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Abstract:Interval-censored data occur when subjects are assessed by using regular follow up. In

such instances, we consider rank-invariant permutation tests to test the significance of a treat-

ment versus a control. For a wide class of such tests, which includes the Peto & Peto class, we

present saddlepoint approximations for the exact permutation mid-p-values which achieve ex-

tremely small relative errors. The speed and stability of these saddlepoint computations make

them practicable for inverting the permutation tests and we compute nominal100(1− α)% con-

fidence intervals for the treatment effect. Such confidence intervals are of substantial clinical

importance since, more than simply stating the level of statisticalsignificance, they quantify the

significant benefit of the treatment by providing a confidence interval for the percentage increase

in mean (or median) treatment survival time as compares to control.Our methodology makes
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heavy usage of nonparametric MLEs (NPMLEs) for survival functions andsome limitations of

existing algorithms, such as the hybrid ICM algorithm, are notedand accommodated.The Cana-

dian Journal of Statisticsxx: 1–25; 20?? c© 20?? Statistical Society of Canada
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1. INTRODUCTION

Interval censoring occurs in clinical trials and longitudinal studies whenevents

of interest are assessed intermittently or at pre-scheduled times.In such situa-

tions, each event or survival time, is observed to occur within an interval of time.

The special case of current status data, in which there is destructive testing or

animal sacrifice during assessment, deals with a single assessment foran event

of interest. In such cases the survival time has either occurred before the as-

sessment time, in which case it is left-censored, or has not yet occurred,so it is

right-censored. We consider both data types as well as partly interval-censored

data for which some exact survival times are observed. The data follow a two

sample design commonly used in clinical trials in which a treatment group is

compared with a control group.

To assess the significance of the treatment benefit, we consider a large class

of rank-invariant permutation tests which includes seven tests already established

in the literature and described in §2. For all the tests, we compute mid-p-values

* Author to whom correspondence may be addressed.
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by using saddlepoint approximations for the associated null permutation distri-

butions. The mid-p-values for these tests are simply theirp-values subtracting

half of the boundary probability for the observed cutoff value. The mid-p-value

saddlepoint approximations provide extremely accurate analytical substitutes for

exact permutation significance levels in both small and large samples and entail

no simulation. For mid-p-values in the tails near the2.5− 5% quantiles, approx-

imation based on simulation can be time consuming since it requires reasonably

large simulation sample sizes to replicate saddlepoint accuracy interms of com-

parable relative error. Normal approximations offer quite adequate approxima-

tion to significance levels of exact permutation tests in large samples. However,

in this and other applications, they are almost always less accurate than saddle-

point methods regardless of the sample size. Evidence for this is given inthe

simulations of §3.3.

These new methods extend the saddlepoint techniques, developed in Abd-

Elfattah & Butler (2007) for the log-rank class of permutation tests dealing with

right-censored data, to a general class of rank-invariant permutationtests pro-

posed for use with general interval-censored data.

The speed, accuracy, and stability of saddlepoint methods in determining per-

mutation mid-p-values allow for the inversion of interval-censoring tests to de-

termine arbitrary level confidence intervals for an assumed treatment effectδ. In

an accelerated failure time (AFT) model, letδ be the treatment effect in log-time
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and assume independent interval censoring. Also, ifp̂(δ) denotes the saddlepoint

permutation significance for a one-tailed test ofH0 : δ = 0, then we compute a

100(1− α)% confidence interval[L,R] for δ which consists of those values of

δ that are not significant at levelα/2 in each of the one-tailed tests, i.e.

[L,R] = {δ : α/2 ≤ p̂(δ) ≤ 1− α/2}. (1)

The main benefit of such a confidence interval is that its image under the mapping

δ → 100(eδ − 1) provides a100(1− α)% confidence interval for the percentage

increase in median (or mean) treatment survival time over control survival time in

the AFT model. Such percentage increases quantify the magnitude of the signif-

icant benefit and therefore convey the clinical importance of the treatmentmuch

more than just a statement of the significance level. Such intervals have notbeen

reported in the literature presumably due to the complexity and intensity of the

computations involved.

