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FOREWARD

Professor Egon S. Pearson of University College London visited the
Department of Statistics of Southern Methodist University on March 28, 1969.
He consulted with the faculty and gave a lecture to graduate students,
faculty, and invited guests; this report summarizes that lecture. The same
lecture was also given at several other universities in the United States.

We record here our great pleasure in having had the opportunity to
meet with Professor Pearson. His spirit, humor, and gentleness are an in-
spiration to all who come in contact with him. The work reported on has
many applications which are not yet exploited. It is our desire to make

these ideas available to other potential users.
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SOME HISTORICAL REFLECTIONS, TRACED THROUGH THE
DEVELOPMENT OF THE USE OF FREQUENCY CURVES*
by
E. S. Pearson
University College London

I have chosen this subject for the theme of my talk because the chang-
ing attitude of statisticians towards frequency curves can be used - how
shall T describe it? - as one of the strands which link together much of
the historical development of mathematical statistics during the 50 years
1890-1940. May-be also you will like to hear something on these changes
first-hand; for I came early enough into the statistical field to share in
some of this development and to recapture a little of the earlier excite-
ment of the 1890's, when the foundations of modern statistical theory were
really being layed.

Let me make two points before I start: one is that when you are
hearing an account of the development df ideas and methods you must not,
with hind-sight, think: "Oh that should have been obvious!" One of the
interesting things that one finds in studying the history of science is
with what difficulty, often by trial and error, the human mind arrives at
something really new.

My second point is a minor one; I shall have to refer a certain
amount to my father, and as it becomes a little embarrassing to be saying
frequently 'Karl Pearson' or 'my father', I shall sometimes call him more
impersonally by his initials, "K.P.", a style commonly used by his con-

temporaries.

*This 'lecture' is based on talks given at several statistical centres in
the United States, during March and April 1969.
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I suppose that my serious reading of K.P.'s early papers, mostly pub-

lished in the Philosophical Transactions of the Royal Society, began some

50 years ago, just after the end of World War I. Undoubtedly I was immensely
stimulated by them, as others of an earlier generation have told me that

they were. R. A. Fisher, I think, was reading these papers in the years
1912-15; he, also, was influenced and, possibly, drawn into statistics from
what he found there and began to believe he could improve upon.

Let me start by running quickly through the early history of the
statistician's fundamental distribution, the Normal curve. We know that
De Moivre first used it in 1733 to provide a mathematical approximation
to the binomial; he did not use it specifically as a probability distribu-
tion function of a continuous variable, but the link with the binomial is
of interest because of later developments. The curve was also used by
Laplace as an approximating function, but in his hands and particularly
those of Gauss it formed the centre-point of the Theory of Errors. Much
of this work was theoretical and it was possibly Bessel in about 1820 who
was the first person actually to compare the curve with a real distribution
of errors.

During the 1820's the Belgian, Adolphe Quetelet (1796-1874), who
wished to establish an observatory in Brussels, put himself in touch with
most of the great European mathematicians and astronomers. Rather later
in life his interests turned towards demographic and vital statistics and
he was able to show that the error curve also fitted certain physical
measurements made on man. He was primarily interested, however, in mean

values and propounded the idea of 1'homme moyen, the average man who

possessed all the mean characters of his race; variations about the average
he ascribed to 'accidental causes' which I do not think he attempted to

explore.



the symmetrical binomial, he took a binomial with p=1-qg # g , and
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derived a curve y = f(x) by equating the (slope)/(ordinate) ratio, ;-Eﬁ '
to a similar ratio found from the binomial polygon, viz. from
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In this way (in the autumn of 1893) he obtained as a limit the
differential equation
lday -k - a) (1)
- ’
y dx bo + blx
with its solution
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Y = yge 1+ d) . (2)

Next, he went further than this and applied the same treatment to

the hypergeometric distribution, and reached the more general equation

e

dy _ -{x - a) (3)
&y _ > .
dx b0 + blx + b2x

Although he made some attempt, following tradition, to relate the

underlying hypergeometric to a system of correlated, elementary components,



I think it may be said that to all intents and purposes he now dropped the
basis of the derivation of equation (3), and started afresh from this point.
The solution of (3) (Pearson, 1895, 1901) assumed different forms
according to the values of the four parameters, which could be shown to be

functions of the first four moments of the distribution, vy = £(x) . 1In

particular, if the variable x was standardised in the form
X = (x - mean)/(standard deviation) ,

the parameters in the solutions of (3) depended only on the standardised
3rd and 4th moments; these he took in the form

2 u

u
3
Bl =3 ¢ B, = (4)
o}

Why did he use Bl , not VBl = u3/03 ? For practical convenience in the
solution and representation.

