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Abstract 

The importance and complexity of assessing fidelity has been emphasized in recent years, with 

increasingly sophisticated definitions of fidelity (Dane & Schneider, 1998; Durlak & Dupre, 

2008; O’Donnell, 2008) and recommended procedures for developing fidelity instruments and 

collecting fidelity data (Nelson, Cordray, Hulleman, Darrow, & Sommer, 2012). Researchers 

agree that in order to better understand an intent-to-treat study, measurement should be spread 

across the entire study period (Gersten, Baker, & Lloyd, 2000; Nelson, et al. 2012); however, 

little guidance has been provided about how to determine the number of observations needed to 

precisely measure fidelity (Smith, Daunic, & Taylor, 2007). With limited resources for research, 

this is an important question, particularly for interventions that last a considerable length of time. 

Increasingly, these data are being used to enhance the analysis of outcomes. This paper proposes 

a method for determining a reasonable sample size for fidelity data collection, in the case that 

fidelity assessment requires observation and coding of instructional sessions either live or by 

videotape. The proposed methodology is based on consideration of the power of tests of the 

treatment effect of outcome itself, as well as fidelity’s contribution to the variability of outcomes.  

Software for the sample size calculation is provided. 
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A Power Analysis for Fidelity Measurement Sample Size Determination 

 Fidelity of implementation means the extent to which theoretically meaningful 

components of an intervention are implemented as intended (Gall, Gall, & Borg, 2007). If a 

randomized trial of a promising intervention shows that an effect is small, or even non-

significant, one possible explanation is that its important components were not fully 

implemented. The importance and complexity of assessing fidelity has been emphasized in 

recent years, with increasingly sophisticated definitions of fidelity (Dane & Schneider, 1998; 

Durlak & Dupre, 2008; O’Donnell, 2008) and recommended procedures for developing fidelity 

instruments and collecting fidelity data (Munter, Wilhelm, Cobb, & Cordray, 2014; Nelson, 

Cordray, Hulleman, Darrow, & Sommer, 2012). Researchers are urged to be careful and 

complete when measuring both causes (i.e. independent variables) and outcomes (i.e. dependent 

variables) in their studies (Nelson, et al., 2012). In 1998, Dane and Schneider (1998) identified 

five aspects of fidelity: adherence, or following intervention protocol; exposure, or dosage; 

quality of delivery; participant responsiveness; and program differentiation, or how much the 

treatment condition varied from the comparison condition. Researchers are now being urged to 

more systematically and thoroughly measure interventions in order to (a) ensure that they are 

measuring the underlying theory that hypothesizes why an intervention may be effective and (b) 

more precisely measure variation in implementation (Nelson et al., 2012). Further, the concept of 

fidelity is even being expanded to include measuring variables that determine implementation 

(Nelson et al., 2012). In addition to conceptualizing fidelity more fully and operationalizing 

those definitions in measures, researchers are now using variability of implementation to better 

understand treatment effects by including them as covariates in their analyses.  If sufficiently 

precise measures of fidelity of those components are available, the researcher may be able to 
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determine whether non-significance is due to failure of the theory or inadequate implementation, 

and if outcomes improve with fuller implementation.  With precise data, researchers may also be 

able to determine how to improve implementation in the future or to improve an intervention 

itself.  

More sophisticated notions of fidelity present researchers with practical challenges. Each 

aspect of fidelity of implementation can be measured in a variety of ways.  Some aspects of 

fidelity can be measured precisely. For example, suppose the measure is one of “dosage,” such as 

the number of times a student was present for a tutoring session, or the number of activities he or 

she completed. Then the fidelity measure may not require sampling or subjective assessment, and 

thus can be considered to be precise, given accurate recordkeeping. But dosage might also be 

thought of as opportunities to respond or the amount of practice of specific skills within a given 

time frame. One intervention, for example, might increase the dose by increasing the number of 

opportunities through faster teacher pacing or group responses rather than simply extending the 

length or frequency of sessions. Determining the number of opportunities to respond would 

require observation, which is more expensive than basic recordkeeping. With finite resources, 

researchers must be able to determine the number of observations required to adequately 

estimate fidelity. Researchers agree that in order to better understand an intent-to-treat study, 

measurement should be spread across the entire study period (Gersten, Baker, & Lloyd, 2000; 

Gersten, Fuchs, Compton, Coyne, Greenwood, & Innocenti, 2005; Nelson, et al. 2012); however, 

very little guidance has been provided about how to determine the number of observations 

needed to precisely measure fidelity (Smith, et al., 2007). With limited resources for research, 

this is an important question, particularly for interventions that last a considerable length of time. 

The resources required for fidelity have also increased with advances in video capability and the 
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sophistication of observation instruments that often require multiple viewings of intervention 

sessions to complete reliably. Further, as interventions are scaled-up, large numbers of 

participants are included in studies, further increasing the number of potential observations that 

must be carefully coded and analyzed. Measuring fidelity of implementation in intervention 

studies can be just as costly as measuring outcomes (Gersten, et al., 2000). In this paper we 

address this challenge by proposing a method to determine the number of fidelity measurements 

needed for the goal of using it as a covariate in the analysis of outcome.  The approach taken is to 

relate the number of measurements to the power of tests of treatment outcomes.  

