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The null hypothesis H.: yu = y* , where y and y* are p x 1 vectors

0
such that
r 3 £
U, U
L‘l = . and E* = . ’
u
\ PJ \H

is to be tested on the basis of a sample of size n, Y. , Y, , ", Y,

1 =2 -n

from a p-variate normal population having equal variances and equal cor-
relation coefficients. Since u can be either specified or unspecified,
and 02 and p can be either known or unknown, there are eight cases of the
null hypothesis to consider. One of these cases has been considered by
S. S. Wilks [6].

In this paper four of the remaining seven cases will be considered.
The test criterion will be derived by the likelihood-ratio method for each

case.
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CHAPTER I

Testing of statistical hypothesis about the parameters of normal dis-

tributions is an important part of the theory of mathematical statistics

and its applications. In 1946 an important paper was published by S. S. Wilks

{6], in which he derived criteria for testing hypotheses about the unknown
parameters of a p-variate normal distribution. It is of interest to derive
test criteria, by the same method used by Wilks [6], for the cases where
certain parameters are considered to be known quantities.

This paper is concerned with testing equality of means on the basis of
a sample of size n, ¥1 ' 22 y °°° 'Xn' from a p-variate normal distribution
having equal variances and equal correlation coefficients. Thus, the normal
distribution which we will be considering has p + 2 parameters, namely,

My s My v o0ty up p 02 , and p . The null hypothesis is

Lll o

u2 H
w=| .| and ur=| .

u u

. PJ L)

. ‘e 2 ., .
But, since p can be either specified or unspecified, ¢~ is either known
or unknown, and p is either known or unknown, there are eight cases of the

null hypothesis to consider. Treating each case as a separate hypothesis



and letting a subscript of zero denote that a parameter is known or specified,

the eight hypotheses are as follows:

2 2
. = u* = = i
Hol. 0 EO , where p po and o 00 and EO is a p x 1 vector such that
£
Yo
Ho
* * R
ug =
tHo)
2 .,
HOZ: = 56 , where op= po and ¢~ is unknownj;
2 2
. = 1% 1 = .
HO3' U EO , where p is unknown and o OO ;
HO T U= 36 , where both p and 02 are unknown;
4 B
H - = u* , where p = ¢p_. and 02 = 02 H
0 = = 0 0
H0 : = u* , where p = po and 02 is unknown;
6 =4
H07: U4 = u* , where p is unknown and 02 = Og H
H08: y = u* , where both p and 02 are unknown.

With this paper, test criteria is now available for testing five of
the above eight hypotheses. Test criteria are derived in this paper for

, H , H , and H . S. S. Wilks [6] derived

testing hypotheses H 0, 0s 06

01

the test criterion for testing the hypothesis H In each case the test

0g
criterion is derived by the likelihood-ratio method. Time did not allow

H and H .
03 ' "0y ' 07

derivation of test criteria for testing hypotheses H
Wilks [6] derived the test criterion for testing the null hypothesis

H08 based on a sample of size n, Xl ’ 22 r Xn where each Xi is a

p X 1 vector for i =1, 2, *** , n , from a p-variate normal distribution

having mean vector u , equal variances and equal correlation coefficients,

all of which are unknown. He found the likelihood ratio to be



n
2 -1 2
sHPa - oP T+ 1 - 1 |?
Am 5 5-1 ’ (1)
(so) (1L - ro) (L + [p - llro)
where
n p
- 1
v=2 ) ) v,
R S N 5 R
17 - -
Sip =& L (Y =¥ (N, - ¥,
j=1
n
§. =’i" Z Yi. ’
i 521 3
o
§, =']'-' z Y.. v
i oop oy, i3
p
2 1
S ‘SZ Sii *
i=1
? .
_ o ifg=1 P
r = P '
(p - 1) 21 Si4
1 § -
s = = (v,. - ¥Y)(y,. - Y) ,
Ojx ™ y21 3 k
p
sg -5 ! o0,, '
P il Pii
P
Y s
- iFj=1 ij
and ro.— P .
-1 ] s



