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1. INTRODUCTION.

If samples of independent observations are available from g + 1 groups,

on p variables x' = [xl , X cee , xp] having a p-variate normal distri-

2 ’

bution with variance-covariance matrix y , we shall get the following multi-

variate analysis of variance table:

Source degrees of p X p matrix of sums
freedom of squares and sums of
(d.f.) products (s.s. and s.p.)

Between q B
(1.1) groups
Within n-gq W
groups
TOTAL n T=B+ W

The matrix B can be looked upon as the matrix of regression s.s. and
s.p. of x on g "dummy" variables y' = [yl ¢ Yy 0 00t yq], representing
the contrasts among the g + 1 groups [See [3].]. The problem of discrim-
ination among these groups then reduces to the study of the relationship

between the vector variates x and y . One particular case of interest occurs

*This research was sponsored by the Office of Naval Research, Contract No.
NO0014-68~A-0515, Project No. NR 042-260. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



when the group means are collinear, or which is the same as, when there is
only one true non-zero canonical correlation p , between Xxandy . A
single discriminant function is adequate in such a situation and itkis
either the canonical variate corresponding to p in the x-space or the y-
space. In some situations, observations on one "dummy" variable out of

Yy r ¥y 0ttt yq (or on one linear combination of the y's) are available,
in addition to those on x . For example, for the data on Egyptian skulls
analysed by Barnard [l1] and later by Bartlett [2], Rao [10], Williams [12]
and Kshirsagar [7], observations on a variable t , denoting time corres-
ponding to the 4 series of skulls were available and the data was analysed
to find out whether time could be regarded as a single discriminant function
adequate for discriminating among the four series. The hypothesis under
consideration is, thus, of goodness of fit of a single discriminant function
assigned from the "dummy" variables space, namely the y-space. The hypoth-
esis, however comprises of two aspects: (i} collinearity aspect, i.e.,
whether one discriminant function is adequate at all, and (ii) direction
aspect, i.e., whether the proposed or assigned discriminant function agrees
in direction with the true one. Bartlett [3] obtained an over-all criterion
for the hypothesis and then factorized it into two independent test stat-
istics for the two aspects of collinearity and direction, of the hypothesis
but he considered the proposed discriminant function to be from the x-space.
Kshirsagar [7], following Williams' [12] analysis of the Egyptian skulls
data, derived general expressions for the direction and collinearity tests,

when the assigned discriminant function comes from the y-space. If Sxt

is the p x 1 vector of corrected s.p. of the proposed discriminator t with

x and S is the corrected s.s. of observations on t , and if b=T S,



the direction and 'partial' collinearity statistics are respectively,

b'W b S
(1.2) . A" = ;'S . 3 t;|s ’
xt tt xt

b's
"o Wl . - xt
-2 R

There is an alternative factorization also, yielding collinearity and

'partial' direction statistics. They are respectively

W
(1.4) AV lwl  Sex Sxt
) [T b's !
- xt
]
v Stt b Sxt
(1.5 N =s—=%s_- -1 :
W
tt xt S W 'S .

The distributions of these statistics and their independence have not
been explicitly derived so far. The symmetry or "duality” in the re-
lationship of x and y , in the absence of any true association, has been
noted by several people [See for example Fisher [4], Bartlett ([3], Khatri
{5].1. Bartlett's derivation, when the proposed discriminator comes from
the x-space, is based on geometrical devices. Kshirsagar (8] proved the
same results by analytical method but that method does not work, when the
proposed discriminant function is from the y-space, because, even though
there is 'duality' of relationship between x and y , there is a fundamental
distinction that x are random variables while y are "dummy" or "pseudo”
variables and are fixed. The aim of this paper is to remove this lacuna

and obtain the distributions of A" , A™ ,_AIV , and N analytically. The



method used for this purpose is the elegant method of random orthogonal

transformation, described by Wijsman [11].

2., WILKS' A DISTRIBUTION.