When designing randomized control trials, researchers are accustomed to making sample 

size decisions based on consideration of power. It has become routine to conduct power analyses 

to determine the number of subjects and clusters (e.g., classrooms, hospitals, or training centers) 

needed to achieve the desired power to test an intervention. Similarly, when fidelity measures are 

used in the analysis of outcome data, their precision also affects the power of the treatment effect, 

as well as the effect of the relationship of fidelity to outcome, which we will call the 

implementation effect. The power of both tests decreases as the variance of the fidelity measure 

increases.  The purpose of this paper is to describe a principled approach, based on power, to 

determine the sample size needed to estimate fidelity, particularly in large scale-up studies.  

In the next section, the relationship between the sample size and variance of the fidelity 

measure is discussed. Then in the following sections, expressions for the power of tests of the 

treatment and implementation effects are displayed for two designs: a person randomized and a 

two-stage cluster randomized design. These expressions show how to link power to the fidelity 

measurement sample size.  Examples of two intervention studies from educational research show 

how to use the methods proposed for planning fidelity data collection.  Finally, the last section 
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provides a discussion of the implications for practice.  Power of tests of treatment and 

implementation effects depends on a variety of characteristics of the study. Some of these will be 

known to the researcher, but others may be unfamiliar. We make recommendations about what 

data should be collected and reported so that adequate and efficient sample sizes can be more 

accurately predicted for future studies. Software (SAS code) for implementing the methods 

discussed is provided in supplementary materials.  

The Variance of Fidelity Measures 

The cases considered here are those in which the intervention is delivered in a series of 

discrete sessions, such as a tutoring session in an educational intervention or other kinds of 

training sessions. We suppose the fidelity measure must be assessed by observation of 

intervention sessions, either contemporaneously or by recording and subsequently evaluating the 

sessions. When only a subset of the sessions are assessed, the resulting estimate of fidelity may 

differ from the true fidelity that would have been computed had all sessions been observed.  

For example, suppose the fidelity measure includes an item for the number of times a 

student or teacher exhibits some specific behavior in the classroom during the intervention 

period. Fidelity may be operationalized as the average number of times the behavior is observed 

per monitored session, or scaled up as this average times the number of times the student was 

present. But neither measure would be perfectly correlated with the true number of times the 

behavior occurred over the course of the intervention, unless the count of the behavior did not 

vary at all over sessions or all sessions were observed. However, if the sessions that are observed 

were selected randomly, or could be treated as such, then the estimator of fidelity would be 

unbiased for true fidelity and the size of its error will be reflected by its standard error.   

To make that concrete, consider a person-randomized trial in which each person 
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participates in K sessions over the course of the intervention study. Let fij denote the fidelity 

measure for person i in session j of the K sessions.  The true fidelity for person i is defined as the 

average fidelity he or she received over all sessions: 

.      (1) 

(Fidelity could be defined as the total rather than the average if so desired, with appropriate 

changes in the expressions. The power of the designs remains the same for either definition.) If 

the fidelity measure were observed in only k of the K sessions, fi could be estimated by  

      (2) 

If the sessions have been sampled randomly, is an unbiased estimator of fi and its variance is 

     (3) 

where  is the within-person (session-to-session) variance in fidelity for person i (see, e.g., 

Lohr (2010), p. 36).  

Thus the measure of fidelity (2) is related to true fidelity (1) by  

,      (4) 

where ui has mean 0 and variance shown in (3), with  fi and ui independent. When fi and ui (and 

therefore ) are assumed to be normally distributed, model (4) is sometimes called the classical 

measurement error (CME) model (Carroll, Ruppert, Stefanski & Crainiceanu 2006, p. 2). The 

reliability of a measure that follows the CME model is the proportion of its between-person 

variance that is “real” variance; i.e., 
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.    (5) 

In the case of fidelity estimation, it is reasonable to assume  to be normally distributed 

(because it is an average). However, fi will not necessarily be normal, depending on the fidelity 

measure chosen. Nevertheless, for purposes of fidelity sample size planning, we assume the 

CME model to hold, and that the within-person variance  is constant (= ) for all persons.  

With these assumptions, the reliability for the fidelity measure when estimated from a 

sample of k sessions is (from (3) and (5)): 

   (6) 

where is the fraction of the total variance of fidelity ( ) that is 

between persons.  

ICCf  is denoted as such because it is an intra-cluster correlation, where the cluster is the 

unit (student or teacher) on which fidelity is measured. ICCf  measures consistency in the fidelity 

received from session to session. If fidelity is perfectly consistent over sessions, then the 

variance between sessions = 0 and ICCf  = 1. This makes it much easier (and cheaper) to 

measure fidelity, since one measurement per individual would accurately reveal the true value of 

fidelity over the entire intervention period. Then the reliability of the fidelity measure would be 

perfect (k = 1), as demonstrated by setting ICCf  = 1 in (6). On the other hand, if the individuals 

are identical to each other on average with respect to fidelity, but they are inconsistent from 

session to session ( > 0, = 0,  ICCf  = 0), then any attempt to distinguish fidelity between 

individuals by sampling is pointless because any observed differences are due simply to 
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sampling variability, and this is reflected in the reliability  (k = 0). Note also from (6) that if 

every session were measured for fidelity (k = K), then reliability is also perfect, since each 

individual’s fidelity will be known exactly.  