—_—2 __ 5
n(p-1) _ s (1 - r)

The distribution of I. = ) , under H , was found to be
m m 2 Og
s (1L -1r))
0 0
1 1
rGGnte - 1) $(n-1) (p-1)-1 F(p-1)-1
dF(Lm) = I T Lm (1 ~ Lm)
I‘(En(n -1ip - l)) I‘('Z-(P - 1)> (2)

for 0 < Lm < 1 . Then an exact test of H0 can be made on the basis of
- - 8

dF(Lm) by use of tables for the Incomplete Beta Function, where

and La is the 100a% point. The null hypothesis H is rejected at the

Og

1000% significance level if
L <L (3)

Wilks also stated, but did not prove, that H could be tested by

Og

using

P 2

n(n - 1) ) (Y, -Y)
i=1
F = — 3 3 (4)
Lol (¥ - ¥ -Y 4
j=1 i=1 3 7
- 1 n

where Y! = = Z Y.. for 3 =1, 2, +++ , p and under H , F has an

F distribution with p~1 and (n-1) (p-1) degrees of freedom. The null hypoth-

esis Hy is rejected if
8

F2 FGIP-lr(n—l)(p—l) (5)

where
g(F)dF = a
Fop-1, (n-1) (p-1)




and g(F) is the density function of a F distribution with p-1 and
(n-1 (p~1l) degrees of freedom.
Anderson [1] stated, but did not prove, that the test criterion for

testing the null hypothesis

where y ., is a specified vector such that all components are not necessarily

equal. The null hypothesis is rejected if

n@ - u )V A -ug) 22 (6)

2
a,p

where

and f(x) is the density function of a chi-square distribution with p degrees

of freedom, and g is the mean of a sample of size n, Yo o ¥, 00 X,

1 =2 -n

from a p variate normal distribution with unknown mean vector p and known

-

covariance matrix V. The null hypothesis H is a special case of this

0

hypothesis, namely, the case where the p components of u are all equal.

0

The test criterion for testing a special case of the null hypothesis
H06 was derived by Hogg and Craig [{4]. For p = O they found the likeli-
hood ratio to be

np
212

(7)



where

Y. == £ Y., for § =1, 2, *+» , p

and

3
g

P n
Z Z (Yij - §13)2
P pi{n-1) J=1 i=1 > F (8)
p-1 P n _ 5, = “a,p-l,p(n-1)
Yo -
j=1 i=1 *J
where
g(F)AF = o

F
a,p-1l,p(n-1)

and g(F) is the density function of an F distribution with p-1 and p(n-1)
degrees of freedom.

The test criteria for testing two other hypotheses will be given
though they are not exactly the same as any of the eight hypotheses. Fix

[2] states the test criterion for testing the null hypothesis

Ho: W, = H_ i=1,2, ", p
against

Hy: Wy # uoi

for at least one value of i1 , where Y, has a normal distribution with mean

i
M, , variance 1 , and cov(Yi ’ Yj) = 0 for i #j3=1, 2, *** , p . The



null hypothesis is rejected if

2
IZ) (¥, - )< > 2 (9)
jo1 1 uOi Xa,p

where

o]

S ) h(x)dx = a
Xa P

and h(x) is the density function of a chi-sqguare distribution with p degrees

of freedom. This is a very special case of the test of the hypothesis

2
above by Anderson [l1], namely, for n =1, ¢ =1, and p = 0 .

Stuart [5] derived a test criterion for testing the null hypothesis

O- i o ’ i=1' 2, DY ' P ’

on the basis of a sample of size n =1, Y. , from a p-variate normal dis-

1

. 2 . _
tribution having equal but unknown variances ¢ and correlation coefficients

all equal to a known value, p. . The test statistic is given by

0

—

1

- 2 2
(Y - u )[plp - 1] 1 -p
£ = o 0 (10)

- _ 1 1+ (p-Lp :
[E(Yi-Y)z]z 0

i=1

It is of interest to note that the likelihood-ratio method was not used.