Implementation of these rank-invariant tests is complicated by the needto

compute the nonparametric maximum likelihood estimate (NPMLE) for survival

Ŝ(t) as discussed in Peto (1973) and Turnbull (1976). Indeed, confidence inter-

val [L,R] requires intensive use of such NPMLE computations since eachp̂(δ)

is computed over a fine grid of thousands ofδ-values and eacĥp(δ) requires a

separate survival estimate denoted asŜδ(t). Both the EM algorithm in Turnbull

(1976) and the hybrid iterative convex minorant (hybrid ICM) algorithm in Well-

ner & Zhan (1997) failed to converge to the NPMLE at some point during the
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course of our computations. Failure of the EM was expected since its iteratesare

only assured of converging to a local maximum. Failure, however, of the ICM

algorithm was unexpected since its iterates have been proven to converge to a

global maximum; see Wellner & Zhan (1997). To deal with this, we initially ran

the EM algorithm and used its output as input for the hybrid ICM algorithm. By

using both EM and ICM in tandem in this way, we always achieved convergence

to the NPMLE in our computations.

General purpose programs that implement all methodology of the paper are

available athttp://www.smu.edu/statistics/faculty/butler.html. Executable files

with instructions for use are provided to compute saddlepoint and normal ap-

proximations for permutation significance in the seven tests considered. Addi-

tional programs also compute arbitrary100(1− α)% confidence intervals[L,R]

for treatment effect based upon inverting the two most commonly used permuta-

tion tests.

To summarize, this paper makes two important contributions for inferencein

two sample designs subject to interval censoring. First, it provides saddlepoint

approximations to compute permutation significance levels of treatment bene-

fit. Unlike other methods, such approximations can be routinely used with the

expectation that they are virtually exact in all situations involving both large or

small sample sizes and with heavily or lightly censored data. Secondly, such tests

are inverted to give100(1− α)% confidence intervals for percentage increase in
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median (mean) treatment survival time over control time. Such confidenceinter-

vals have not been considered in the literature. Our examples suggest that test

inversion based on saddlepoint approximation leads to intervals that attain cov-

erage levels in virtual agreement with their intended nominal levels.

The paper is organized as follows. Section 2 considers the class of rank in-

variant tests, discusses permutation significance versus asymptotic normal sig-

nificance, and outlines how saddlepoint approximations are used to compute per-

mutation significance. Section 3 considers three real data examples, simulations

to assess the accuracy of saddlepoint and normal significance computations, and

develops the test inversion for confidence interval determination. Section 4con-

cludes with discussion of NPMLE computations for survival, the failure of the

hybrid ICM algorithm and our solution for always finding NPMLEs.

2. GENERALIZED RANK-INVARIANT TESTS

In a comparison of two groups, suppose a treatment group ofn1 is compared

to a control group ofn2 with n = n1 + n2. Data from the pooled groups are

{(li, ri, zi) : i = 1, . . . , n} where(li, ri] is the range of time within which theith

survival is known to have occurred, andzi is the indicator of treatment group

membership. The model allows for the possibility of any combination of cen-

soring and non-censoring including interval-censored observations(li < ri), ex-

actly observed survival times(li = r−i ), and right- and left-censored observations

(ri =∞ andli = 0 respectively). LetTi denote the perhaps unobserved survival
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time for subjecti.

If S1(t) and S2(t) are the respective survival functions for treatment and

control groups, then we consider rank-based permutation tests for testingH0 :

S1(t) ≡ S2(t) = S(t) versus the one-sided stochastically ordered alternative

H1 : S1(t) > S2(t). The test statistics take the form

U =
n∑

i=1

zici (2)

where{ci} are various types of rank scores, and the tests rejectH0 for small

U. If u is the observed value ofU, then the attained one-sided mid-p-value is

computed asP (U < u) + P (U = u)/2 under the assumption thatU is uniformly

distributed over all
(
n

n1

)
distinct permutations of its treatment labels{zi}.

When testingH0 versus the two-sided alternative,H1 : S1(t) �= S2(t) for

somet, the two-sided test rejectsH0 for sufficiently small or sufficiently large

U. Such a test is justified by reversing the roles of the treatment and control

groups and recognising that the resulting test rejects for small
∑n

i=1 ci(1− zi)

or whenU in (2) is large. Thus one option for a two-sided mid-p-value is

to compute the smaller of the two values forP (U < u) + P (U = u)/2 and

P (U > u) + P (U = u)/2 and double it. This corresponds to the two-sidedp-

value assigned by an asymptotic normal approximation to the null permutation

distribution.
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Peto & Peto (1972, §4) proposed a subclass of such generalized rank-invariant

tests with the form

U = U(Ŝ) =
n∑

i=1

zi
ρ{Ŝ(li)} − ρ{Ŝ(ri)}

Ŝ(li)− Ŝ(ri)
, (3)

where the weight functionρ, defined on[0, 1], determines the specific test. Sur-

vival estimateŜ is the NPMLE of the survival functionS under the null hypothe-

sis computed by pooling the set of interval-censored data{(li, ri] : i = 1, . . . , n}

and making the assumption thatŜ(∞) = 0 in (3). Also, forU to be meaningfully

defined, only weight functionsρ are considered for whichρ(0) = 0 = ρ(1) are

defined by continuity. We consider three members of the Peto & Peto subclass

(3) as listed in Table 1.