We can think of the sample size problem as determining how much reliability one should 

“buy.” It is not a one-size-fits-all decision, since it will depend on the consistency among and 

within individuals receiving the intervention. It will also depend on how the analyst intends to 

use the fidelity measures. As noted in the introduction, for [certain] types of studies, fidelity 

measures are used in the analysis of outcomes, commonly by including them as covariates in a 

regression model. There are two potential benefits from this type of analysis. First, if fidelity is 

related to outcome, it can improve power of a test of the treatment effect by reducing the 

unexplained variance in outcome. Second, detection of a positive relationship between fidelity 

and outcome provides some evidence of the correctness of the theory underlying the intervention. 

If implementation varies in an unplanned way, the argument for causation is stronger if better 

outcomes are associated with fuller implementation; i.e., if the data confirm the dose-response 

criteria of Hill (1953). Estimates of the fidelity slopes in different models can also provide 

information about the relative importance to different outcomes, or about the importance of 

different fidelity measures, or different items on an observation measure.  

The reason that reliability of the fidelity measure is relevant for the study of power of the 

treatment effect in a randomized trial is that measurement error in any predictor of a regression 

model affects inference for all the parameters of the model. So if the fidelity measure is to be 

used as a covariate in the analysis of outcomes, its properties must be considered. The effects of 

measurement error in the independent variables of a regression model have been extensively 

examined, especially for the CME model.  A summary of its effects follows (Fuller 1987): 
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(1) The estimator of the slope coefficient for the error-prone covariate is biased; 

(2) The estimators of coefficients of other predictors will not be biased for predictors that are 

independent of the error prone one; but 

(3) The residual variance of the model is increased, which reduces the power to detect non-zero 

coefficients for all predictor variables in the model. 

The size of the bias, the increase in residual variance, and the reduction in power are all 

functions of the reliability of the error prone variable, as defined in (6).  In the subsequent 

sections, we show how to use the relationship between power of the hypothesis tests of the 

model parameters and the sample size k to determine an adequate design for the collection of 

fidelity data. We will consider both person-randomized and group-randomized designs, a 

dichotomy also used by Spybrook (2012) for discussion of power in the OD software. 

Relationship Between Fidelity Measurement and Power for  

Person-Randomized Single-Level Trials 

The first study design considered is one in which N persons are assigned at random and 

individually (i.e., not as part of a class) to one of two treatments, where typically one is a control.  

These subjects receive the treatments in K discrete sessions.  Fidelity is assumed to be measured 

in k of those sessions for each person in the experimental group. Current recommendations for 

systematic assessment of fidelity include determining to what degree the treatment condition 

varies from the control condition. This will typically include observation in the control group, 

sometimes using the same or a similar observation instrument. The question we address is what k 

should be. 

Analysis of Outcomes Without Use of Fidelity 

To set the stage for examining the value of high reliability in fidelity measurement, we first 
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review a typical analysis of treatment effect that does not make use of the measure. To simplify 

expressions, we assume all designs are balanced, meaning that the same number of individuals is 

assigned to each treatment group. A typical model for outcome for person i, denoted by Yi, in a 

person-level randomized trial is 

,     (7) 

where the residual ri ~ N(0,2
) for i = 1,…, N and the number of subjects in each treatment group 

is N/2. Wi is defined as ½ or –½ according to whether subject i is in the experimental or control 

group, respectively.  To test whether or not there was an effect from the intervention, the 

hypotheses would be set up as  

H0: 1 = 0 against Ha: 1 ≠ 0.      (8) 

The F-test for testing (8) is based on the ratio of the mean squares: 

F1 = ,    (9) 

where  is the usual pooled variance estimator. Under model (7), F1 has an F-distribution with 

1 and N-2 degrees of freedom and noncentrality parameter , which we 

denote as F1 ~ F(1, N-2, ). The parameter may be written as a function of the effect size 

:  

 1 = N2
 / 4.      (10) 

The power of this test is  where  is the 1 -   

percentage point of the central-F distribution.  

Analysis Using Perfectly Measured Fidelity 

Now suppose that fidelity varies from one subject to another in the experimental group 

iii rWY  10 

2

2

ˆ4

)(



CE

error

treatment YYN

MS

MS 


2̂

2

2
1

1

2
1

1
4)ˆ( 








N

Var


],|)2,1(Pr[ 11 aHNFF   )2,1(1  NF 



 

Power Analysis for Fidelity  

 

13 

and is added as a covariate in the analysis. If fidelity were measured perfectly (i.e., k = 1) and 

was related to outcome, then the power of the test of hypotheses (8) could be increased by fitting 

the model 

.    (11) 

To ease interpretation here and in further discussions in this paper, we assume that fi  has 

been centered around its treatment group mean. That is, fidelity is centered separately within 

treatment and control groups, if it is measured in the control group. If it is not, then fi is defined 

to be 0 for persons in the control group. Even if fidelity is measured in the control group, it 

should vary little around 0, if the measure is well selected and operationalized to capture the 

unique aspects of the intervention. 