Before actually proceeding to derive the distributions, we state the
following results, which are well known in connection with Wilks' j ;
(See for example Kshirsagar {6], [9].).

If Al and A2 are two symmetric positive definite matrices of order r ,

having independent Wishart distributions with the same variance covariance

matrix and respective d4d.f. fl and f2 , then

1/2 1/2

(2.1) A= (A1 + Az) Al(A1 + A2)

is independently distributed of A, + A_, and has the multivariate Beta

1 2
distribution
fl—p-l fz—p-l
_ 2 _ 2
(2.2) Br(A|fl|f2)dA = const. |A| |t - a] a .

The statistic |A| is known as Wilks' A and involves f f_ , and r as

1" 72

parameters and according to Bartlett's notation, it is said to have a

A(f1 + £, ,r, f2) distribution. If A is expressed as TT' where

2

T = [tij] is a lower triangular matrix, then tii are independently dis-

. 2 .
tributed (i = 1, 2, *++ , r) and have the density B (t] [f; + i - 1]f ).

r
. 2

Conversely if t?. has this density, ]A[ =1 t,. has A(f, + £_. , r , £.)
ii 1 ii 1

2 2

distribution.

3. DISTRIBUTIONS OF THE DIRECTION AND COLLINEARITY FACTORS A" AND A" .

For the table (1.1), it is well known that W has the Wishart distribu-

tion with n - g d.f. independent of B but, as the group means are not



identical, B will have a non-central Wishart distribution. However, under
the null hypothesis of goodness of fit of the proposed discriminator t ,

if we remove from B , the regression s.s. and s.p. matrix of x on t visz.

-1 . .
Sxtsttstx ;, the residual matrix
(3.1) L=B-2zz'
where
_ -1/2
(3.2) z =8 .Sy

has a central Wishart distribution with q - 1 d.f. The vector z has a
p-variate normal distribution but E(z) # 0 . In other words, the non-
centrality of the distribution of B is entirely removed by regression on
t . We have, thus, three independent distributions, of W , L , and z .

From the results of Section 2,

1/2 1/2

(3.3) M= (L+W W@ +w_

is independently distributed of L + W and has the density Bp(Mln—q|q—l).

Hence it is also independently distributed of

(3.4) u= (L + w)'l/zg

Now, make an orthogonal transformation from M to G = [gij] by

(3.5) G =UMUu' ,

. . -1/2
where U is an orthogonal matrix whose first row is (u'u) /

u' . This is
a random orthogonal transformation as u is random. Here, therefore, we
employ Wijsman's [11] argument. As M and u are independent, the conditional

distribution of M when u is fixed is Bp(M|n—q|q-l)dM . By the transform-



ation (3.5), in this, we obtain the conditional distribution of G when

u is fixed. As |c] = M| and |1 - G| = |1 - M| , the distribution of G

is BP(Gln—qlq—l)dG . But this conditional distribution of G does not
involve u and so it is also the unconditional distribution of G and further

G is independent of u . A further transformation G = KK' where K = [kij],

a lower triangular matrix, yields kii(i = 1, s+« , p) which are independent

and have Bl(kiiln—q + 1-i|q—l)dk§i as their distribution.

- It now only remains to prove that A" = k2 and 'Y =

2
11 k.. , so that

ii

| =m0

i=2
A" has A(n-1 , 1 , g-1) distribution and A" has A(n-2 , p-1 , g-1) distri-

bution independent of A" . This can be seen from below:

From (3.1),

T—l

z=(L +W+ z E')-lg

-1/
(3.6) stt 29

@+ w2

1+ 2'(L + W)_lz

and hence, from (1.2)

1

(3.7) A=z @+ W W+ w2z @ Tz

= u'Mu/u'u

first element of UMU' = G



Similarly,

15 e {1 + z'"(L + W)—lz}

z' (L + W) WL+ W Tz

] 2@ W

(3.8) A" =

[W+L+2zz")