As a result, if rectangular coordinate axes OB 082 are taken, the

1!
field is divided by certain lines into a series of regions (see Fig. 3),

the bounding lines and intermediate areas being each associated with a
particular form of solution to (3). The seven main types were given numbers
I-VII, roughly in the order he discovered them. We might now prefer a

clockwise ordering of numbers, but this would now lead to immense confusion.

The result was as surprising as it was elegant. It is immaterial

(a) whether we now choose to take the coordinates as

Yy = VBpandy, =B, -3 ,

(b) to use a new terminology, e.g., to speak of gamma,

beta, inverted beta, t-distributions and so on.

The effectiveness of the system lies in this very comprehensive

classification of forms of distribution, in terms of two shape parameters.



FIGURE 3. PEARSON-TYPE CURVE REGIONS IN R 82 PLANE.

l 4

Special Distributions: N=Normal; R=Uniform or Rectangular; E=Negative Exponential.

B2 B1 ~
+
l l /?/////3;/ I
dr IMPOSSIBLE AREA
2L 2
II
3
4
I(U)
5
6
17
s 78
9 EY 9
l 1
0 : 0



Of course there can be and are other systems. There are the Gram-Charlier
or Edgeworth expansions, but if one goes only as far as the 4th moment,
the Pearson system has a great advantage. It will only provide a single
mode (except in the case of U-shaped distributions) and it will give no
negative ordinates.

During the 1890's Pearson fitted his curves to a great variety of
data, drawn from biological, medical, economic, meteorological and other
sources. On the whole he obtained extremely good fits, although it was
not until he developed the x2 test in 1900 that goodness of fit could be
adequately examined. It was, perhaps, inevitable that during the next
30 to 40 years his students, in their numerical classes, had to go through
the hard labour of curve fitting. I am sure there was some advantage in
this hard labour, as a training in accurate computing (which meant using
a hand calculating machine) and there was certainly an intellectual sat-
isfaction in finally plotting the ordinates of the curve against the histo-
gram of the data.

But I think that it gradually became clear that thé occasions when
there was any practical advantage in fitting a curve to observed data were
less than expected. Later, of course, in 1922, the criticism was raised
by R. A. Fisher that the method of fitting by moments was often inefficient,
although the practical significance of this inefficiency has still not been
fully cleared up. But it so happened that other uses for these curves,
other links with statistical theory, appeared over the horizon and that
these were intimately connected with the development of statistical theory.

I am reminded of a remark which J. B. S. Haldene made about K.P. in
a centenary address of 1957, in a rather different connection. Speaking

of some of his work on heredity, Haldane said:
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'T believe that this theory was incorrect in some fundamental

respects. So was Columbus' theory of geography. He set out

for China and discovered America! But he is not regarded as a

failure for this reason.'
In the case of the frequency curves, it was not that they were incorrect
but that the original purpose seemed to become less relevant to current
statistical practice.

The first step in a new direction must undoubtedly be associated
with the visit of W. S. Gosset ('Student') to K.P.'s Biometric Laboratory
during two terms of the 1906-7 university session. At some date in the
1890's Arthur Guinness Son & Co. Ltd. initiated the policy of appointing
to their staff in Dublin a number of university trained scientists. These
young men found before them an almost unexplored field lying open for in-
vestigation. Because the idea was novel to industry, the firm did not want
their rivals to be aware of what they had done, and for this reason all
published work had to appear under a pseudonym. Hence the name 'Student’'.
Two later Guinness statisticians dubbed themselves 'Mathetes' and 'Sophister'.

Gosset was primarily a chemist, but having taken a year of Mathematics
at Oxford, was put onto the interpretation of the Brewery's extensive records,
both from the experimental brewery and from country-wide breeding experiments
with barley. He had only at first available text-books on the theory of
errors - Airy's and Merriman's, for example. In one direction he was search-
ing for a measure of the relationship between two or more variables, having
not come across the biometric work on correlation. Indeed, given a little
more time, it seems likely that he would have re-discovered the correlation
coefficient using an approach entirely different from Galton's. In another
direction he was not happy about referring the ratio, (§ - u)/ﬁys , to the
normal probability scale when a sample contained only five or 10 observa-

tions, as had to be the case in much of the Brewery experimentation.
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With K.P.'s guidance, which he acknowledged fully, he therefore

carried out a programme of research involving the following steps.