The residual ri has smaller variance in model (11) than in (7) if outcome is related to 

fidelity. Using the notation of Spybrook et al. (2011, p. 24), we denote the distribution of the 

residual for those receiving the intervention as where  is the 

correlation between fidelity and outcome. However, in calculation of power, we assume that 

fidelity is nearly constant (at the centered value of 0) in the N/2 cases in the control group, and 

thus the average residual variance is reduced by only half of what it would be if the covariate 

reduced variance equally in both groups: . This is a conservative approach 

from the point of view of power, since this model for  will underestimate reduction in 

variance if fidelity does vary in the control group. Often in educational research, overlap between 

the treatment and the control condition is expected.  

The usual F-statistic for testing hypotheses (8) under model (11) has distribution

where the noncentrality parameter 
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     (12) 

The power of this test is  

.     (13) 

Besides testing for a treatment effect, the analyst may also want to test whether or not there is 

a relationship between fidelity and outcome. Support for the theory on which the intervention is based 

will be stronger when outcome and fidelity measures of its important components are positively 

correlated.  This evidence will be especially valuable when treatment effect size is small. A test for a 

relationship between fidelity and outcome; i.e. of 

  against ,     (14) 

is based on the statistic , where and  are 

the usual estimators of the regression coefficient and residual variance from model (11).  The last 

equality follows because  is centered, and since we are (conservatively) assuming that fidelity 

is near 0 for all persons in the control group. Then with 

 .    (15) 

The power of this test can be approximated by 

.     (16) 

Analysis Using Estimated Fidelity 

If the reliability of the fidelity measure is not perfect (i.e., ), then the power 

functions shown in (13) and (7) are too optimistic. This will occur when only a subset of sessions 

is observed for fidelity.  In that case, if the analyst wants to use the fidelity measure as a 

covariate, its estimated value will have to replace its unknown true value in model (11).  Then 
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the model becomes: 

.    (17) 

As noted in Section 2, the least-squares estimator of  fit from model (17) is still unbiased, 

since  is orthogonal to the treatment indicator (due to separate centering in each group). 

However the estimator of the coefficient of  has expectation  (Fuller (1987), eqn. 

(1.1.7)), where is the reliability of the fidelity measure as defined in (6). Thus is biased for 

 if reliability is less than perfect. In addition, the correlation between the covariate and 

outcome is reduced; specifically (from Fuller (1987), eqn. (1.1.17)),   

 .      (18) 

As a result, the average variance of is increased (if over that of model (11) to

. Despite this, the tests for the hypotheses shown in (8) and (14) are still 

valid when  follows the CME model (4). That is, they retain their nominal significance level , 

since under H0, because in that case,  𝛾′ = 𝛾 and . However, the power for both of the 

tests is reduced when H0 is not true, as shown below. 

Denote the usual F-statistic for testing the treatment effect from model (17) by . 

When fidelity follows the CME model (4), , where 

      (19) 

The noncentrality parameter is smaller because the fidelity measure is now not so strongly 

correlated with outcome due to its imperfect reliability, as shown in (18). Thus the power for this 
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     (20) 

Similarly, the power for the test of the relationship of fidelity to outcome is reduced as 

well. Its test statistic  also has its noncentrality parameter reduced to 

    (21) 

yielding power of  

.      (22) 

The power for both tests are functions of reliability of fidelity measurement,  , which in turn is 

a function of fidelity sample size. Therefore, the power of one or both tests can be used to guide 

selection of k. 

Example 

In this example, we show how to use the expressions for power in planning the number of 

sessions that must be sampled for assessing fidelity. First note that the power of the test of a 

treatment effect from model (17) is a function of the treatment effect size , the significance level 

of the test , the total number of individuals in the trial N, the correlation between fidelity and 

outcome , the intra-cluster (i.e., individual) correlation of fidelity ICCf, the number of 

sessions of the intervention each person receives K during the course of the intervention, and 

number of those sessions sampled k.  The power of the test of a relationship between outcome 

and fidelity is a function of , , N, ICCf, K, and k.  

A reasonable approach for the user in determining k is to examine power as sample size 

varies from its minimum of 2 to its maximum of K, the total number of sessions. Then choose a 

value of k that provides adequate power, given the other study parameters. In most cases, the 

power curves increase rapidly with sample size and then level off far below their maximum. 
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Since ICCf is likely to be least familiar to the analyst, a range of values of ICCf should be 

examined.   

Consider the following example, based on one described in Section 4.9 of Spybrook et al. 