Table 1: Three rank-invariant tests to be considered from the Peto & Peto sub-
class along with their weight functionρ.

Name Symbol ρ(y)

log-rank LR y ln y

logistic-weighted LW y2 − y

Sun et al. (2005) SZZ (y ln y)y(1− y)

Four additional tests from the more general class (2) but not in the Peto &

Peto class are also considered. They include (i) GM, a Wilcoxon-type testpro-

posed by Gehan (1965) and Mantel (1967); (ii) and (iii) SG-E and SG-L, tests

from Self & Grossman (1986) that use their "Simple 2" option and are moti-

vated from AFT models with extreme minimum value errors and logistic errors

respectively; and (iv) FS, a test proposed by Finkelstein (1986, eqn. 12) and Sun

(1996) whose rank score weights are based on imputations of the EM algorithm
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when used to compute NPMLÊS. Zhao & Sun (2004) have generalized this test

to accommodate partly interval-censored data. Explicit expressions for the rank

score weights of all four tests are given in the Supplementary Materials.

Based upon the underlying motivation in the development of the seven tests,

we can expect tests LR, SG-E, and FS to provide exceptional power against loca-

tional shifts in an accelerated failure time (AFT) model with extreme minimum

value errors. Furthermore, tests LW, GM, and SG-L should demonstrate good

power for detecting locational shifts in an AFT model with logistic errors. The

weights for SZZ have been chosen to be the odd test out in the group.

2.1. Permutation and asymptotic normal significance

Permutation significances for tests in the class (2) are computed as tail probabili-

ties for the observed valueU = u using the permutation distribution ofU. This is

the empirical distribution forU obtained by permuting the treatment indicators

{zi} over all possible
(
n

n1

)
permutations while holding weights{ci} fixed. Ad-

vocates of this approach included all the early researchers such as Gehan (1965),

Mantel (1967), and Peto & Peto (1972), as well as later researchers such as Self

& Grossman (1986) and Fay (1996).

Both permutation and asymptotic normal significances require independent

censoring mechanisms for their validity as well as censoring mechanisms that do

not depend upon group membership. Beyond this, however, the requirements for

permutation significances are quite weak and only require “balanced” censoring

in the two groups which is generally achieved with randomized assignment of

subjects to groups. Thus, if{Li, Ri, Zi} represent the observables for subjects,

then randomized assignment ensures that{Li, Ri} is independent of{Zi}. When

this is not the case, then permutation methods may not be valid as discussed in
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Fay and Shih (2012, §3) who provide examples in which assessment timesLi, Ri

are allowed to depend on group membershipZi. However, assuming randomized

assignment of subjects to groups, then permutation significances still allowfor

joint distributional dependence ofLi, Ri on the indexi or covariate(s)yi asso-

ciated with subjecti. Such dependence allows for the possibility that individual

subjects are censored according to their individual attributes and was discussed

extensively by Mantel (1967) who noted that heterogeneity in the distributions

of {Li, Ri} with i or yi balances out in the two groups with sufficiently large

samples. Such heterogeneity can, however, reduce the power of the test.

Asymptotic normal significances rely on proofs that make more restrictive

assumptions than are required for validating permutation significances. For ex-

ample, Sun et al. (2005) provided rigourous proofs that a standardizedU is as-

ymptoticallyN(0, v2) with v2 given in their Theorem 1. This applies for test sta-

tistics in the Peto & Peto subclass (3) under case II independent censoring (Sun,