CHAPTER II

In this chapter, we shall see how a p-variate normal distribution
having equal variances and equal correlation coefficients can arise.

Let X, X

o ces , Xp be p + 1 normally distributed random variables

1 14
such that for i # j =1, 2, *** , p,

2
E(XO) = 0 and Var(XO) = Ox . (11)
E(X.,) = p, and Var(X.,) = 02 . (12)

i i i X

2
cov(Xo ’ Xi) = bO* ’ (13)
cov(X, , X.) =0 , (14)
1 J
where b is a real constant.
We define a new set of random variables

Yi = Xi + axo for i=1, 2, ¢ , p , (15)

where a is a real constant. Now, for i # j =1, 2, *** , p,

E(Yi) = (16)
2. 2
Var(Yi) = (1 + 2ab + a )0x ’ (17)
2. 2
cov(Y, , Y.) = (2ab + a")o ' (18)
i J X
2ab + a2
so that p(y, , Y.} = 5 . (19)
1 1+ 2ab + a

Hence, we have a p-variate normal distribution with equal variances and



equal correlation coefficients.
Let p=op (Y, , ¥.) and 02 = Var(Y.,)= (1 + 2ab + a2)o2 fori#j=1
i 3j i x J v

2, *** , P . Now Y has a p-variate normal distribution with mean vector

p and covariance matrix V , denoted by N(y , V), where

(v (u_) (62 0g2 ene 5g2)
.Yll ¥y g po“. o
2 2 .e 2
Y2 Hy po< o pa
X: . E: . ’ and VvV = . . . .
2 2 2
pd H po“s poc c*c O
| P) \ P \ /
Let
r].. LN ] p\
p LI p
K = . . . . (20)
o} P s e 1
( )
Now
v = o’k (21)
and the density function of Y is given by
£(Y') = S — exp| - —AE%Y - u)'K_l(Y - u) (22)
T R
o (2m) IKI
where
o1 - pJ (23)
K =71 0 1+ (p- 1)p !

I is the p x p

identity matrix and J is a p x p matrix of 1l's .



CHAPTER III

The likelihood ratio method will be used to derive the test criteria
for testing equality of means in the p-variate normal distribution with
. 2 . , . . .
covariance matrix ¢ K where K is defined in (20). The likelihood function

will be denoted by L. . Now

n 2
L=T £( , 4,0 ,0)
i=
n
1 1 vl
= T P—exp[_;;iig—-l(zi - WK (Y Ezl (24)
(0?2 2m 2 |x|?

and the natural logarithm of L is given by

n 2 _np -1 -
> in o > In(27) 5 lanI 5

207 i

InL = -

I o~18

-1
(Y. - @)'K " (Y, - u).(25)
23 | i |4
1
The parameter space will be denoted by Q@ and the subspace specified by the
null hypothesis will be denoted by w .

Now the test criterionwill be derived for testing the null hypothesis

e}
=
I
=

*

0y

against the alternative

Al‘

10
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Here
Q—{( o e e 0’2 )-—m< <
= 1111112' rupr y P2 Ui
. 2 2
for i =1, 2, ¢+ , P, 0 =05>0, -1<p=p, <1}
and
w = {(u U *e* , M o2 pl: —® <y, =y <=
ll 2' lpl r i 0
. 2 2
for i=1, 2, ** , p, 0 = 00 >0, -1<p = pO < 1}

since all of the parameters are specified in w , the maximum of the likeli-

hood function in w is given by

- 1 1 v -1
L(w) = L(w) = Y exp[— ) __Z_I(Zi - Uy 'Ky (- ES] » (26)
O'O i=

n
2

(0% 2n) 2 kg

where K—l is defined in (23) but with p replaced by po . Now L is maximized

0
in Q by
r:;\
1
P
p=Y=1-| ,

Y
P
L)