(2011). Researchers were planning a study to investigate the effect on achievement of assignment 

to a new charter school. The district used a lottery to make the assignment, as there was not 

sufficient capacity to accommodate all interested students. The performance of students was to 

be evaluated using the Iowa Test of Basic Skills (ITBS), and an effect size of  = 0.25 for the 

charter school treatment was considered important to detect. A power analysis for model (7) 

using Optimal Design (OD) software (Raudenbush et al., 2011) showed that a sample of N = 504 

(252 in each group) students would provide power of 0.80 to detect this effect size at significance 

level . 

Now suppose that the researchers identify one or more components of the delivered 

instructional methods of the charter school that they believe may be the drivers of the expected 

improvement in achievement. They expect, however, that implementation will vary somewhat 

within the school, since the instructional delivery will not be in a controlled setting. They are 

interested in testing whether or not the components they have identified are indeed associated 

with the outcome. They plan to select a sample of k of the K=180 instructional hours for each 

student and measure the fidelity of those components. They will include each measure as a 

covariate in the analysis of treatment effect for ITBS score by fitting model (17). They would 

like to be able to detect an effect size for each relationship if it is at least = 0.20. How large 

must k be?   

Figure 1 shows the power of this test as a function of k computed as in (22), where  = 

0.05, N = 504, K = 180,  = 0.20. Because we are not sure about the value of  ICCf , three 
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values are examined: ICCf  = 0.15, 0.30, and 0.45. The figure shows that power increases rapidly 

with the number of sessions sampled and levels off for rather small sample sizes. The power 

exceeds 0.70 for k = 8 and exceeds 0.80 for k = 16 for all three values of ICCf considered.   

Next we examine how dependent the needed sample size is on the number of sessions 

delivered in all. Suppose the intervention sessions are delivered at a different interval other than 

daily, so that the total number of sessions is either larger or smaller than 180. For example, if the 

innovative instruction available in the charter school occurred weekly, rather than daily, then K = 

36. At the other extreme, suppose there were 4, rather than one, instructional sessions per day, so 

that K = 4 * 180 = 720. How does this change the required k?  

Table 1 shows the value of k needed to achieve a power of 0.80 for K = 36, 180, and 720 

total sessions.  The table shows that the number of sessions needed is somewhat reduced when K 

is small, but not proportionately so. The effect is most sensitive to the size of K when ICCf is 

small, that is, when fidelity varies much more between sessions than between individuals. The 

reason that sample size needed is only weakly related to the number of total sessions K is 

because reliability k, and thus power, is related to K only through the finite population 

correction factor (1- k/K), as shown in (6). As a rule of thumb, if sampling rate k/K is less than 

about 5%, an increase in the total number of sessions K has little effect on power.  Note 

specifically that this means that selecting the fidelity sample size to be a constant proportion of 

the number of sessions would lead to a waste of resources, from the point of view of power. 

Rather, unless the sampling rate is very small, the absolute magnitude of the number of fidelity 

sessions sampled determines its effect on power.  

If the analysis were to show a relationship between fidelity and outcome, the outcome 

data could be analyzed for a treatment effect using model (17).  Suppose the researchers, based 
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on the previous analysis, decided on a sample size of k = 8 session fidelity measurements in their 

study. They would like to determine how much the power to detect a treatment effect size of  = 

0.25 would increase from using their fidelity measure as a covariate, and how much the power is 

affected by their choice of k. Figure 2 displays the power of a test of the treatment effect (from 

(19) and (20)) as a function of the correlation between fidelity and outcome for the chosen 

sample size of k = 8 and ICCf = 0.30. It also displays the power functions for two other sample 

size choices: k = 2 (the minimum possible sample size) and k = K = 180, which provides perfect 

reliability in measurement of fidelity. Figure 2 shows that k = 8 provides most of the increase in 

power that would be available from using fidelity as a covariate.  

SAS code for calculating power for these hypothesis tests is provided in the 

supplementary material. Power for a test of the treatment effect for various values of k can also 

be computed using OD Software (Raudenbush et al., 2011), with some pre-processing. 

Specifically, choose Design ⇒Person Randomized Trial ⇒ Single level trial ⇒ Power (or 

MDES) vs. explained variation by covariate (R2). Then to observe the power for a specific 

value of k, observe the power for an x-axis value of  , where k is computed from (7). 

Power for a test of a relationship between fidelity and outcome cannot be calculated using OD 

software.  

Relationship between Fidelity Measurement and Power for  

Two-Level Cluster Randomized Trials 

When groups of individuals, such as those in classrooms or training centers, are randomly 

assigned together to treatment or control, the proper analysis of outcomes requires a hierarchical 

model. The groups are referred to here as clusters. We assume that fidelity is measured at the 

cluster level. For example, fidelity may be a function of the teacher’s behaviors in an 
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instructional session, and therefore impact all the individuals in her classroom. In this section, we 

address the same question as previously: If the delivery of the intervention takes place in K 

sessions to the clusters of students, how many of those sessions should be sampled for fidelity 

monitoring?  