2006, p. 11-15) when the sequence{Li, Ri, Ti} is i.i.d. underH0, i.e. when treat-

ment and control groups have a common survival distribution. Thus, formally,

censoring distributions cannot depend oni or on an associated covariate value

yi, however one suspects that such restrictive conditions can be relaxedto allow

more diverse censoring conditions. To accommodate exact survival observations,

Zhao et al. (2008) extended these asymptotic normal results thus allowing normal

approximation theory to apply to partly interval censored data. Oller & Gómez

(2012) showed that such normal limits agree with the standard normal approxi-

mations for the permutation distributions as given in Prentice (1978) so that

v2 = v2p =
1

n− 1

(
n∑

i=1

c2i

)
n∑

j=1

(zj − z̄)2 =
n1n2

n(n− 1)

n∑

i=1

c2i (4)

wherevp has been given in Prentice (1978).
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Perhaps the main point to be made here is that saddlepoint approximations

will be seen as providing virtually exact computation of permutation signifi-

cances in all settings for which permutation tests are valid includingsettings

in which censoring may depend upon the individual. For example, assessment

timesLi, Ri could depend on a covariateyi such as gender or some other subpop-

ulation designation. Of course the independent censoring (Sun, 2006, p. 11-15)

assumption must now apply conditional upon such covariates.

2.2. Software packages for p-value computation

Four existing software packages can be used to computep-values for treatment

significance with (partly) interval-censored data. The four packagesare listed in

the rows of Table 2 and include three R packages and SAS (So, Johnson, & Kim,

2010). The R software includes the “interval” package (Fay & Shaw, 2010), the

“glrt” package (Zhao & Sun, 2010), and the “FHtest” package (Oller & Langohr,

2013). The various capabilities of the software are listed as the columnsof Ta-

ble 2. Such capabilities include the analysis of partly censored data (Partcens);

p-value computation for1- and2-sided tests (Tails1 and2); p-value distribu-

tions based upon asymptotic normality (Norm), Monte Carlo (MC), and an exact

network algorithm (Exact); and test statistics which can be computed (LR, FS,

LW, FH1 and FH2). The tests indicated by FH1 and FH2 represent two different

classes of generalized Fleming & Harrington (1981) tests. The SSZ statistics is a

member of the FH1 class considered by Sun et al. (2005) and Zhao et al. (2008)

with weight functionρ(y) = (y ln y)yη(1− y)λ for η ≥ 0 ≤ λ. The other class

FH2 is due to Oller & Gómez (2012) and removes the factorln y with weight

functionρ(y) = yη(1− y)λ for η ≥ 0 ≤ λ.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



12 EHAB ABD-ELFATTAH AND RONALD BUTLER Vol. xx, No. yy

Our software computes mid-p-values using saddlepoint approximations

which have distinct advantages over these existing computational packages. In

particular, the Normal, MC, and Exact methods for computation are deficientre-

spectively in accuracy, speed of computation, and range of applicability as com-

pares to saddlepoint methods.

Table 2. Listed capabilities for the four computational packages are indicated by
y (yes) with blank entries indicating no.

Part Tails Computations Test statistic coverage

Package cens 1 2 Norm MC Exact LR FS LW FH∗1 FH∗2

interval y y y y y y y y y

glrt y y y y y y

FHtest y y y y y y y y y

SAS y y y y y

Part cens, handles partly censored data; Tails, indicates1- or 2-sided testing,
Norm, asymptotic normalp-values; MC, Monte Carlop-values; Exact, exact
network algorithmp-values.∗FH1 and FH2 represent two different classes of
generalized Fleming & Harrington (1981) tests as described in the text.

Furthermore, none of the four packages support the computation of GM, SG-

E, or SG-L with Fay and Shaw (2010, §2.4) suggesting that the Self & Gross-

man (1986) procedures are too difficult to calculate. In addition, none of these

packages undertake the challenging computations for inverting these tests to de-

termine confidence intervals for the amount of treatment benefit.

2.3. Saddlepoint approximation

When considering the permutation distribution of statisticU in (2) or (3), the

sequence ofzi variables is assumed to have the distribution of a random permu-

tation vectorξ = (ξ1, ..., ξn)T consisting ofn1 ones andn2 zeros. Thus any one

of the distinct
(
n

n1

)
permutations forξ is assumed to have probability

(
n

n1

)
−1

. The
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null distribution forU =
∑n

i=1 ciξi is determined by its linear dependence on the

permutation vectorξ. The fact that this dependence is linear inξ leads to the

following characterization that makes it amenable to saddlepoint approximation

as shown in Skovgaard (1987).

