_u;rs . (58)
g (1=p7) !

Integrating the left-hand side of (58) by parts and assuming r > 1, we

find that
RY Rx Ry
1X,'S af(x" ’) ¥ (R r 1S 1 | - '
J- J. x'ty ' dx'dy R, y f(Rx ¢ Y ady rur_l’ . (59)
0 0 0
Since Ey_ Rx
+ e
nt == % E+ o
v X
2
s 1-p s
g R R
2
—GY— ¢(&+ ?x_) l:dl—p z—n+D(J+ G—E)] ¢ (z)dz
X x R X
X
n=pl&+ p
X
R
Y s l—p2
! 1 (-
4 f(Rx » ¥')dy Rx R
0 R(E, L+ =, n n+ 51 ,(g
X y

(60)
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then (58) may be written as

Gs R 1-p R S
R X ¢»(€+ —") [dl-p z-n+p (£+ -—)] 4(z)dz
Ty 9% X
- + e
n-pl & 5 )
b4
ry' = lﬁpz
ur—l,s Rx R
R(af E+— s, n, n + X H 0)
o a
X Y
1 p L-pn )
+ = u' - ! + 2 v .r> 1,850
2 2 +1, 2 +1 2 Bpeg? T B2
g (1-g7) r s g o (1-p7) tes g (1-p7) ¥;s
x Xy X
(el)
Operating on (57) in a similar fashion, we find that
Rx R
£ 5 Teln* —L
X Oy
2
r 1-p r
a R R
=1 X " 2
Ry o ¢(n+ gy‘) [ 1-p z-E&+p (n + .51)] p(z)dz
Y Y R Y
s
F- +
eint 2 )
su' = 1_92
rs—-1 Rx EX
R + == , n+ ;
(E, £ Gz ¢ e 5 p)
X b4
-— B 1 1 + L0TRE .
2. Yr+d,s 2., 2. Pr,s+l 7 My, T 20,82 1.
oxcy(l—p ) (1-p7) oy(l*p )
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We shall now obtain a system of estimating eqguations in a considerably
di fferent manner than d&id Khatri and Jaiswal (1963). Their approach was
used to solve a special case of the problem considered in this section;
'thus their recurrence relations for the moments were simpler. This allowed
them to develop four different systems of five linearly independent linear
equations in five unknowns (giving four different sets of estimates) from
six linearly independent linear equations using eight or nine sample moments.
We shall develop a single system of five linearly independent linear equations
in fimw unknowns frcm ten linearly indepesdent linear equations using thirteen

sample moments —- m m

1,0 " Mo, ™20 To,2 M, M0 To,a r ML

m?”l ’ m4’0 ’ m0,4 ; ml’3 , and m:‘)(l . With the aid of a desk calculator
the computation of the required sample moments is nct as tedious as at
first it might appear. The disadvantage of having to develop a system of
five equations from tem equations will be converted into an extremely
important advantage in the final analysis in that, because of the way the
equaticns of the system will be constructed, there will exist several
relationships between the elements of the coefficient matrix and the con-
stant wvector. Thus, we shall be able tc simplify considerably all explicit
expressicns for the elements of the starting vector, and the actual com-
putation of these estimates will not require much more effort than that
needed to compute the Khatri and Jaiswal estimates, though we shall be

working with more meoments and more terms and solving a more general case.

The following equations are cobtained from (61).

T G
2 1 o £-pn
= - 4+ r - ' | -
=R 3 2 . 2 "2,0 2 M1,1 ° 2. Y1,0 7 (63)
X g {1l-p") oo (I-p7) g (1-p7)
X Xy X
2 G2 1 E—pn
2 | = R —_ —_— L] -— __L..___ 1 + i 1
1,07 Ry g 3,0 Y2 2,0 (ed)
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G
3t - R3 2 + __~_£____uv - —Rk + =LtTpn Ll ; (65)
~ 2,0 X g 2 2 4,0 2. 73,1 2 3,0
x g (1-p) g.o (l-p ) o {Ll-p7)
= ' X
R
)
2 X
1 - X \!_ - P
uo1 = Ry o, 1-0 (g4 ~ 9 )~|n — o (E o )2
1 . D ; [ '
—— -—20 + & on ; 66
MR (1-0%) 172 (145 1oL !
o, (1-o a0, {17e 0y &
I8 R
21 v 2 x
v Vi ~g)-ln - ol + £l
2“1,1 Ry o © (q3 gé) nooele Ty ) 2
x X
=
S _l— U‘ - —p— u' + J:.QD_ U. . (63)
2.2, 3.1 (1-.2) 2,2 -2y ‘2.1
o, {1-p 90, 170 o, (1=p
The following eguations are obtained from (62).
G
- A o L np&k .
1 =R n + u + i ; (68)
Y @ (1.2 ‘L1z 20 Yo, (1-,2) "0.L
Y UxOy o Oy P c n
2 G4 o 1 n-gf
' = —_— = ! + - ! + - ! H 9
M1 =R 2. M,2 T T2 2 Yo,3 2. Mo,2 7 (69)
Y g o (1-p7) g (1-p7) g {1-p7)
Y Y
3 Sy 1 —NTpf
- U * N | - — .
Bg,2 TR T 2. M1,3 7 2 Ho,a t 2 ¥p,3 ! (70)
! 4 g.g (1-p7) ! s (1-p7) ! g {(1=-p7) !
Xy
o R
v _x .2 - Y U + X\
1 0 Ry 5 I~p” (g, = g} (£~ ofn . ) 4
Y Y
- g ' 1 _nTp& .
R TN T 2 W11 7 (71)
g a (1-p7) g (1=-p) g, (1=57)
X Y
a R
2)7x 2 '
' = = N1~ - -{r - + G
2“1,1 Ry . o (g, 94) E=pn* 4
Y Y
1 —_r
I * N - - R 1 B o R
5 M2, T T2 2 M1,3* 2. H1,2 - (72)
g, o (1-p57) o (1-p7) cy(l-o )

Upon multiplying (63) by Rx and subtracting from (64), multiplying

(63) by Ri and subtracting from (65), performing a similar operation using



RY with (68), (69) and (70), and multiplying (66) by Rx and {(71) by —RY
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r

adding these two resulting equations, then subtracting their sum from the

difference of (67) and (72), we obtain the following system of eguations

using only the transformed equations.

The population moments U; s
’

moments mr

(-p
2
cxoy(l-p )

in

(73).