o o1

where Qi = %— Yi' for i =1, 2, *** , p , and the maximum of the likeli-
j=1

hood function in Q is given by

A 1 1 7 P | -
L@) = —F— e%p|" = izl(gi SRS - D). @
(03)2(2“) 2|Kol2 0
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The ratio of (25) to (26) is the likelihood ratio:

n
exp[} L) @ eyt -l

20, i=1 -
A= 0 =
exp[} —li- z (Y - Y) K (Y - i)
260 i=1 -
1 © -
= expl~ —5 ] [(¥; - ud) 'K, (Y - uA) - - DK (Y -]
200 i=1
(28)
But
- _.1 -
2 [(X, - u8) 'K, (Y - uA) - (Y - DK - D] = n(E - uk) 'K L - ut)
o1 - -i - =i =
(29)
Now
A = expl- 2 (¥ - ut)'KI(T - uR) (30)
2 '= "B Po =T Bl -
20
0
Next we need to determine the distribution of A . Anderson [1]
showed that
n ——
Q= ) (¥ - *) K (Y - u*) (31)
0

has a x2-distribution with p degrees of freedom under the null hypothesis.
Now the distribution of A can be determined, but the test may be done

using Q as a criterion. Since

>
n

on(-2)

0==-21n X . (32)



13

Then

= S h(QIHO yap , (33)
X2 1

u,p

where h(QlHOl) is the density function of a chi-square distribution with

The null hypothesis H is rejected if

p degrees of freedom. 0
Q= (¥~ pX)'K (¥ - ux) 2 X2 (34)
02 - 0 0 0" = %a,p °
0

Here the total parameter space is

Q = veoe
{(ul P rHL PO 0) me < < w
i
for i =1, 2, ... r P, 02 >0, ~1<p = p. < 1}
0
and
m:v{(u vso 2
17 My s *Hp 70 1 p): - o< My = Hg <@
for i =31 voe 2
r 2, IP10>O:"1<D=QO<1}

The likelihood function is given by
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and
A _ 1 E
Li{w) = ,_lp_ n ) exp( 2) (37)
2
? 1% |> Z (¥, - ud) 'K, (Y - u3)
l._
The likelihood function is maximized in by
=Y (38)
and
2 1 9 -
8=—Z(Y.-Y)K(Y-Y) ' (39)
n , =-i =
i=1
so that
~ 1 n
LQ) = np o N "y exp( 2) . (40)
2, 21 e | =12
2m |y [; I =D - x>]
i=1
Now the likelihood ratio is
n
e - 2
X L - 0K, (Y )
_ L(w) | i=1
A=I® "I . (41)
L (¥, - ud) 'Ky (Y - u¥)
=]

- The next step is to obtain the distribution of A under H02 .

The sum in the denominator of (41) may be put in the form

: z (¥, - Bg) " K (Y - u*) Z (¥, - Y)! K (Y -Y) +n(Y - uy)’ K (Y - ug)
cod=l -0 i=1

(42)

» S0 that A may be written
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po -w-r-l-
2
1
A= 1= . (43)
— L A - *
n(y EO) K, (x - ug)
1+
g -1
Y (Y, - YK (Y, - Y)
=1 * -0
b i= -
9 a1 _
anderson [1] showed that = —(Y - u*)'K " (¥ - u*) has a chi=-square
: s g2 = =0 = %0
distribution with p degrees of freedom where HO2 is true. Now we need to
find the distribution of
o, =n oK _
—— = - Vo -—
z- L& -0 -0
o] i=}1 o]
The np ¥ 1 vector Y, , where
;;'= es e s e e eo e
o= gy v Yy v r Yyp Yo r Ypp v v Yap ’

Ynl v X T an) !

has a multivariate normal distribution with mean vector u, and covariance

matrix 02VO , where

E;=(ulru2:"':u :ulruzr"',u :"':l—ll,uz:"',u)

p

and

0 O Y
o} KO ee* O
V0= : : .o : '
O O e K
\ 0)
a-oyfre—23
Ko = °o 1-p, ") !

‘and 0 is a p X p matrix of zeros.
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Q, = (¥, - L) 'vgl(g* - Y) (44)

0 is an np X np matrix,

where g* is a np x 1 vector and V

=(§11Y21"' l§pIYlIY21". :Ypl"' r§lr§21"' I§p)l
3

(Kl O oo e
0 -1
(@] KO v ew

-1 . . . .