(a) Determining the 3rd and 4th moments of the sample estimate
of wvariance, 52 , (the lst and 2nd moments were already

known) .

(b) Finding that the resulting moment ratios Bl(sz) ’ 82(52)
fell, for all sample sizes n , on the Type III, gamma Or ¥

line of the Pearson system.

(c) Hence inferring that the distribution of 52 was likely to
be represented by a Type III distribution.

(d) Proving that x and 52 were uncorrelated in normal samples
and hence, using (c), deriving the distribution of
z = (x - w/s (= t/vYn) . This followed a Pearson Type VII

curve.

(e) Carrying out a random sampling experiment, with n = 4 , and
so satisfying himself that the distributions which he had
derived were likely to be correct. He took as his population
a bivariate distribution of physical measurements on 3000 men
and wrote these on small cards. Then he drew cards randomly
in succession from a box, wrote the entries down in order and

divided them consecutively into 750 samples of 4 .

His famous paper 'On the probable error of a mean' appeared in Biometrika
in 1908. 1In the same year he published another paper in which he used a
similar intuitional process to infer that the distribution of the correla-
tion coefficient, r , in samples of size n from uncorrelated normal material
would be of the form
n-4
f(r) = const. (1 - r2) 2 ’

i.e., a Pearson Type II distribution. Again, he compared his theory with

sampling results for n = 4 and 8 .
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Now if we are concerned simply with priorities, we may note:

(a) that in Germany, in the field of error theory, Abbe (1863)
and Helmert (1876) had already derived the distribution of

52 (although this work was quite unknown in England);

(b) that Edgeworth in 1883, using prior probabilities, had derived
a posterior distribution for the population mean, p , given x

and s , which was essentially Student's distribution.

(c) that Edgeworth, in 1885, had also taken some samples from a
rectangular distribution to show how quickly the mean tended to

be normally distributed;

(d) that Weldon had tossed dice in the 1890's to explore the nature

and extent of sampling variation.

But this earlier work, apart perhaps from that of Weldon, was not
closely related to the solution of practical problems and fell outside the
main line of development of statistical theory. For 5-10 years little
notice, either, was taken of Gosset's work, outside the Dublin Brewery.
This I think was due to a number of reasons, which it is of interest to

record briefly.

(a) The early biometric work of Galton, Weldon and Pearson had not
been concerned with laboratory experiments, but with collecting
as large samples as possible 'in the field'. If you look through
these early papers, as I have done recently, you will see that the
analysis of data would rarely have gained from the use of any

'small sample' technique.

(b) I suspect, also, that the early biometricians had a marked
distrust of using small samples because of an instinctive feel-
ing that much data were not homogeneous, either in space or
time; that there would be small local variations which must be

balanced out by collecting as large a sample as possible.
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(c) Also there was a genuine fear that by advocating small-sample
techniques, the biologist or medical man would think that he

could draw conclusions, in fact unwarranted, from scanty data.

Of course, with hindsight we can criticize this attitude and say that small-
sample theory was required to analyse such lack of homogeneity. But this
concept was not yet born in the early 1900's.

However, Gosset had planted several seeds in a place where they were
bound to grow, sooner or later. With regard to the history of frequency
curves, he had shown how the Pearson system might be used to provide approx-
imations (if not the true forms) to the sampling distributions of statistics
whose moments only were known. This may be described as the second great
use for these curves. He had also introduced the idea of making use of sys-
tematic random sampling to test, confirm or disprove mathematical theory.

Five or six years later, Student's work was followed up by R. A. Fisher
who in 1912, a few months after graduating in Cambridge, derived the distri-
butions of 52 , and therefore of t , by an appeal to n-dimensioned space - a
brilliant piece of imagination. Shortly afterwards he derived the sampling
distribution of the correlation coefficient, r , for normal material and
confirmed Student's guess about the distribution of r , when p = 0 . All
these results were published in Biometrika in 1915. By 1924 Fisher had
shown that if xi and X; were two independent "x2 's", then xi/xg followed

a Pearson Type VI and xi/(xi + x2

2) a Type I distribution. There was no

difficulty, of course, in deriving these last two distributions, but no
one had seen the need for them before Fisher had the simple but fundamental
idea of comparing two independent estimates of variance, through their ratio.
Student had in effect done this, but only in a particular case.