In matrix form

£-0n
1 _R ] L _R U. Ul __R 1 O O e —————
Ha 0 %%M1,0 M3,0 xMz,0 M2,1 %M1, 5 (1-02)
>
2 2 2 1
1 t ' -R ] rro-R© i 0 -
3,00 %%M"1,0  M4,0 "x%M2,0 M3,177xk11 0 2. 2
o {1-07)
b4
-p
) - I 1 _ 1 ' _ [ R 1 -! R ' b - 4
2,17%M,1 V3,17 R2, 1 B, iR, By, TRLL e M, e, 2
o ¢ (l-p)
Xy
n-p¢
o 0 W' L -R ! u' o -R u! u_-R ! S L
L2y 1,1 Y027y 0,1 To,37vro 2| T2,
y
2 2 2 1
0 ' -R v | -R ' ' -R 1
0 H1,37M1 Yo, 3TN Mo, Mo, a N M2l T 2
oy(l—p )

(73)

are replaced by the corresponding sample

Using Cramer's rule to solve for the unknown

we obtain, following a considerable amount of simplification,

a0 (Romy "Romg o)
////\\\\ + az[(Zml’Oqu)a3 + (3m2'0*2Rxmer)a4]
- _ + ul[(Ry—sz,l)QB + (ZRYmO’1-3m0’2)a6]
oo (1-00y) A% EBT2, 1R,
Xy
toy [lmy (mRmy oyt (my jmRm, 1)l
+ al[(Ryml,l—ml,2)C% + (Ryml’z-ml’3hﬂel

r

(74)




31

where
o, = Rz(m m -m 2)+ R {m m -m m Y+ (m m -m 2) ' {75)
1 x 1,0°3,0 2,0 x 2,0 3,0 1,0 4,0 2,0 4,0 3,0
o = Rz(m m - 2)+ R (m m -m m Y+ (m m ~m 2) ; (76)
2 v 0,1 0,3 0,2 vy 0,20,3 0,10,4 0,2 0,4 0,3
2
= — — + —
g = R (my oWy g7y M 0 Ry My 0T oMy, 1) T My o™y 1M 1M, 7T
2
= —_ <+ _ + _
Uy = Re(my gmy g 7my oMy 3 R My oMy 17 M, 00 My 1Ry 0T oM, 1) B
= Rz(m m -m m J+ R (m m -m m Y+ (m m -m m ) {72)
%5 vy 0,21,2 1,10,3 v 1,10,4 0,271,3 0,31,3 1,2°0,4"
2
o, = R ( b+ R j R ;. (80)

6 “y'M0,2M1,17M,1%, 27T Y Mo,1™1,37 L, 1™, 37T 1,200,370, 2™, 3

Penocting the right-hand side of (74) by h* and solving simultanecusly

the first two equations of the system (73), we obtain

PN

oa_ + a_h*

£E-on _ 7 3 (81)
2 o
Gx(l p) 1
and
/\ .
1 ag *oah
2 2 - o ’ (82)
g (1-p7) 1
X
where
= R (m. -2m. m. )+ R (3m. “-m. )+(2m . m. ) (83)
@y «'™3,0 °"1,0™2,0 % "T2,0 ™4,0 1,0™4,0 7 ,0™3,0" 7
= Rz(zm 2--m J+ R (m ~3m m J+(3m 2--2m m ) (84)
“g x “71,0772,0 x 13,0 7'1,0M2,0 2,0 “"1,0M3,0" ¢

Solving simultanecusly the last two equations of the system (73), we

obtain
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-2k .9 5 (85)
2 o
g (1-p7) 2
g
and
N 4. . + o_h*
. 1 ) - 10 6 , (86)
(o3
o {l-p7) 2
gie
where
= R2( -2 m Y+ R (3m 2—m Y+ {2m m -3m m ) (87)
ag = 5,37, 1%, 2 v "lo,2 0,4 0,1"0,4 "0,2"c,3’ ¢
= R (2m 2_ Y+ R {m -3m m Y+ (3m 2—2 m ) (88)
“10 v “Mo,1",2 v 0,3 Th0,10,2 0,2 “M,1",3" °

From (74), (81}, (82), (85), and (86) the initial estimates of the

parameters which serve as the components of the starting vector are found.
“1 )
In the event ————— < Q0 or(and) ——F < 0 , then we shall
%g tooght — “10 * %M T

use the truncated sample standard deviation{s) and the truncated sample
correlation coefficient as initial estimates of the corresponding untrun-
cated population standard deviation(s) and the untruncated population
correlation coefficient. A superscript zero in parenthesis will indicate

initial estimates.

2 1 2
“h* if ———— > 0 and ———>» 0
* 7 . +o h* + *
Va +0. h* a10+o:6h agta, %19 a6h
0@ - (89)
m -m, _m o o
1,1 1,070,1 . 1 2
if ——— < 0 or ————— < 0
0 ! +q h* — +g _h* =
io)g; ) tg a4h %14 a6h
J L ‘/ L e L .
+ * ! + *x
l_p(O)2 ag a4R g a4h
(90)
o
2 . 1
m —-m , 1if 0 ;
2,0 1,0 +a h* —
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8.4 84
%0)2 ' +2 e ¢ R +i axe ” 0
o) 1-0 “10"% 10" %
O (91)
v
o
2 . 2
m. ,-m , if 7 < 0
0,2 "0,1 alo+a6h
a_ta h* a toh*
0)f{ %™ %
[0 L 20T ko) (0) - ’ (92)
X % Y 2
a_+o_h* o te_n*
0
CIRNCIBRCIY i i DAY - B ©3)
x o ¥ a

Since sample moments converge in probability to the corresponding
population moments {Cramér (1946), page 364)]1, then by Slutsky's Theorem
[Cramér (1946) , page 255] any rational function of the sample moments con-—
verges in probability to the same rational function of the population moments;

hence, the estimates given by (74), (81), (82), (85), and (86) are consistent.

o o
1 2 ;
———— S —_—
When a8+a4h* ¢ and Qlo+a6h* > 0 , the components of the starting vector

(89)-(93) are consistent estimates by theorems on convergence in probability.

For example, from the above discussion, we see that
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Thus ,
o +o h*
® p 2 8 “4
aowm pr 0 TP o wRen T A
gm0y 1
+o h*
9y p N “107%
ﬂ = g ¥l-p , When ” > 0
%107 % ¥ 2
and
84 (03
1 2 2
a8+a4h* a10+a n* d:-cgy(l-'C> )
Hence,
o I o
0'% = n I +l h* +? h* = o
Vaa % “10"%

Since (89)-(23) are continuous functions of sample moments with con-
tinuous first and second order partial derivatives with respect to the
sample moments, then by a theorem in Cramer (1946, page 366), the compcnents
of the starting vector are asymptotically jointly normal.

Finally, we note that since the maximum likelihood estimates are

single~valued functions of m and m , then

1,0 " M,1 " M2,0 7 M,2 " 1,1

certainly the components of the starting vector are asymptotically inefficient
since they are functions of higher sample moments. Just how asymptotically
inefficient can be determined by finding the asymptotic generalized variance
of these estimates and using the asymptotic efficiency ratio. However,

these are not the final estimates. On the contrary they are only the initial
estimates to be improved upon by the functional iterative method and the

Newton-Raphson method. Hence, we shall not bother with finding the asymptotic

generalized variance of these estimates.
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3. Functicnal Iterative Methed

We shall now determine the iterants for the functional iterative

method. These iterants shall have the usual form, namely:
E=F &, n, o, Oy p)
n=F &, ., o, Ty o)
g = F_(£, n, O Gy, p)
o, = Fal&s s o, Oy o)
o = F5(£, Ne O s Uy, o)y .