VO - : : .o : !
(@] O oo K_l
\ 0 )

and where O is a p x p matrix of zeros. The np x 1 vector (Y, - i*) can

:jbe written as

r[-I.l_._—l.-]]: _lI LI ——l—I
n n
1 [r_a_:l_]l cer 1
n n n
(Y, = ¥, = : : : . = GY, (45)
I S [n_-.l_]l
. n n n )"}

Q, = YiBY (46)
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“Where

( 3
n-1! -1 1 -1 1 -1

[ n ]KO n 5o n K0
1 -1 |n-1{ -1 1. -1

n K0 [ n ]KO “n %o

-1
= ' - . . . .
B =G'V,G . : . . .

1 -1 1 -1 n-1| -1
L “n %o n KO [ n ]Ko)

Next we determine if BV0 is idempotent. Now

((n-1)T -1 -1 )
-I (n=1)1 -~ ~I
1 . . . .
BVO - n . . . . (47)
(| -I -1 e+ (n-1)I1
gwhere rank (BVO) = (n-1)p . And it is easy to verify that
(BVO)(BVO) = BV0 ' (48)
Q2
'so that BVO is idempotent of rank (n-l)p . By Graybill [3}], —E-has a
o o

;non—central chi-square distribution with (n-1)p degrees of freedom and

Qnoncentrality parameter

1
AL = T MBu, . (49)
P 202

e
Ex

;BUt it is easily verified that

A, =0 (50)
9, n ot _
I Tl U A (1)
o i=1 o)



,T 19

has a chi-square distribution with (n-1)p degrees of freedom regardless
of whether or not HO is true.
2

Now we determine if Ql and Q2 are independent. Since

Ql = Y,AY,

where
{ 3
-1 -1 -1
K0 Ko KO
-1 -1 -1
K0 K0 K0
a=| . . .
-1 -1 -1
Fo %o %o |
t is easily shown that
BVOA =0 .

Graybill [3], the quadratic forms Ql and QZ are independent. Hence,

shen H is true,
3 0y

F = (n-1) — (53)

s an F distribution with p and (n-1)p degrees of freedom.

The likelihood ratio can be written as

NE}

Ry —— . (54)

Nce F is a monotonic decreasing function of A , the critical region of



CHAPTER V

The criterion will be derived in this chapter by the likelihood ratio

: method for testing the null hypothesis

H : = y*
05 B=i

20
size o for testing HO2 based on F is
Fap,tn-nyp < F ©° v (53)
where
g(F)dF = o (56)

F
a,ps (n-1)p

and g(F) is the density function of the F distribution with p and (n-1l)p

%degrees of freedom. The test of H02 may be performed as follows: We

¢compute the gquantity

- ._l -
n(E - u) KT - )
F = o0 9 (57)

n - -1 _
izl(gi - 0K - D)

d reject H if P >F ; otherwise accept H
) 02 arPl(n'l)P P
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(59)

(60)

(61)

(62)

(64)

n
Ly T,
Pi=1
R S
n
i A
\p i=l J
and the maximum of the likelihood function is given by
n
AL 1 1 _ Syl =
Llw) = n np n exp[ 2 Z F - DKy (¥ - X
22, 2, 2 204 =1
(0g) " (2m) “{xd
In @ the likelihood function is maximized by
b=y
so that
n
N - l _-—L -— . —l --
L@ = n np n exp[ 2 .Z (T; - DRy (Y X)]
2,2, 2.2 20, 1=1
(00) (2m) [Kd
The ratio of (60) to (62) is the likelihood ratio, i.e.,
1 t = ~1 = - -1 -
A=expf-—= ) [(Y, - 'K (Y, ~¥) - (¥, - ¥)'K (Y, - ¥))
2, -i - 0 - =i - 0 -i =
20, i=1
0
The likelihood ratio can be written as
n - = -1 = o=
A= expl- —— (Y - ¥)'K_"(Y - Y)
202 - - o = -
0
Now we need to find the distribution of X under HOS . To do this

-we first find the distribution of

n
Q—O2
tNow 0

-0 =cy, .