Thus entirely unexpectedly six of the seven main curves of K.P.'s

system had been placed right at the centre of the newer statistical theory.
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Pearson's system of curves had been first developed because so many parent
distributions had been found not to be normal. What about the constant
claim that the new tests alone were 'valid'? To some extent there were
mathematical tools to probe this question of 'robustness'. The moments of
% and s2 were known in terms of population moments but not those of r, t,
the variance ratio and so on.

Early in the 1920's the idea occurred of using random sampling
experiments (Monte Carlo methods) to test these points, taking as the
parent population not the normal distribution but some non-normal distri-
bution of K.P.'s system. Here we had a third use for the curves. This
work was encouraged by Gosset who, with his sound practical sense, was
undoubtedly a little sceptical about claims of 'validity' without accom-
panying evidence. The problem of drawing random samples at firs£ presented
some difficulties. Gosset's 1906 use of slips of cardboard was laborious
and it was difficult to ensure proper mixing. Church, working in the
Biometric Laboratory at University College in 1924-25 at first used coloured
glass beads, a different colour to represent each group in the population
distribution. These could be easily mixed, but commercial coloured beads
were not all of a size, and bias was introduced.

Then Tippett, who worked in the Laboratory in 1923-25, had the idea
of using random numbers of which he made a standard table by selecting
laboriously from census returns. He used these random numbers (1925) to
check his approximations to the sampling moments of the extremes and the
range in samples from a normal population. Apart from this particular
application to which I shall refer again in a moment, the existence of this
set of 10,000 four-figure random numbers, published in 1927, increased
enormously the facility for examining the sensitivity to departure from

normality of various 'normal theory' tests. Just as the introduction of
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the Brunsviga calculator in 1894 had made an enormous simplification in
statistical computation, so Tippett's Numbers provided the answer in the
case of what we now term Monte Carlo investigations.

Besides the work of Church (1926) and Storey ('Sophister') (1928) I
had a programme which involved taking random samples of 5, 10 and 20 from
five or six non-normal populations, represented by Pearson curves. We
were thus beginning to get some idea of the limits of the 'validity' claimed
for Fisher's different tests; the 'robustness' varied considerably. This
laborious work of the late 1920's would, of course, be very greatly speeded
up now using a computer to generate pseudo-random numbers.

Turn back now for a moment to the distribution of the range, w .
Gosset suggested it be used to provide quick estimates and tests of vari-
ability in place of the standard deviation. Using some rather more accurate
estimates of the moments, which I had obtained in 1926, he assumed that we
might represent the unknown true distribution of w by Pearson curves with
the correct first four moments; so, in 1927, he published a table of approx-
imate upper 10, 5 and 2 per cent points of w for n = 2(1)10 . Later (1932)
I extended this work, providing four upper and four lower percent points
for n = 2(1)30(5)100 . When accurate values were obtained in 1942 up to
n = 20 , by direct computation, the corrections needed were very small.

This was one of the most successful examples of how, what I have termed the
second function of the frequency curves, could be turned to account long
before the arrival of the computer age.

Other examples of this type of application were made at this time
and because they were closely linked with some important theoretical devel-
opments, it is worth mentioning them here. 1In 1931 Jerzy Neyman and I

published our paper termed 'On the problem of k samples' in a Polish journal.
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Here we used the likelihood ratio principle to derive a test of homogeneity
of variance. This was essentially what has since been termed 'Bartlett's
test'. We found its sampling moments and approximated its distribution with
a Type I (beta) curve. That same year I gave a summer session course in
the University of Iowa where Sam Wilks was completing a thesis under H. L.
Rietz. Part of this thesis, deriving some fundamental tests in multivariate
analysis, for which I think he will have got some ideas from Harold Hotelling,
was published in Biometrika in 1932. Wilks showed that his most important
test criteria were likelihood ratio criteria, and gave their moments. 1In
a joint paper of 1933, Sam and I took the case of two variables and applied
the tests to some examples, using Type I curves to find the significance
levels. Thus the curves provided a tool in developing tests derived from
the likelihood ratio principle.

But there was another lead from the curves into statistical theory.

We were accumulating alternative tests regarding:

(1) the population mean, i.e., those based on the sample mean, median

and mid-range;

(2) the population standard deviation, i.e., those based on the root-

mean-square, the mean deviation and the range.