We use the method of moments estimating equaticns (50)-(54). Sqguaring
both sides of (50), subtracting from (52), and taking the square root of

both sides of the resulting equation yield

G, = = F3(€r Ne er Gyf g) . (24)

From {50}

oy
I

/ox = Fl(E, Ne Oy cy, p) - {95)

g = =F, (E;, N, er Uyl g) (96)

Y 5 4
Y12 ,2% 1

QO,l - mO,l/oy = Fz(gr ne, le Gyr p) . (97
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From (54), (95), and (97)

1,1
= =t - - + + £
0 5.0 Ql,l En an,O ‘QO,l
m m m
1,1 1,0 0,1
= - - + £+ + +
- Ql,l En n o £1ln 5
Xy x Y
o M,1™,0%,1 0 ™ ,c"o,1 P Y : Mo,1 .
a.o 1,1 g o i n
Xy Xy X Y
™,1 ™0, 1 ", My ,1
= Ql 1 + o + £ 5 + n
O'xO'Y ’ X y
Thus ,
m, ,-m, _m
1,1 1,00,1
— —_ + = .
P 5 o Ql'l Ql,OQO,l FS(E, s Oyr e ) (98)
Xy
An alternate iterant for p may be found as follows. Since
2 Rx 2 El
- = - - -G.-E) + — - - -G - +
25,07%1,0 [(Gl 6,) (6765~ &) o, Gz] e [(63 Gyl (G5=Gy—m 9, y

* op9g 20(Gl—62) (Ga—G4)

R R
0t = -2 _ G - _x - - G - X
“,27%,17 7° [(Gl Gy) (617G~ 8) * o, Gz] [(G:a Gyl (GymGymm # 5, G4]
+ opgg - 2p(Gl"G2) (G3~G4) ‘

then

R R
-2 - -G - X _ 2 - _ X
p(Qz,o Ql,O)[(Gl Gz) (Gl G, £+ o, G2] p('QO,EFQO,l) [(G3 G4) (G3 G44-r1) t = G4:|

R 2 R 2
= —p[(Glan) (Gl—Gz—g) + EE Gz]‘ + p[(G3—G4) (GB—G4—n) + EZ_ G4],
X Y
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R
2 X
+0p [95‘2(Gl—G2)(G3"G4)]ll}Gl—Gz)(Gl_Gz_g) + g; Gz]

R
- - — X
l:(G3 G4) (G3 G4n) +a G4]}. (99}
%
and
2 2 2 Rk
Q279 ,17% 0% 0 = (170 ) ’[(Gl_Gz) (Gy=G,=8) + E Gz]' Tyl
&
- [(63—64) (63-—G4—n) + . Gq]] . {109)
y
Furthermore,
Rx EY_
€1,1™%1,0%,1 " —pHi(Gl_Gz) (G=G,=E) + oy Gz}[(Ga_Gex) (G4=Gymm) + 5, G4“
2
+ g, = (14p°) (G,76,) (G,=G,)

50 that

R R
- _ - — X - - -G - '
(Ql'l Ql,OQO,l){[(Gl G2) (Gl G, £} + . szl [(63 G4) (33 G, n) + -, G4]}

X
Rx % Ez_ 2
- [(GI_G2) (Gy=Gym) o, Gz] te [(Ga"Gcl) (Gy=Gymm) + 5 64]
2 Rx
+ [95-(l+p )(Gl-Gz)(G3*G4)] [(Gl-Gz)(Gl—G2~€) + E;‘GZ]
Yy
_ [(G3—G4) (G3=G,n) + . G4] ) (101)
b4
Hence, from (992), (100), and (101l) we see that
R 2

R
02 - _— - .3 - _ _ e - Y
p(Qzlo QLO) [(Gl G2) (Gl G2 £y + 5 G2] D (QO’2 QO,I) [(G3 G4) (G3 G4 n) + o G4]

R R
- - - -G - _* - - -G - 4
@ 1 Ql,OQO,l)I[(Gl G} (G, =Gy=g) + 5. Gz] EG3 G,) (G3=G,=) + o G4]]

2

2 —_
+ (QO,Z—QO,l"Q2,0+Ql,0) [95—(61—(32) (G3-G4)] =0 . (102)

Upon putting (98) in (102) and solving for p we obtain
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m ~m m
(8-B) [g5- (G, -G,) (G3-G4)1+( et .0 O’l)(c—D)

g g
o = £y
AC - BD
= FS(EZ: T, er Oy: p) ' (103)
where
5 R
A=1+0 -0 C = (G ~G,) (G.~G.~f) + -2 g
2,0~ *1,0 1702 YT s 2
e
2 'd
B=1+ - D = - -G -
%,2 " %,1 (G37Gy) (G3=Gmn) + oy %4

Let y(k) represent the kth iterant of+y. The (k+1)th iterants to

Ey Mo ey Oy' and o are found from the following:

2
k+1) ¥ ,0™™,0

oi - , (104)
)y ( TV
Jl * 20 Ql,O)
(k+1) (k) (k+1)
g <0 - my o/ : (105)
m = 2
o;kﬂ) = V70,2 0,1 , (106)
®) (N2
Jl Y050 " (QO,l)
n(k+1) _ Qéki - m, 1/o;k+l) ) (107)
m ot 14 m
kD) ™,1™,0%,1 0 ) G
= 0“‘“’” c(k+l) 11 + QLO Qo’l (108a)
x y

or
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m =m m
k) O] ) (L) kN[ (k) (k) 1,1°1,0M0,1\ [ (%) __(k)
AT -B ) e (G G )(G3 G, ) + oD D) (c D )

p(k+l) _ % Y
(k) (k) (k) _(k)

{108b)

where

k
A0 _ g, o) (Qi )

2,0 p
(k) (x) a0\
Bl= 140, 5 (Qo,1>
(k) () [ (k) (k) (k+1) " (k)
cC = (Gl —G2 ) (Gl —G2 =& ) + G(k+l) G2
X
R
(k) _ (k) __(k) (k) __ (k) __(k+1) ¥ (k)
D —(G3 G, )(GS G, '-n +c(k+l G,
Y
+ )
Using the (k+-1)th iterants, we compute Gik+l) and gik }), i=1, 2,
3, 4. From these values we evaluate the Q;kgl) which are needed to evaluate
ui(§+l) . The values of the ui(§+l) are checked for accuracy in the method
r r

of moments estimating equations (50)-(54). The functicnal iterative method
will be employed until iterants are obtained which give the desired degree
of accuracy. At any cycle we note that Gi and g, i=1, 2, 3, 4, may be
computed with the aid of existing tables. The numerators may be evaluated
through the use of tables of the standard univariate normal distribution
and its cumulative distribution function. It is recommended that the tables
in National Bureau of Standards (1953) be used to achieve sufficient accuracy.
The denominator may be evaluated through the use of tables in National
Bureau of Standards (1959).

In working with the functional iterative method tHengeestion of
whether or not the procedure actually yvields iterants which converge to

the solution must be considered. If the initial estimates are "sufficiently
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"Sufficiently close" is often measured through the use of a maximum vector

norm

€, ns o cy,p)—(ﬁ, N, O¢. Sy, 5)llm2max{

el

£-E

rln—a] l|Gx_0

This defines a metric over the vector space and the concept of a neighbor-

hood is interpreted through this metric.

3, 4, 5.