Analysis Using Perfectly Measured Fidelity 

We first outline a model for outcome using fidelity as a covariate, where fidelity is 

measured with perfect reliability. Next we examine how the model changes when the only 

available measure of fidelity for each cluster is one estimated from a sample of sessions. Then 

we show how to examine the relationship between power of relevant hypothesis tests and this 

sample size. Note that the calculations for power assume a balanced experiment, having the same 

number of clusters in the experimental and control groups and the same number of students in 

each cluster.  

 Let the outcome of person i in cluster j of a two-level trial be denoted by Yij. The 

generalization of model (11) is written in two parts. The level 1, or person-level model is 

,      (23) 

for  j = 1,…,J and i = 1,…,n, where n is the number of people in each of the J clusters, and

. The level 2 model for the cluster mean is:  

     (24) 

where Wj = ½ for j = 1,…, J/2 (experimental clusters) and = -½ for j = J/2 + 1,…,J (control 

clusters), fj is fidelity for those in cluster j, and  (Assume that fj is centered within 

each treatment group.) The residual variance for the level 2 model for the experimental clusters 

is , where  is the residual variance for a reduced level 2 model not including 
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the covariate fj and is the correlation between fidelity and the cluster mean. As in the single 

level model, we make the conservative assumption that this reduction in variance occurs only for 

the clusters receiving the intervention, since the fidelity in the control group should vary little. 

This provides an average residual variance of  across all clusters.  

The hypotheses to test for a treatment effect are 

 against .     (25) 

The F-statistic to test (25) has distribution  Its noncentrality parameter is 

    (26) 

where  is the intra-cluster correlation of outcome Yij
1
 and 𝛿 =

𝛾01

√𝜏+𝜎2 
 is the 

standardized effect size. The power of this test is .  

The hypotheses to test for a relationship between fidelity and mean outcome is the same 

as that shown in (14). The F-statistic for testing this hypothesis has distribution

with noncentrality parameter  

     (27) 

Its power is .  

Analysis Using Estimated Fidelity 

We now consider the case when fj is not observed directly, but is estimated for each 

cluster from a sample of k of the K instructional sessions. The estimator  is assumed to be 

                                                             
1
 It is important to distinguish ICCy, which is the proportion of variation across all person outcomes that is due to 

the cluster and ICCf which is the proportion of variation across all instructional sessions that is due to cluster. The 
total variance is being measured over different units in the two cases. 
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related to the true fidelity fj by the CME model, as defined in (4), and is used as the predictor in 

the level 2 model:   

.     (28) 

As in the single level model, the regression coefficient for  is biased for , with expectation 

      (29) 

where k (defined in (6)) is the reliability of . The usual least squares estimator of  is still 

unbiased despite the measurement error since  is defined (due to centering in both treatment 

groups) to be independent of Wj. However, the average residual variance of u0j is larger when 

reliability of fidelity is not perfect, compared with when k .= 1.  

 As a result, the F-tests for the significance of and  are calculated in the same way 

as before, but substituting  for  in the model. The resulting F-statistics, denoted by  

and , both retain their significance level. However they lose power compared to when k = 1, 

since the amount of variation in  explained by  is less than the amount explained by . 

Specifically,  and the residual variance in the level 2 model is  . 

Thus the power for the test of the treatment effect is  

    (30) 

where  and 

. (31) 

The power for the test of a relationship between fidelity and outcome is 
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      (32) 

where  and 

   (33) 

The power of each test is a function of k, so can be used for guiding the sample design.  

Example 

We illustrate with an example the process of considering the sample size needed for 

fidelity measurement from the point of view of power of tests of the outcome variable. The 

example is based on one described in Section 7.9 of Spybrook, et al. (2011). Suppose researchers 

are preparing to investigate the effect on achievement of a new literacy program for third graders.  

They will recruit schools to participate, and assign half to the new program and half to the 

control program. The literature suggests that 20% of the variability in student reading 

achievement is between schools (ICCy = 0.20). They plan to assign one classroom of 20 students 

in each school to the study (n = 20). They are interested in detecting an effect size  of 0.25. OD 

software was used to conduct a power analysis, and showed that a sample of J = 122 schools, 61 

in each group, would be needed to provide power of 0.80 to detect this effect using a test with 

significance level . 

Now suppose that researchers identify one or more components of the delivered 

instructional methods of the reading program that they believe may be the drivers of the expected 

improvement in achievement. They expect, however, that implementation will vary somewhat 

between schools. They are interested in testing whether or not the components they have 

identified are associated with outcome. They plan to select a sample of k of the K=180 

instructional hours for each participating classroom and measure the fidelity to those components 
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and to include each measure individually as a covariate in the analysis of treatment effect for 

reading achievement by fitting model (23) - (24). They want to detect a relationship if its effect 

size is at least moderate, which they consider to be 0.35. They are also interested, of course, 

in detecting the treatment effect, so would like to consider how much it can increase with the use 

of fidelity in the analysis, if the correlation is indeed of magnitude 0.35. How large should k be to 

accomplish these goals?   