Also we had the possibility of using Tippett's Random Numbers to find their

sampling distributions when the parent population was not normal. This
almost inevitably suggested to us in the years 1929-31 the idea of studying
the comparative power of alternative tests under various conditions. The
theory of this method of approach was discussed by Neyman and myself in

our paper of 1933. These examples could easily be extended, but I only
want to indicate how these different lines of attack were interlinked.

Now let me come to a few last points. In his remarkable paper of
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1928 Fisher had derived the distributions (in sampling normal material)
of:
(a) Multiple R (when p # 0) .
2 . 2
(b) Non-central y = z (X, + a.) .
i=1 *t .

(c) Non-central F = non-central Xz(vl)/central x2(v2) .

(a) A little later Fisher (1931) had made use of the probability
integral of non-central t = (X + A)/X//; , a function which
Neyman was to make use of independently not long afterwards

in Poiand.

These multiparameter distributions could clearly assume a great variety
of shapes, but did not (as their central counterparts) follow exactly dis-
tributions of the Pearson system. (b), (¢) and (d) have been turned to
use and tabled in connection with power functions. Tables of percentage
points are also available for (b) and (d). But while it may be only of
academic interest now, I have always wanted to relate the Pearson system
to these non-central distributions if only as approximations. In the last
few years it has become clear that we can, in fact, get surprisingly good
approximations to (b), (c¢) and (d) by using a Pearson curve with the correct
first four moments. The position is as shown in Figure 4. The beta points
for non-central x2 lie in a narrow wedge-shaped region above the Type III
or central x2 line; those for non-central F lie in the Type VI or inverted
beta area, with a lower limit corresponding to the Type V or reciprocal of
x2 line; while those for non-central t fall in the Type IV area, with an
upper boundary on the line corresponding to the distributions of the recip-
rocal of x .

Finally with the cooperation of several others it was possible to

issue (Johnson et al, 1963) a form of table which it had long seemed to me
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would be valuable, namely a table of some 15 percentage points of Pearson

curves, expressed in standard measure,
i.e. by X= (x-u)/o ,

and entered with ng.and 82 .

Apart from the fact that the table has already been used by several
persons toderive approximate percent points of distributions for which the
moments only are readily available, it acts as a kind of standard of com-
parison. We have been able to compare a number of distributions with those
of the Pearson system, using the same first four moments, e.g., the log-

normal (see Fig. 4), Johnson's S_ and SB curves (which transform into the

U
normal and whose beta points lie, respectively below and above the log-
normal line), the Weibull distribution (betas in Type I area), the non-central
distributions I have just referred to and so on. There is generally pretty
good agreement, even as far out as the 0.5% points, particularly at the
long drawn out tail. Of course the distributions of these different systems
will not haye the same moments beyond the fourth, but such differences have
their influence mainly in the extreme tails. One of the most striking things
is agreement at the 5% points. As I have said, I am not sure of the practi-
cal importance of some of these results and relationships now, today, when
we have the electronic computer. Nevertheless, the study has always fas-
cinated me and, as an editor, I found on a number of occasions that my con-
tributors would have made things clearer, indeed often have understood more
the meaning of their results, had they had a greater familiarity with some
of the long established properties of frequency curves.

All this has led me a long way from Galton's 'law of frequency of

error' which the Greeks, had they known of it, would have deified! How
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far statisticians have moved in the last 80 years is indeed well brought

out by my final quotation from Galton's Natural Inheritance:

'It is difficult to understand why statisticians commonly
limit their inquiries to Averages, and do not revel in
more comprehensive views. Their souls seem as dull to the
charm of variety as that of the native of one of our flat
English counties, whose retrospect of Switzerland was that,
if its mountains could be thrown into its lakes, two
nuisances would be got rid of at once.'
(p. 63)
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13 ABSTRACT

This paper is mainly concerned with the uses made of Karl Pearson's system of
frequency curves, in particular with developments originating in the Department of
Statistics at University College London. After a brief account of the history of
the Normal curve from the time of DeMoivre to Francis Galton, Pearson's derivation
of his system of curves from a single differential equation is described. The
system was originally intended for the graduation of observed frequency distributions

which the Normal curve would not fit. 'But since Student's pioneer work on the dis-

tributions of s? , t and r (when p = 0) the curves have been used again and again to

approximate the sampling distributions of statistics whose moments only are known.
They have also been used in Monte Carlo experiments to examine the distribution of
statistics based on samples taken from representative non-normal populations. The
report illustrates some of this work and discusses conclusions to be drawn from it.
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