/
BFl BFl aFl BFl aFl
8 an aox aoy 30
an 3F2 8F2 BF2 an
3 an aox aoy ap
- 8F3 BF3 8F3 8F3 8F3
at an aox g ap
8F4 3Fh 8F4 8F4 3F4
ot an aox aay ap
BFS aFS aFS BFS BFS
3L a ag ] 3
n % Gy D
\ )
where Fl = Fi(Er ne Oxr Gyl D) ;1= 1,

Under the assumption

that the starting vector is "sufficiently close" to the scoluticn, that is,

(0) Q) {0) (Q)
|I(‘Z r N ’GX ¥

then Isaacson and Keller (1966, pp.

condition for convergence of the proposed functicnal iterative method is

111-112) have shown that a sufficient

r r P (O))"(éf ’ s’crl-l‘;yi&)}‘ < E (arbitrary) r (109)

that the natural norm of the matrix M induced by the maximum vector norm be

less than unity, that is,

aFi‘ BFi\ aFil

IIMII = max = +
«® 1<i<5 '

+
Jg I ag
X

v

+
30

<

1

{110)
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for all points (£, n, S oy, o) in (109). Locking upon {(1l09) as a neigh-
borhood of the starting vector, a sufficient condition for convergence
generally adopted is

aF
BFi oF, BFi aFi

max — + |[— + |[— + | — 4+ | <1, (111)
1ics| 1?5 [ 1 o %@ [Py @ | ]

where, for example,

oF aF,
1 — 1

%5 | (o)

gt

X Y
In order to have rapid convergence, it is necessary that the left-hand side
of (111) be much less than one. If the left-hand side of (111} is large,
but of course still less than one, then convergence will probably be slow.

Considering the expressions for Fi(g, N Gx, Gy, p) , the number of
partial derivatives required and the fact that many times one can tell after
a few cycles whether or not the proce@yre appears to be converging and, if
so, the possible rate of convergence, it would not seem practical to attempt
to check the validity of (111). Thus, the explicit expressions needed to
do so are not given; however, if they are needed, they can be found by
differentiation.

In case of slow convergence or even divergence an alteration to the
proposed functional iterative method is offered which will generally accelerate
the rate of convergence or may even yvield a convergent scheme when the
basic one diverges. The theory behind this alteration may be found in
Isaacson and Keller (1966, pp. 120-123).

In the alteration the (k+l)th iterants are found from the following:

{k+1) (k) (k} (k) (k) (k) (k) (k) (k)
Ox = Ol FB(E . T ’ Gx R cy , P )-+(l - @l )Gx ’ (112)

.
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where
o) _ 1
1 (k) _ (k) (k) k) (k) _ k) (k) (k) (k) (k)
l_FB(E P r 9 +h,oy P )F3(£ . N r O 'Oy ;P )
h
and

k
F3(‘C’(k)‘ n( )’ c(k)

< ' O;k), p(k)) equals the right-hand side of (104);

STk+l) (k) ) (k) (k) (k) (k) (), (k)
; =0, r (890, 0 0 B o e BN (L - 0N (113)
where
O(k) _ 1
2 (k) (k) (k) (k) (kN _ (k) (k) (k) (k) (k)
L= FI(E th, n ’ Ux ' OY r P ) Fl(\g ¢ N 1) Ox ’ cy ; P )
h
and
Fl(E(k), n(k), oik), U;k), p(k)) equals the right-hand side of (105};
(k+1) _ . (k) (k) (k) (k) (k) (k} (k) (k)
o, =0, t4(5 AR A M )+(1 - oy )oy , (114)
where
O(k) _ 1
37 (k) (ky (k) (k) kKN __ /&) (k) (k) (k) (k)
l_F4(€ ¢ N ,Ux;oy +h, ¢ )"Fh(E P ,cxrcy,o )
h
and
F4(g(k), n(k), Gik)' g;k), p(k)) equals the right-hand side of (106);

(kx+1) (k) (k) (k) {k) (k) (k) (k) (k)
n = 0, F2(€, 2R R MR R )*‘(l =8, )n : (115)
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where
O(k) _ 1
4 (k) (k) (k) (x) (k)N k) (k) (k) (k) (k)
. F?_.(E ¢ N +h, G)(' ’ OY : D ) F2(€ PRI ’ Gx ¢ Oy . P )
h
and
Fz(g ey o}((k) , c;’k) b (k)) equals the right-hand side of (107);
o(k+l) - eék)F5(5 (k) ) n(k), c)(}((k) ) c)(};k)’ p(k))+(l _ OS(k))p (k) ) (116)
where
G(k) ~ 1
5 (k) (k) (k) (k) (k) (k) (k) (k) (x) (k)
l_FS(&: PR foroyrQ +h)—F5(€ ¢ T ,ox,cy.o )
h
andg
Fs(g(k), n(k), oik), O;k), o(k)) equals the right-hand side of (108);

h is scome suitably chosen small value.

4, Newton-Raphson Method

The Newton-Raphson method is based on a Taylor series expansion of
the estimating eaquations in a neighborhood of the solution.

Let E(r), n(r), o;r), U;r)’ and p(r) be the final iterants obtained
by the functional iterative methcd. These estimates should be arbitrarily
close to the maximum likelihcod estimates since the functional iterative
method is carried ocut until the method of moments estimating equations are

very nearly satisfied., Let Af, An, on, ﬂcy, and Ap denote the corrections

to these final estimates, that is
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r ﬂ
E( ) tag = ¢
(r) ~
n *An = n
(r) ~
+ =
Oy Ao T
(r) -
+ Ag. = o
%y y
r N
Suppose the system of estimating equations, whether given by the
method of moments or the method of maximum likelihood, is represented by
Ki(g, N o, Oy' p) =C ; i=1,2, 3, 4, 5 . (118)

Expanding the left-hand side of each equation in (118) by Taylor's thecrem

for a function of five variables about the point (E(r), n(r),o (r),o (r)' p(r))’

X 4

replacing as ig the usual practice, &, nrﬂxfﬂyr and p by é,ﬁn&k@ ay.- and p, respec-—
tively,; and neglecting all gguares, prosucts and higher powers of the correc-

tions, then the system of equations (118) may be written as

K, 5K 9K,
Ki_(g(r), S g;r), LS p(r))'+ AQC_*£> + an(;—ii) + Ag, ——45>
Y 3L/ (x) LTS 99y /(x)

9Ky oK, .
+ Ag ~ + Ap - = 0 : i=1, 2, 3, 4, 5 (119}
N9/ () ° /(x)

where, for example,

(BKL) _ aKl(El Nr O'xr Gyr p)
o5 (r) %

Looking at (119) as a system of eguations linear in the corrections, we

g(r) (r) (r) (xr) (r)
- s N ’ UX ’ GY PR
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rewrite (119} in matrix form as

PR
w| o
o] IHK

\_—/

—

3

—
=
i
=~
—

aK
) (%_g) an Kz(,(r),n(r),o(r),o(r),p(r)
P (r) X Y
BK 3K 3K
(363) (a 3) ("53) Ao 1= - Ka(
x/{r) cy (r) T/} *

Ao K
Y

X s s s (r) (©) {r) _(r) _(x)
an o o 30 Ap K g r N 10, 4G 0
(r) (x) x/(r) v/ (r) (r) Y