Suppose thatZ1, ..., Zn are i.i.d. Bernoulli(θ) for any θ ∈ (0, 1). Then the

conditional distribution of Z = (Z1, ..., Zn)T given
∑n

i=1 Zi = n1 is the mar-

ginal permutation distribution forξ. Thus, for fixedn1, the marginal null distri-

bution ofU =
∑n

i=1 ciξi is the conditional distribution ofY =
∑n

i=1 ciZi given

X =
∑n

i=1 Zi = n1. From this equivalence, ifu0 is the observed value of the

statistic (2) or (3), then the permutation mid-p-value is

P (U < u0) +
1

2
P (U = u0) = P (Y < u0|X = n1) +

1

2
P (Y = u0|X = n1).

(5)

This distributional equivalence is needed because the right side of (5) is amenable

to saddlepoint approximation whereas the left side is not. To understand thena-

ture of this approximation, we need to recognize two important facts: First,for

given values ofu0 andn1, the conditional probability on the right side of (5)

is uniquely determined from the joint moment generating function (MGF) of

(X,Y ). Secondly, this MGF is simple to compute from the i.i.d. Bernoulli(θ) as

MX,Y (s, t) =
n∏

i=1

{1− θ + θ exp(s+ cit)}. (6)

The Skovgaard (1987) saddlepoint approximation now provides the means by

whichMX,Y (s, t) and valuesu0 andn1 can be converted into an approximation

for the right side of (5). Details of this are straightforward saddlepoint theory and

are given in the Supplementary Material online.
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3. EXAMPLES, SIMULATIONS, AND CONFIDENCE INTERVALS

Three standard data examples have been used almost exclusively to illustrate

two sample tests with interval or current status data. In §3.1, we usethese three

data sets to show the performance of saddlepoint and normal approximations for

the various permutation rank tests. In §3.2 we describe a simulation study that

compares the accuracy of saddlepoint methods with asymptotic normal methods

and present the numerical results in §3.3. The saddlepoint accuracy achieved

in the simulations is discussed in §3.4. Finally, in §3.5, we invert the LR and

LW tests using both saddlepoint methods and asymptotic normal methods to

determine confidence intervals for the treatment effect.

To judge the accuracy of saddlepoint and normal approximations, an “exact”

permutation significance is needed to make comparisons. Since such computa-

tion is well beyond the capabilities of the network algorithm in the “interval”

package of R with larger sample sizes, we have chosen to use Monte Carlo mid-

p-values based upon106 permutations as surrogates for exact computations in

our comparisons throughout. In order to check the accuracy of such a strategy,

we used the network algorithm in R to compute an exact one-sidedp-value for

the LW test statistic applied to the first ten observations(n1 = 10 = n2) of the

breast cosmesis data of Finkelstein & Wolfe (1986) as described below.The re-

sulting exactp-value of0.48655 can be compared to a Monte Carlop-value of

0.4864± 0.00098 based upon106 permutations where the error provides a95%

confidence interval. The attained relative error is−0.031% and indicates an ac-

ceptable level of error to use in the accuracy assessments.
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3.1. Example data sets

The breast retraction data of Finkelstein & Wolfe (1986) consist entirelyof inter-

val censored data. Control group 2 received radiotherapy while treatment group

1 received radiotherapy supplemented with chemotherapy. The alternative hy-

pothesis isH1 : S1(t) < S2(t), that retraction time was shortened with adjuvant

chemotherapy. One-sided mid-p values for the seven tests using saddlepoint and

normal approximations are displayed in the upper portion of Table 3 along with

Monte Carlo mid-p-values.

The saddlepoint approximation is somewhat closer to the simulated mid-p-

values than the normal approximation that usesN(0, v2p) with v2p given in (4).

Because of the relatively large sample sizes, the normal approximation is en-

tirely adequate for the application. The three tests motivated by extreme-value

weights show mid-p-values in the range0.0029− 0.0038while those using logis-

tic weights range from0.0148− 0.0187. The values are consistent withp-values

reported by Fay (1996) and Sun et al. (2005).

The saddlepoint and normal approximations for the seven tests are standard

output of our downloadable executable program which executed in about0.67

seconds for each pair of rows. Most of this time was used to compute the NPMLE

Ŝ of the survival function for the pooled data, a fact also noted by Fay and Shaw

(2010, §4.2). By comparison, the Monte Carlo mid-p-values in each row required

about5.04 seconds of execution time using a separate executable program.

The lung tumor data from Hoel & Walberg (1972) are current-status responses

at death times where status is the (non)presence of a lung tumor forn = 144

RFM mice subjected to two treatments. The middle portion of Table 3 provides

mid-p-value approximations for the alternativeH1 : S1(t) > S2(t). Except for

SZZ, the saddlepoint approximation is more accurate although both approxima-
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tions perform well for the large sample sizes.

Table 3: One-sided mid-p-value approximations for the three data sets listed.
Simulatedp-values agreed with simulated mid-p-values to the accuracy dis-
played.