(63)



where

is a p X np matrix, I

of one's, and Y, is a

'=
s (Yll ! Y21
Yln ! Y2n
so that
where
-~ But
-39
where A, = |I - — J|K
1 p
-1
K0
Al

23

is the p x p identity matrix, J is a p x p matrix

np x 1 vector such that

Y.,

Y r

! " "p1 12 22 p2
’ ) ’ an ’
Q = Y,AY, (65)
02
0
-1
= '
A nC Ko c .
( 3
By By Ay
Ay By ot By
a=2x° : (66)
n L ] - . -
kAl Al s e Al‘
-1 1 . .
0 I - E-J is a p X p matrix. Since, by (23),
( J
N SR Po ]
= — - — ,
1 -0, \ 1+ (p l)DOJ
1 (. 1
= I- = J] . (67)
1- Po \ P




24

The np x 1 vector Y, has a multivariate normal distribution with

. . 2
mean vector yu, and covariance matrix o V. , where

0

g; = (Ul ’ U2 r Up ’ ul v Uz r * Up 2 Ul ’ U2 L EETIR

and

¢ 3
Ko O veoe
0 Kb eee O
V0= . . . . ’
O O es e K
\ OJ

where O is a p X p matrix of zeros.

We now determine whether or not AV0 is an idempotent matrix. It

iié easy to show that

( cee )
A2 A, A2
2 A2 e e A2
AVO = : : '. : , (68)
L2\2 Az LI ] Az)
Where 2, = I - = is a p x p matrix. Now
b rAz A2 LI ) AZ\
2 2 2 2
2 2 2
A2 A2 A2
1
= e e . . . . 69
(AVO)(AVO) o (69)
& L] L] [ .
%j 2 2 2
% 2 P2 R
£
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But
2 2
SHIRS
(-3
p
= A2 . (70)
Therefore

(AVO)(AVO) = AV0

and AVo is an idempotent matrix of rank p-1

By Graybill [3], Q has a non-central chi-square distribution with

p~1 degrees of freedom and noncentrality parameter

1
v lp = - ]._I;AE* . (71)
20
0
But, under HO5 ;, it is easy to verify that
A =0 . (72)
p

Therefore, under the null hypothesis,

Q=5 (¥ -

1<l

n x1ig - %
2 )'KRy(Y - YD)
0

has a chi-square distribution with p-~1 degrees of freedom.

Now the distribution of A = exp(- %-Q) could be determined and H

0s
‘could be tested using A .

But, since Q0 is a monotonic decreasing function
of A , Hy can be tested on the basis of Q .
: 5

The critical region of size
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o for testing H based on Q is

Os
x2 < Q< w® (73)
o,p-1 !
where
(o]
h(Q)dQ = o
X2
a,p'—l

and g(Q) is the density of a central chi-square distribution with p-1

degrees of freedom. Then from a sample of sizen, Y. , Y  , ¢+ , Y ,

1 2 -n

from a normal distribution with mean vector U and covariance matrix

2 .
OOKO , the quantity
n,- :='—l— =
Q= Eg! - Y) K0 ¥ - Y (74)
is computed. The null hypothesis, Ho5 U = u* , is rejected if
2 .
Q> Xa,p—l ;

otherwise H05 is accepted.



CHAPTER VI

In this chapter the criterion for testing the null hypothesis

H

=
n

=
*

0g

5 against the alternative hypothesis

. *
HAG. p#FU

%Vwill be derived by the likelihood ratio method.