Assuming the coefficient matrix is nonsingular, then

=1
6,20, 0, g
0 [y N Jry \39%/(ry N0%/[(ry \® S| 1L |
IK K
v} _(a_z) 'f) K2(g(r),n‘r),o‘r),c‘”,p‘r))
(e} \"% /iy \° Jix) * ¥
3 .50.0.90.69
Y
IK K
_(ﬁ 4> _(égi) K4<€(r),ﬂ(r),0(r)r0(
(ry %7y \° Jir) * oY
2,0, 420, 0, st
% Jiry N ey %%y \3% /) \** (| | ° x Y

(120)

E(r),n(r),o(r),c(r)
X Y

{r)

r

(r) x)
r ¥ ’

)
r)’p(r}

For simplicity, in the following discussion we relabed the parameters by
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r__
Gl 3
04 n
g = Gg = |9, -
04 oy
s\

It is well known that (é, a, éx, &y' 5) under regularity conditions are

asymptotically jointly normal with

mean vector: O

8210 L .
variance~covariance matrix: - E(§6—§%_) . (121)
i ]
N N N N N
We have shown that{ § X! , § ¥! , | x!2, } vyi2 p X!y!is a
. i . i . i . i , i1
i=1 i=1 i=1 i=1 i=1

minimal set of jointly sufficient statistics for the parameters (&, n, O v
Oy' p). In light of the existence of a set of sufficient statistics,
Huzurbazar (1949) has shown through the use of the likelihcood function of

the most general form of a distribution admitting a set of jointly sufficient

statistics that

azlogL = B azlogL (122)
3@186. - a@ia@. :
] 0=0 J

The left-hand side of (122) is to be interpreted as the second partial
derivative of the logarithm of the likelihood function with the maximum
likelihood estimates replaced by the corresponding parameters. That such
a replacement can be made and will wliminate all data from the expression

for the second partial derivative is guaranteed by the fact that all forms
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of the data necessarily appear in the second partial derivative of the
logarithm of the likelihood function for an exponential family only through
functions of the sufficient statistics. Thus, the large sample variance-

covariance matrix in (121) may be equivalently written as

-1 -1

2 2
- g{8 logL - |- (2 1o9L . (123)
50, 30, 39,30 /,
970

We may obtain an estimate of the large sample variance-covariance
matrix of the maximum likelihood estimates by replacing the parametexss

which appear in the elements of either matrix in (123) by the corresponding

maximum likelihood estimates. However, since (E(r), n(r)’ oir), U;r)’ p(r))

is arbitrarily close to (é, ﬁ, ax' éy' 5), then for all practical purposes

_ 3logL K = 3logL K = alogL

the inverse matrix of (120) with Kl 3t P K, n . Kg acx

r

logL
K4 = gﬁgg— , Mnd K5 = Q%%ﬂ& could serve as an estimate of the large sample
b4

variance-covariance matrix of the maximum likelihood estimates.
Cne cycle of the Newton-Raphson method yields values for az', aAn's

Ao; ' Ao§ . and Ap' from the eguations

11 12 13 14 15

12 22 23 24 25
13 23 33 34 35

ol = |v v v v v (M> , (124)
14 ‘24 ‘34 ‘44 V45 )

Ac!" v v v v v (31-‘1‘11—‘

15 25 35 45 55

Ap! V.. Vv v v v (_3_139&)
(r)
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where, in terms of the values cbtained in the final cycle of the functional

iterative method,

31logL _ N (x) /() _ o {x)y oy (o) ]
(ag ) (r) (r) (r)\2 [“y (“l,o ml,O) O 9% (“0,1 mO,l) ’
(r) g, g 1'(15 )
X b4
31ogL _ N [ (ry/ ,(x)_ _(n) (o  (x) ]
(an ) (r) (r) (r) ( .1 “‘o,l) e 9% (“1,0 ml,o)'
(r) x ( )

(322 L)(r) B (Oir))3gért)\z[l_(p(r))2:| [Q(r)c’:(cr)(“i,(i)'ml,l)' Ggfr) 2(5) mz,o)
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(r)( (x) [(n‘r’-p‘”’g,‘“)— p(r)(g(r)_p(r)n(r))]
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(67
We take as the maximum likelihood estimates
B= 4 oap
A=+ an
g, = c(r) + Ag!
X 4 X
G = O(r) + Ag'
Y Y Y
5= ot 4 oapr . (125)

The inverse matrix in (124) is an estimate of the large sample variance-

covariance matrix of the maximum likelihood estimates.
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5. Numerical Example

Through the use of tables of correlated random normal deviates in
Fieller, Lewis, and Pearson (1955), a random sample of size 60 was ob-
tained from the bivariate normal distribution with parameters u, = 8.0,
uy = 5.0, a, = 2.0, Gy = 4.0, p = 0.,40.and truncated outside the regicn

{(x, yi: 4 < x < 10, 1 <y < ll}. From the data the sample moments about

the lower truncaticn point are:

ml’0 = 3.763000 m2’l = 75.185760 m3’l = 347.975866
mO,l = 4.340000 ml’2 = 106.,272928 m1,3 = 735.375806
m2’O = 16.293527 m3'0 = 75.784442 m4’0 = 370.105383
mo'2 = 26.060160 mO’3 = 176.389197 m0,4 = 1304.256990
ml,l = 17.230520 .

Starting with the initial set of approximations (8%9)-(923), four
cycles of the functional iterative method followed by one cycle of the
Newton~Raphson method were calculated. The summary of the results is
given in Tables Ia and Ib. The first line of each table corresponds to
the starting vector; the last line of each table corresponds to the final
estimates given by the numbeical procedure of this chapter. The accuracy
of the successive approximations is measured through the differences
ui,j —-nﬁhﬁ which equal zero for the values of the estimates which are
the exact solutions to the method of moments equations and consequently

to the maximum likelihood equations.



TABLE Ia

SUCCESSIVE APPROXIMATIONS TO THE MAXIMUM

LIKELTHCOD ESTIMATES

; E:(i) n(i) G}(ci) G;i) pIi)
~1.96659 | -.78073 | 2.25021 | 4.89601 .38617
-1.97291 | -.79115 | 2.23192 | 4.77854 .41076
-1.94191 | -.81998 | 2.25884 | 4.72193 . 42902
-1.91946 | -.83563 | 2.27492 | 4.65964 .44409

| a4 -1.91309 | -.84517 | 2.28952 | 4.65364 .45661
~1.92053 | -.85126 | 2.28126 | 4.64628 . 46187

TABLE Ib
ACCURACY OF THE SUCCESSIVE APPROXIMATIONS
i “if;)_ml,o 6fi)‘mo,1 “éfé)“mz,o “653)"mo,2 Uifi)—ml,l
.01662 .05570 .16045 . 84609 .04143
. .02435 .01163 .13333 .12106 | -.05451
.01388 | -.00443 .06307 | -.09599 | -.13009
.00818 | -.01222 .02681 | -.06696 | -.12831
.00613 .00412 .01146 | -.01999 | -.04608
.00524 .01540 .00643 | -.00875 | -.01068

From the last line of Table Ia, the maximum likelihood estimates of the

original parameters are

¥

2.28126

[e g3
Il

8.38123

=
il

[of

4.95519

=]
il

é‘§.§4§2§

>

I

.46187 .