Figure 3 shows the power functions for both the test of a treatment effect and a fidelity 

relationship as functions of k, where  = .05, J = 122, K = 180, n = 0.35, ICCy = 0.20, 

and ICCf = 0.15 and 0.45, which represent two quite different levels of consistency of fidelity 

delivery. The figure shows that the increase in power for detecting the treatment effect is 

negligible, no matter the size of k.  This occurs because only 20% of the variability in outcome is 

due to variability among clusters, the unit of measurement for fidelity. Thus there is not much to 

be gained by reducing this minor portion of variability by using fidelity as a covariate. However, 

the figure also shows that power of the test of the relationship between fidelity and outcome is 

greatly affected by k. It increases rapidly and then levels off, for both values of ICCf.  

When ICCf  = 0.45, a small sample of about k = 10 of the 180 sessions are sufficient to 

realize nearly all the power available. When ICCf = 0.15, a larger sample is needed.  When ICCf 

is large, it means that each school has a similar level of fidelity across sessions. When ICCf is 

small, it means that all schools deliver similar average fidelity over the entire study period, 

though it may vary from session to session within the school. It is obvious that if a single school 

delivers the treatment with near identical fidelity over all sessions, then a small number of 

fidelity measurements will provide high reliability in the fidelity measure. This illustrates the 

importance of knowing the consistency of fidelity across sessions for optimal design of data 
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collection.  If the fidelity measure is new, ICCf is unlikely to be known. However, it can be 

measured during the experiment itself, which can help in future studies.  

SAS code for calculating power for this example is provided in the supplementary 

material. Power for a test of the treatment effect can also be computed using OD Software 

(Raudenbush, et al., 2011), with some pre-processing. Specifically, choose Design ⇒Cluster 

Randomized Trial with person-level outcome ⇒Cluster randomized trials ⇒Treatment at level 

2 ⇒ Power (or MDES) vs. proportion of variation explained by level 2 covariate (R2). Then 

to observe the power for a specific value of k, observe the power for an x-axis value of  

, where k is computed from (7).  Power for a test of a relationship between fidelity 

and outcome cannot be calculated using OD software.  

Discussion and Implications for Practice 

In this section, we address some of the practical issues that the researcher will encounter 

when carrying out the proposed power analysis and implementing the fidelity sample design 

chosen.  We also make recommendations for improving how fidelity measures are collected and 

used. 

Selection of Parameter Settings 

In order to use the method outlined in this paper for designing the fidelity sample, 

assumed values for a variety of parameters are required. Most of these are familiar, since they are 

also required for planning for a power analysis of the treatment effect itself. For example, 

researchers are by now accustomed to making choices about effect size for the treatment effect, 

due to guidance to social scientists initially provided by Cohen (1992). He also provided 

guidance about the expected effect size for covariates in a regression. Hedges and Hedberg (2007) 

provided guidance on how to choose ICCy when designing experiments with hierarchical 
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structure in educational research. Their survey of the literature showed that most such studies 

have reported values in the range of 0.15 to 0.25 for educational outcomes, where clusters are 

schools.  

The required parameter that is least familiar to most researchers is ICCf.  To our 

knowledge, there have been no reports in the literature of ICCf  values for fidelity measures. 

Since measures of fidelity are so diverse, it may not be possible to arrive at a range, like Hedges 

and Hedberg did, that would be appropriate for all. However, if researchers did begin reporting 

these values, it may be possible to draw conclusions about certain types of common fidelity 

measures.  

The parameter ICCf  reflects the proportion of the total variability in fidelity that is 

between clusters (in a cluster randomized design) or between students (if in a person randomized 

design). That is, it is the analog of ICCy, which describes the same concept for outcomes. ICCf  

can be estimated using software fitting a one-way ANOVA with random effects, with fidelity as 

the response variable and cluster or student as the class variable.  

If the researcher has no fidelity data available from pilot studies, he or she may still use 

the method outlined to provide a range of values for k. For example, he or she many select low 

(say  ICCf  = 0.15) and high (say ICCf = 0.50) values for ICCf and calculate the range of values 

required for k under these conditions. 

Selection of Fidelity Sample 

 The variance of any estimator depends on the sample design. The variance expression for 

𝑓𝑖 in (3) is based on estimation from a random sample of intervention sessions. In some 

situations, this may be a feasible sample design. For example, in an experiment in which all 

intervention sessions were videotaped, but only a subset coded for fidelity due to resources, the 
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selection of the sessions to be coded can easily be chosen randomly. In other circumstances, such 

as when observation for fidelity must be conducted in real time, random selection of sessions 

would likely not be practical, due to a need for predictable staffing and a desire to ensure 

coverage over the entire period of the intervention.  

 One approach for handling this problem is to use a systematic random sample design for 

fidelity monitoring. To implement this design for a sample of size k, first select a session at 

random from the interval between 1 and the integer nearest K/k, denoted by r. Then select that 

session and every r
th

 session thereafter into the sample. This design has the advantage of evening 

the workload over the period of the intervention, and can also provide a better estimator (i.e., 

smaller variance) of mean fidelity if fidelity varies smoothly over the intervention period. A 

disadvantage of this method is that an unbiased estimator of the variance of the fidelity measure 

is not available without making some assumptions about how fidelity varies over time. The 

expression in (3) will overestimate the variance if the fidelity improves or gets worse steadily 

over the course of the intervention. However, it probably is best to overestimate rather than 

underestimate the variance as it provides a conservative p-value for both hypothesis tests.  