%
% Here
Q= {(u H et W o’ ) mw < <
: 17727 S ’ i
b
o 5
3 for i =1, 2, ** , P, 0 >0, -1<p = pO < 1}
. and
w={W ,u et M o )i me<u =<
1 r 2 14 ’ p 14 r i
. 2
for i =1, 2, ¢+« , p, 0 >0, -1 < p = DO < 1} .
. The likelihood function is given by
n
1 1 -1
- . - - 75
L T 2exP[ = izlo_zi ) 'Ky, 1_1)] (75)
2,2 2 2
09 % (2m) “ | x|
where
p
. -1 1 0
; K= =—— |1 - ————— 3| .
¢ 0 1 Po 1 (p l)O0

Now L is maximized in w by

27
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n
1 ) T,
P21
ir=Y=| (76)
P
1 )Y,
S
and
n
22 _ 1 _ Syl _3
6" =5 L ¥ -DIRSE -, (77)
i=1
so that the maximum of L in w is
Lw) = L exp[— -rl] (78)
np n n n 2
2 1 = - =
o 2|xd® &V @ -DK T, -9 2
n . -i - 0 -i -
i=1
In Q , L is maximized by
i=Y (79)
and
2 1 g = -1 -
o" == '21 (Y, - DK - D) (80)
so that
- ‘ 1 n
L(Q) = T - n exp[— 2] (81)
2 1 TS DU
2m) 2 |xf [n DICAER IR Sl v 3_{)]
i=1
Now the likelihood ratio is
n
n _ -1 _ 2
YAy, - 'R (Y, - 1)
=1 -1 - 0 -i -
A=) (82)
. n = ~1 =
] (Y, - 'R (Y, - 1)
. -i - 0 =i -
i=1
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n
Y) = Z(Y—Y)K(Y—Y)+n(Y-Y)K(Y—Y)
i=1
(83)
1z
2
L : (84)
n(¥ - 'K, e -9
1+
n —
X(Y—Y)K (¥, - ¥
i=1

To find the distribution of the likelihood ratio under the null

£ hypothesis we first find the distribution of

n(¥ - )" Kol(Y - ¥)

Z(Y - 1)K, (Y - ¥)
i=1

It was proved in Chapter V that

Q=5 (¥ - 'K, - o
0'

has a chi-square distribution with p-1 degrees of freedom under H and

06’
in Chapter IV it was proved that

Q n - K -
2= J @ -0 S - D
o i=1 o

has a chi-square distribution with (n-1)p degrees of freedom regardless of

whether or not HOe is true. Since by (65)

= LAY,




1 Ay ot AlT
l Al e e Al
A:l . . . . ’ A l I_.];J
n 1 1 -9 P
L ] . * - 0
\Al Al LR Al}
and by (46)
Q2=Z;B¥*
where
'(n—l)K-l T .o x )
0 0 0
-1 -1 -1
-KO (n—l)K0 LR K,
l . . . .
B_n L ] - L ] ) '
-1 -1 -1
- - o e - K
\ KO KO (n-1) o J
it is easy to show that
AV B = 0

Hence Q and Q2 are independent, and

FeRm=1 Q0
(p - 1)0° 22

. has an F distribution with p-1 and (n-1)p degrees of freedom under

30

(85)

(86)
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Now the likelihood ratio can be written as

s

A= . (87)

Since F is a monotonic decreasing function of A , the test can be done

just as well with F as a criterion as with A . The critical region for

testing HO6 by a likelihood-ratio test based on F is

Foyp-1,(n-1)p - F 5 ° v (88)
where

i g(F)dr = a’

Fa,p-l,(n-l)p

and g(F) is the density function of an F distribution with p-1 and (n-1l)p

degrees of freedom. To test HOG: U = p* we compute the quantity

n@ - DT E-D
. (89)

n — _l -
I, = 'K (Y, - Y)
io1 -i - 0 -1 -

and reject H, if F > F ; otherwise accept H

Og o,p-1, (n-1)p Og
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