An estimate of the large sample variance-covariance matrix of the maxi-

mum likelihood estimates is given by

.181933
071225
.217096
.343759

.081593

.071225
.202458
.006236
.559844
.031019

.217096
.006236
. 387822
.342483
.104244

. 343759
.559844
.342483
2.423728
.250720

5

.081593
.031019
104244
.250720
.073151J
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SHARTER IV

APPROXIMATE PARAMETRIC ESTIMATION IN SPECIAL CASES

This chapter will be concerned with finding approximaticons to the

maximum likelihood estimates of the parameters of

Case l: a bivariate normal distribution doubly linearly

truncated in one variable, and

Case 2: an uncorrelated bivariate normal distribution

doubly linearly truncated in one or both variables.

1. Introduction and Background to the Problem

Case 1. By letting ¢ = -» and d = += in (1), the density function of a

bivariate normal distribution doubly linearly truncated in the x variable

is
X- 2 X - - 2
1 1 ‘Jx l-ix ¥-u ¥Y—Uu
eXpy” 2 g 22 o) o] * o
l...
275 a dl—p2 2 (1= ) ¥ X Y ¥
x
gi{x,y) = , a<x<bh
b_]-lx a‘Ux —caCp<t®
o - % ¥
o G
x e
= 0, elsewhere. (126)

For a sample of size N from (126), the maximum likelihood equations are

-u a-yu
¢(% b 4 %)
a g N /X,—u N fY.-u
se e | L))o o
X x X _¢( Q) Gx(l—p ) fi=1 x i=1\ Ty
g o
x x

56
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~ N X, -
d6logl _ 1 z _%__X_ - Z 1 ;) -0 , (128)

X
3 logL N _ 1}
a0 a
X X —ux a—ux

x X
2
1 N xi_px By Xlﬂux Yi_u
. ) - 3 Y1l=0, (129)
2 . a g g
ox(l-p y | 1=1 ® i=1 b4 Yy
N Y. u 2 N X, -u Y, -u
o logL - 1 z iy -0 z i X L ¥y o N(l-pz) =0 , {130)
le) 2 o3 . o] o]
gv (Ftp ) | i=1 v i=1 X v
2 2
N X, —-u N Y, ~-u
B;SgL = L Np (1—02) -0 1 ; = - ] ———l;
(1-p2) i=1 X i=1 v
N X, -y Y.-u
2
+ 1y VY {=E)=—Li|=0 . (131)
. o o}
i=1 X Vi

From these equations we obtain the following two nonlinear equations,
the solution to which are the maximum likelihood estimates ﬂx and &x of

the parameters u_ and o_ .
X X

(132)

. (133)
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-~

Oonce ﬁx and ox have been found, the three remaining maximum likelihocod

estimates ﬁy' Sy, and p may be found as follows. From (128)
X-1 + G =5 ¥ 134
(X ux).ocy o_u g ' ( )
and from (130) and (131)

N
. Gy Y. (X,-0) . (135)
1 i v X ¥ x,2; 1 17x

A
I t~152
<
1
N
xv
0
Q
+
Q
e

1
o
x‘o—f
(nd
]
A

Solving (134) and (135) simultaneously for poy and uy vield

s
AN ~
po_ = o EELX' (136)
4 XX
and
Bo= ¥ -y Y (137)
b4 X,%
where
N
1 -2
Sx,x TN E (xi X) !
i=1
N
1 - -
S = — ¥, -X) (Y, -Y
Xy Nizl(l Yy o),
and
N
: - 2
s =% S T
yly i=l

Finally, upon adding (135) multiplied by —N/oicy and (130) multiplied by

1/p0 and using (136) and (137) in the resulting equation, we cbtain

2
~ e Sx
s = ‘/s + (c -3 )(_'Z) (138)
Y Y:rY X X,x/\S



59

. (139)

D>
|
HE*R
LS
w m
=
a

a
Y ¥H.X,

Thus the original problem of selving (127)-(131) reduces to the
problem of solwving (132) and (133). It can be shown that (132) and (133)
are equivalent to the two maximum likelihood equations for estimating
the parameters ¢ and ¢ in a doubly truncated univariate normal distri-

bution whose density is

= 0 , elsewhere . (140)

This estimation problem was considered by Cohen (1950) who suggested that
the modified Newton-Raphson method be used to solve the two estimating
equations. In a later paper Cohen (1957) gave a chart from which a
graphical solution to the two estimating egquations could be cobtained.
However, the graphical soluticon has restricted accuracy, sc if more pre-
cise results are desired, then the graphical scolution serves only as a
first approximation to be improved through iteration.

In an attempt to avoid solving nonlinear equations, Tiku (1968}

. . , . ¢ (u) ¢ (v)
made locally linear approximaticns to the ratios ET;T:ETGT- and E?;Y:ETET ’

$ ()

m , u < v with u fixed,

where u < v. However, the graphs of z =

(v)

as well as z = T (V) =6 (w)

, 1 < v with u fixed, are similar to the positive
branch of a rectangular hyperbola z(w-u}) = constant > 0. Clearly these

are intervals over which a straight line might not be papartiatcutaylyg.

o8

accurate approximation. Furthermore, the computed coefficients in the
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linear approximations are determined through formulae which are derived
under the assumption of a large sample size. Consequently, we shall seek
alternate approximations to the ratios which appear in the right-hand

sides of (132) and (133).

2. Differential Relationship between S(u,v) amd T(u,v)

Let

= e =g (v) (141)

S V) = o Ze (0

and

T(u, v) = uplu) ~vo(v) (142)

d(vi-d(u) !

where
IR R G N -

Partial differentiaticon of S(u, v) with respect to u yields

d¢(u) _ 38(u, v)

adu ™ [o{w)=d(u)] + S(u, v)Id(u) = C

which may be written

UQ(U) _ aS(u, V) + S(ul V)fi)(u) (143)
@ (v)—a(u) Ju d{v)=d (u) :

Partial differentiation of S(u, v) with respect to v yields

_ d¢lv)  3s5(u,,v)
dv v

[(¢(v)=2{(u)] - S{u, v)¢({v) =0

which may be written
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~volv) _ _ 3S{u, v} _ S{u, v)o(v) (144)
b (v) —¢(u) v P (v)—%{u) :

Adding (143) and (144), we obtain the relationship

as{u, v) + 3s (u, v)

2
~a 5v (s(u, V)1 {145)

T(u, v} +

which will be useful in achieving the final approximations.

3. Derivation of Bounds for S{u,v) and T{u,v)

In an attempt to gain some insight into the behavior of the functions
S{u, v} and T{u,vv), we next establish bounds on these functions. Using
ordinary methods of the calculus for finding maximum and minimum values

of a function of one variable and nothhngthast

lim S(u, v) = v , for fixed v {146)
u -+ v
and
lim s(u, v) =u , for fixed u ; (147)

L SR §

we find that for fixed v and every u such that -» < u < v < +=

S{u, v) <v , {148)

and for fixed u and every v such that —= < u < v < +e

u < $%u, v) . (149)

Consegquently,

u < S(u, vJ) <v (150)
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for every u, v such that ~= < u < v < 4=,

As a sidelight, we note that

1
lim 8{u, v) =
e s(ow) =g
where M(u) = ég%ﬁ%l-, i.e., Mill's ratio. For v -+ +w» in (150}
u < L -0 < U < +o
M{u) .