Subsampling of sessions 

Another practical question about the sample design is how to define the fidelity sampling 

unit. The unit has been referred to as a “session” in this paper. However, researchers may define 

an observation session in any way they choose; e.g., as a quarter-hour rather than the hour 

session in which the intervention is delivered. In fact, defining shorter fidelity observation 

periods may result in a more efficient design, if consistency of fidelity within the intervention 

session is high.  The power calculation only requires adjustment of the total number of sessions, 

K, as well as revisiting assessment of ICCf.  Note that the sample of k sessions, however they are 
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defined, must still be selected randomly.  

In summary, this article addresses the practical issue of determining an adequate sample 

size for fidelity observations conducted as part of randomized control trials. Just as researchers 

conduct power analyses to determine the number of participants needed for their trials, we 

provide procedures for determining the number of observations needed to adequately estimate 

fidelity and we provide a mathematical rationale to support these procedures. The practical need 

for this work is clear as conducting fidelity observations requires extensive resources (Gersten, et 

al., 2000). As researchers strive to more adequately assess fidelity of implementation, using the 

proposed power analysis will provide researchers with a reasoned approach for determining the 

number of observations needed.  

Recommendation for future development 

The analysis outlined in this paper can be implemented in a fairly straightforward way 

using any statistical software containing a non-central F function, such as SAS, SPSS, or STATA. 

The more perplexing problem is how to predict the settings for the parameters required as inputs 

to the analysis. Cohen (1992) may have been the first to try to provide guidance to researchers by 

his specification of small, medium, and large effect sizes for various types of parameters. 

Recently, there have been several useful surveys of the empirical literature from educational 

research studies to determine what reasonable values of ICCy, could be expected in educational 

studies. Examples of these are Hedges and Heberg (2007) and Westine, Spybrook, and Taylor 

(2014). In order to improve the design of fidelity data collection, planning values for ICCf  are 

also needed. We recommend that future researchers who carry out careful fidelity measurement 

in their intervention studies routinely compute and make available estimates of their means, 

within and between-individual variances, and ICCf values. 
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This paper has described an approach to determine the number of fidelity measurements 

needed for two types of intervention designs, the person randomized and two-level cluster 

randomized. For each design, only one design for collecting fidelity data was considered. For 

example, we assumed that in the cluster randomized design, fidelity measurement will be made 

at the cluster level, and will apply to all subjects within the cluster. There are clearly many other 

possible designs for both the study and fidelity data collection.  

Munter et al. (2014) describe a study in which students were assigned to one of 18 tutors 

(clusters), but fidelity measurement was made at the student level.  Neither of our power 

analyses would apply to their fidelity sample design because it differed from those we considered.  

Their design was two-stage; specifically, they randomly sampled about six students 

(approximately one- third)  from each tutor, and then assessed a randomly chosen sample of 12 

sessions from each. Besides the question of sample size itself, a relevant question for this design 

is how the sample could best be allocated. That is, would the approximately 18*6*12 = 1296 

sampled and coded sessions have produced higher power for the tests of the treatment and/or 

implementation effect if they had been allocated across the three levels in a different way? The 

topic of optimal design for measurement of outcomes is well studied (e.g., see Raudenbush 

(1997) and Raudenbush and Liu (2000)), but has not been addressed for fidelity data collection. 

In addition, Munter et al. (2014) also documented that the uncertainty in their measurements of 

fidelity were due not only to sampling, but also due to imperfect reliability of the fidelity 

measurements made by coders. Guidance on reliability requirements could also be addressed by 

using the objective of adequate power as a guide. This example illustrates that more work is 

needed in how to design of fidelity data collection. 
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Table 1  

Required k to Achieve a Power of 0.80 for Test of Relationship Between Fidelity and Outcome 

Under Model (16)
a
 

 K 

ICCf 36 180 720 

0.15 k = 12 k = 16 k = 17 

0.30 k = 6 k = 7 k = 7 

0.45 k = 4 k = 4 k = 4 

 

a
for effect size fy  = 0.20, for several sizes of K and ICCf   
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Figure 1. Power for test of outcome's relationship with fidelity as a function of fidelity sample 

size k, in a person-randomized trial, for fy  = .2, K = 180,  = .05, N = 504, and 3 values of ICCf. 
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Figure 2 Power for test of treatment effect  in a person-randomized trial as a function of 

correlation between fidelity and outcome fy,  for  = .25, K= 180,  = 0.05, N = 504, ICCf = 

0.30, and 3 values of k.  
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Figure 3. Power for tests of relationship between fidelity and outcome and treatment effect for 

cluster randomized design as functions of k, for J = 122, n = 20, K = 180,  = .05,  = .25, and 2 

values of ICCf. 
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