— lWl . u'u(l + u'y)
- |W + L] + (1L +u'w u'Mu
= M| - 1
911
= le| - 1
911
p
= I k‘i?i
2

4. DISTRIBUTIONS OF AIV AND AV -

The procedure is exactly analogous to that in the previous section,

except for the change, that for obtaining the distributions of AIV and

AV , We employ an orthogonal matrix U , whose last row is (g'g)_l/zg' .
Hence,
-1
]
(a.1) AV = 1w} . £t =
- - T — —1:
W+ Lo+ 2zt z'(L + W) lz/{l + z'(L + W) lz}

luMy/uty

IGI . u'U'G-lUu/u'u

]

-1
|G| + last element of G , as Uu = {0, 0, 0, ««+ , 11" .

]
3
<
N
b



Similarly
(4.2) A = el
= k2 R
PP

v . . .
and hence A has A(n-1 , p~1 , g-1) distribution and AV has A(n-p, 1 ,

g-1l) distribution independent of AIV .

5. GEOMETRICAL INTERPRETATION.

Wilks' A for the relationship between x and y is [W|/|W + B| . If we
eliminate t , the 'residual’ criterion is |W|/[W + L] or from Section 3,
co s _ " - v \' .
it is |M| = |G| ; and A" , A" or A" , A are factors of |G] . G is
obtained from M by an orthogonal transformation; in other words, we rotate

the axes corresponding to x X s xp , so that one of the new axes

1’ 2’ ’
l/zz'x corresponds to the

corresponds to u'x . Observe that u'x = (L + W)
sample projection of t , the hypothetical discriminator on the x-space.

A" corresponds to the relationship of this variate with y , eliminating t
and A" measures the relationship of other variables in the x-space, after
- . v \' .
u'x is eliminated. For A and A , the last row of the orthogonal matrix

I . .
U was taken to correspond to u'x and so A v measures the relationship of

variates orthogonal to u'x with y , eliminating t while_l\.V measures the

relationship of u'x , when all these variables are eliminated first.

6. MORE THAN ONE HYPOTHETICAL DISCRIMINANT FUNCTION FROM THE y-SPACE.

The above argument and derivation can be easily extended to the case

of goodness of fit of s(s > 1), hypothetical discriminant functions from

the dummy variables space. It is a straight forward extension, where
s s
B is split up as z EdE& + L where z z z' is the matrix of regression
a=1 a=1



s.s. and s.p. of x on the assigned s discriminant functions from the

y-space and carries s d.f. L will have g-s d.f. and under the null hypoth-

esis of adequacy of the proposed discriminant functions, L will have a

central Wishart distribution. The residual Wilks' A criterion, when the

proposed discriminant functions are eliminated will be again |Wl/|w + L]

= IM[ as before (but with g-1 replaced by g-s). We than make a transform-
1/2

ation G = UMU' where either the first s rows of U are (L + W) z

(a =1, 2, *+«- , s) and the remaining rows are so chosen that U is ortho-

. -1
gonal [we can always choose or adjust Ea to satisfy z&(L + W) zB =0,
a # B ]l or that the last s rows of U are (L + W)_l/zza (=1, 2, *++ , 8)

and the remaining rows are suitably chosen. The matrix G is then decomposed

as KK' where K is lower triangular and we get two alternative factorizations

viz.
S p
(6.1) le| = ( I kii> < I k2> = A"A™
i=1 i=s+1
or
p-s p
(6.2) le| =( = k§i> I k§i> = ATVpY
i=1 i=p~s+l
. . -1/2
depending on whether the first or the last s rows of U are (L + W) z .

o}

A" is the direction factor and A is the partial collinearity factor.
They are independently distributed as A(n-s , s , q-s) and A(n-2s , p-s ,
iv

g-s) respectively. In the alternative factorization (6.2), A is

A(n-s , p-s , g-s) and AV is an independent A(n-p , s , g-s).
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