Since M{u) > 0, then

which establishes in a different way the upper bound on Mill's ratio given
by Gordon (1941).

Squaring both sides of (132} and subtracting from (133) yields

T{u, v) + 1 - (s{u, v)]2 >0 , -®m<u<v < te (151}
Thus
T(u, v) > =1L , -» < u <v < +w (152)
with equality holding only when Iu] = Ivl

An improvement on the lower bound for T(u, v) in (152} can be found
through the use of a variation of Wirtinger's ineguality given in Shisha
{1967, pp. 91-94):

4

v \'4

S g0t < 2 max((-w?, (v-u?] s [w' (£) 12ae (153)
LT

u u

holds for any real-valued function w(t) continuously differentiable on the
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finite closed interval u < t < v, and T is a real number such that
us T S v and

v

0 < (v«u)wz(T) - 2w(T) s wit)dt .
u
—1/9'6_"' , Thoeu wu)
Foooowik) = ’
- 2 Al
For wit} = e 1}4& , then w'(t) = - 1/2 te 174&{ and
v
(e
u 4 2 2
v 1 2 . j_;g‘maXI(r-U) » (v-0)71 (154)
S 1z4t - &

where u < T < v and

0 < (v-u)e

2 2 v Z
e’ 29-1}% S e‘ﬁ“ dat

u

From the left-hand side of (154} we see that

v 2
5 e L at
u _ ¢ (v)-9¢ (u) 1

v T -
5 I%ﬂtze-t;ze ac

(W -ve (M +a(vI-8(m) ~ ¥ T(a, v*L
u

Thus, for all u, v such that -« < u < v ¢ +» and ]ul # ]V] p

bo

T(u, v) » - 1+ 5 = (155)
max[ (T-u) ", (v-1)71]

where u < 7 < v and
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Since max[(r—u)z, (v—r)2]'= l%4[(v—u) + ]u+v—-21|]2 , then

4 2
> -1+ 5 X T SO < U <Vt
(v-u)  + 2(v—u)|u+v—21| + (utv-271) and Iu| » IVI
T(u, v)
*» —~11 , -~» < u < v < +o and ]ul = ]VI . {156)

where u < 1 < v and

o2} 2 2
3]~ o

-~
V2 V2

4, Series Representations for S{u,v) and T(u,v)

Note that in the lower bound for T(u, v) given by (156),

4n2

(v—u)2 + 2(v-u) |utv-27] + (u+v-2r)2

may be written in the form
2 2
477 [1 + dl(u, vy {v-u) + dz(u, v) (v—u) + ese]

This form suggests a possible series representation of T({u, v) and con-
sequently S(u, v).

Let z, represent a fixed complex number. The two functions of a

complex variable z given b ———iiil——— and ¢(50) have a simple
ive — T
P g Y p(2) -0 (zg) (z) -2 (2z0) w

pole at the isolated singular peoint z = Zy and the residue of each

function at the isolated singular point has value unity [Churchill (1960),

{z)

pp- 153-16l]. Thus the two Laurentian series which represent 3(2) -2 (2g)
$(zq)
and —————— when |z-z

d(z) -t (zg) > 0 are given by

ol
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<«

% (z) 1 z n
= a (z.)(z-=z) (157)
¢(z)~¢(zo) (z—zo) nZo B 0 0
and
¢(z.) @
0 1 n
= —~—=—+ ) b _(z)(z-z,) , (158)
¢(z)—¢(zo) (z zo) ne0 n 0 4]

where the complex-valued functions an(zo) and bn(zo) may be found through
contour integration.

Consider the reduction of (157) and (158) to the real line with
zO = u, a fixed real number, and z = v, a real variable. Since the sub-
traction of two power series term by term is valid within their common

region of convergence, then for fixed u and every v > u ,

_sw-¢lv) _ ¢ _ .
S(u, ) = =i E b (6) - a (Wl(vu" . (159)
n=0

Upon multiplying both sides of the reductiocn of (158) to the real
line by u and both sides of the reduction of (157) to the real line by
(-v) and adding the two resulting power series, we obtain for fixed u
and every v > u,

Johelwmvd vy o, _ oy n
T(u, v} 3 (v) 0 () 1 Z [ubn(u) van(u)](v u} . (160)

n=0

However, 1lim S(u, v) = u, so that bo(u)—aO(u) = u., Thus (159) and
vt ou
{160) may be written as

S{u, v} = u + cl(u)(v—u) + cz(u)(v—u)2 + c3(u)(v—u)3 + e (161}

and
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T(u, v} = ~1 + u2 + [—ao(u) + cl(u)u](v-uJ + [-al(u) + cz(u)ul(vuu)2
3
+ [-az(u) + ca(u)u](v~u) + e, (162)
where ¢.(u) = b, (u) - a.{u), 1 =1, 2, 3, *=+
i i i

5. Derivation of Approximate Estimating Equations

For various fixed values of u, graphs of S(u, v) were obtained for

each of two regions in the uv-plane:

region A = {(u, ¥): -3 <u<v <3, |ul > |v}}

and (163}

region B {{u, : -3 <u<v<3, [ul <|vPr .

The graphs within each of the regions were very similar, and the shape

of the curves suggested that perhaps a second-order or third-order linear
model in u and v be fitted in each region tc S(u, v). We note that since
u and v are values assumed by a standard normal random variable, then

if we let u = EéE and v = Eéﬂ. with b > a, the probability is .005

that a point (u, v) falls outside the union of the two regions. Further-

more, from the graph of Cohen (1957) we see that

(a(;_u ) R%P.) £ region A if and only if .5 ig-:—%—-: (164)
and

a-y  b-u . ) : X-a

5 1 "3 ¢ region B 1if and only if 0 < ba < .5 . (165)

Using multiple linear regressicn, a second-order linear model

suggested by (l6l)

S{u, v) = u+t Bl(v—u) + 82u2 + B3u$ + (-82—83)v2 (166)
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was fitted to points (u, v) chosen in .04 prcbabilistic steps in each of
two regions. The following table gives the number of points fitted, the
maximum absclute residual as well as the average absolute residual for

the fitted points, and the values 6f Bl, 62, and 8., for each of the two

3
regions.
TABLE II
RESULTS OQF SECCND-CRDER LINEAR MCDEL FIT CF S{u, v)
. Number pf
Reglon | points rittea | Ma%-lel ave.|c| i Fa i
F:y 193 .05 less then .01 .45432 .08872 | ~.04442
B 156 .05 less than .01 .51802 05714 .02026
When the approximation to S{u, v) in (166) is put into maximum like-
lihood equation (132), we cbtain upon simplification
ia g )y (28_+B.,)b - B, (b-a)
b-a 81 X 2 3 2
u, = . {167)
+
252 83

Using multiple linear regression, a third-order linear model suggested

by (162)

T(u,v) = =1 + u2 + Yl(v—u) + Y2u2 +oyquv o+ (ﬂyz—YB)v2 + Y4u(v—u)2 + YS(v—u)3
{168)

was fitted to points (u, v) cheosen in .04 probabilistic steps in each of

the two regions. Table III gives the number of points fitted, the maximum

absolute residual as well as the average absolute residual for the fitted

points, and the values of Yl' Y2’ 73, and Y4 for each of the two regions.
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TABLE IIT

RESULTS OF THIRD-CRDER LINEAR MODEL FIT OF T(u, v)

Number of
Region P?lnts max.]s] ave. e| Yl Yz Yz Y4 YS
Fitted
A 181 .16 |less than .05;.25724(-.98958|.561442.02099|.02636
B 144 .05 less than .01{.06690|~-.59493|.38300(.03570.01082

When the approximation to T(u, v) in (168} is put into maximum like-

likood equation (133), we cbtain upon simplificaticn

2
bl
2 Jiv i=1 2
ylgx+ ) + (2Y2+Y3)b Yz(b—a) S an(b—a) - YS(b”a)
b-a
" %-a
(2 boa | 2¥5TY3)0 T Yy lbra)
(169)
Eguating the two expressions for Wy in (167) and (169) yields the
following quadratic equation in CNE
2
w,o +w,ao +w,=0 |, (170)

1 x 2°x 3

where

k)
!

[ %-a _ X-a
1 (b—a 51)(2 b-a & 2Y2+Y3) * vy (28R

. (- X-a _ X-a -
Wy = ~(bma) Y4( —a 81) " 52(2 b-a © 2"’2”3) (l+yy) (28,765
(28, +5.) i
-—2 3 s+ 0%,
XX
b-a
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2
wa = (bma) Ly B, - (v, - v (28, + 8] .

From (164), (165}, Table II, and Table III we see that w3 > (0 for
region A and w5 < 0 for region B; whereas, depending on the wvalue of ﬁ,
W, may be positive or negative in either region. Thus the guadratic
equation in (170) may have zero, one, or two positive roots. If there
is only one positive root, then this root will be the approximate maxi-
mum likelihood estimate of cx, say éx. The approximate maximum likelihood
estimate of Ux’ say ﬁx’ may be found from (167).

In the event that (170) has zero or two positive roots, the following

alternate procedure is used. Using multiple linear regression, a second-

order linear model suggested by (162)

T{u, v) = -1 + \12 + Yi(v—u) + Yéuz + yluv + (-y!-

4 5 Yé)v {171)

was fitted to points (u, v) chosen in .04 probabilistic steps in each of
the two regions. Table IV gives the number of points fitted, the maxi-
mum absclute residual as well as the average absolute residual for the

fitted points, and the values of Yi, Yé' and Yé for each of the two regions.

TABLE IV

RESULTS OF SECOND=ORDER LINEAR MODEIL FIT OF T{(u, v)

Region| o Pexr °f  lmax le| ave.|e| ! ! !
9+ points Fitted| " or ) "1 "2 '3
;9 13181 -22 less than .07|.19749|-.94739].41711
B 144 .06 less than .01,.08442|-.61059|.42211

When the approximation to T(u, v) in (171) is put into maximum like-

lihood equation {133), we obtain upon simplification
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1 ‘\EI 22
vt H
—y ! — + (2y! + yLb = y! (b-
_TN% b-a (2vp * v3)b = vy (bmal (172)
L= .
< =
E-a ' 1
— +
4 b-a * 2Y2 Y3

Equating the two expressions for vy in (167) and (172) yields

X-a (28,%85) -2
_ (b-a) 82 2 b_—; + 2Y2+Y3 —(1+Y2) (232+B3) + ‘Ta—‘_ [Sx’x"‘ (b-X) ]
I = - — . (173)
X—a X-a s .
(E’—‘Q B Bl>(2 b-a 2“{2”3) t v (28,%85)

It should be noted that ancother alternate expression for &x may be
found through the use of the approximation to S(u, v) in (16€} and the

di fferential relationship between S(u, v) and T{u, v) in (145). Since

S(u, v) = u+ Bl(v-u) + 82u2 + B3uv + (-82—83)v2 '

then

S (u, v) + 3S{u, v)
au v

=1 - (282 + 83)(v - u) .

Hence from (145)
T(u, v} = =1 + (282+83)(v—u) + [5(u, v)]2 ’ {174}

which is a form very similar to (162). When this approximation to T(u, v)

is put into maximum likelihcod equation (133), we obtain

N a-y b-u 2

P . - -

L= = 8,6 )(b—"a) +sl—= , =% : (175)
- o 273 Ty

2=

a a
x X

But from (132},
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2 2
aru b_ux 1 g Xl My
S ol " g T2 z a !
x x N i=1 X
hence we may write (175) as
Sx
5. = X : (176)

x  (2B,%8,) (b-a)

Thus, in the altemmate procedure, 8x is found from (173) or (176}, then
ﬁx is found from {(167)
Case 2. By letting p = 0 in (1), the density function of an uncorrelated

bivariate normal distribution doubly linearly truncated in both x and y

is
o)X
T o
glx, y) = b4 , a<x<b
“Hx a—ux d-u €U c < < d
0 -9 ®< Y)—@ Y) Y
g G o} o
X X v v
=0 , elsewhere . (177
For a sample of size N from (177}, the mwaximum likelihood equations

for estimating My and o, are the same as (132) and {(133). The maximum

likelihood equations for estimating “y and Gy are the same as (132) and
(133) with Xi, Wor O s a, and b replaced hy Yi, py, Gy' c, and d, respec-
tively. Thus the approximations used for Case 1. may also be used for

Case 2.

6. Numerical Example

To illustrate the use of the approximations, we use the data from

Des Raj (1953) in which a sample of gize 74 was drawn from a bivariate
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normal distribution doubly linearly trurnicated in v with parameters My = 4,
g. =2, 5 =0, uy = 10, qy = 5, the truncation points being ¢ = 5.C and

d = 17.5. For the sample taken: X = 3.904297, Y = 10.584797,

Sx'x = 4.00654, SY: = 10.43671, Sx, = =1,21174.

After several cycles of Newton's iterative method, Des Raj obtained

as the maximum likelihood estimates

9.5835 4.0205

=
1l
131>
k3
I

-.29096 .

LR
Il

2,055

[
i

5.15

o>
I

Using the linear approximations of Tiku (1968), we obtain

u = 10,17639 px = 3.95172 .
R ) b = —.23349
o = 4.06655 o= 2.02207
v x
Since §E§-= .44678, then by (165), the coefficients for the approxi-

mations in region B shall ke used. Thus (170) becomes

.002820§ + .024060y - .20422 = 0

The only positive root to this quadratic equation is 5y = 5.25532. From
{167) we obtain ﬂy = 9.40843. The remaining approximate estimates are
found from (137), (138), and (139}, Thus using the approximations of this

chapter, we have as approximate estimates

4.02927

]

Tt
It

99.40843 u
X

2.05871

Il

Q
il

5.25532 o
X

which compare very favorably with the actual maximum likelihocd estimates.
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