Extreme-value weights Logistic weights

LR SG-E FS GM LW SG-L SZZ

Breast cosmesis data n1 = 48 n2 = 46

Sim. mid-p-valuea 0.0033 0.0029 0.0034 0.0185 0.0149 0.0153 0.0001

Saddlept. Approx. 0.0034 0.0029 0.0036 0.0184 0.0148 0.0154 0.0001

Normal Approx. 0.0036 0.0030 0.0038 0.0187 0.0151 0.0157 0.0002

Lung tumor data n1 = 48 n2 = 96

Sim. mid-p-valuea 0.1465 0.1256 0.1418 0.2048 0.1347 0.2827 0.1074

Saddlept. Approx. 0.1461 0.1252 0.1410 0.2044 0.1348 0.2821 0.1077

Normal Approx. 0.1455 0.1244 0.1405 0.2026 0.1341 0.2819 0.1075

AIDs data n1 = 17 n2 = 14

Sim. mid-p-valuea 0.0016 0.0008 0.0016 0.0001 0.0009 0.0003 0.0014

Saddlept. Approx. 0.0018 0.0008 0.0016 0.0001 0.0010 0.0003 0.0012

Normal Approx. 0.0027 0.0011 0.0024 0.0004 0.0014 0.0005 0.0018

aBased on106 randomly generated permutations of treatment/control labels
from the

(
n

n1

)
possible holdingn1 andn2 fixed.

The AIDs data were taken from Table II of Lindsey & Ryan (1998) who ana-

lyzed the original data given in Richman, Grimes, & Lagakos (1990). Of interest

is the time to development of drug resistance to zidovudine and its dependence

on the stages of the disease, early or late, which define the treatment and con-

trol groups respectively. The data consist of treatment (control) patients among

which 7 (11) are interval-censored and10 (3) are right-censored. Lindsey &

Ryan (1998) note that this is a challenging data set to analyze due to small sam-

ple sizes and the very wide intervals for interval censoring that resulted from

infrequent periodic assessment. The bottom of Table 3 provides mid-p-values
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for H1 : S1(t) > S2(t) suggesting that late-stage patients show an earlier onset

of drug resistance than early-stage patients. With such smaller sample sizes, sad-

dlepoint approximations show greater accuracy than normal approximations.

3.2. Simulation Study

The saddlepoint accuracy seen in Table 3 occurs consistently over a wide range

of conditions. For the log-rank (LR) and logistic-weighted (LW) tests, we con-

ducted a simulation study to determine the accuracy of saddlepoint and normal

mid-p-value approximations over balanced sample sizes ofn1 = n2 = 20, 40,

and80 and over unbalanced samples withn1 = 80 andn2 = 40; using various

proportions of partly interval-censored data; and using both logistic and extreme-

value distributions for log-survival times. Simulation results from the respective

error distributions are shown in Tables 4 and 5.

Each row in the tables represents a particular setting forn1 andn2 along with

a particular choice for the proportions of the various types of partly interval-

censored data. For example in row 2 of Table 4,1000 data sets were simulated

with n1 = n2 = 20. Each observation in each data set could be interval-censored

(due to periodic follow up) with probability (w.p.)0.7, exactly observed w.p.0.1,

or left- or right-censored as a current status response (due to a single assessment)

w.p.0.2. Control survival times were simulated solnT is standard logistic (with

mean zero and variance 1) while treatment survival times were shiftedupward

on the time scale by the amountβ = 1.7 as shown in the second column. The

value ofβ was chosen so that the mean mid-p-value over the 1000 data sets was

in the range2.5− 5%. The primary reason for using suchβ values is to show

the saddlepoint accuracy at the boundary of significance which is the setting

in which mid-p-value accuracy is most important. A second reason is that such
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choice will allow us to assess the coverage accuracy for treatment effect when

such tests are inverted as described in §3.5. The specific algorithm for simulating

partly censored data, as it concerns row 2 of Table 3, is as follows:

1. SimulateM = (M1,M2,M3) ∼ Multinomial (1; p1, . . . , p3) such thatp1 +

p2 + p3 = 1. In our examplep1 = 0.7, p2 = 0.1, andp3 = 0.2.

2. For a control group simulation, simulatelnT as standard logistic (with mean

zero and variance 1) for Table 4. For Table 5, simulateT as Exponential(1).

(a) If M1 = 1, thenT is interval censored by takingL = ⌊T ⌋ andR = ⌊T ⌋+ 1

where⌊T ⌋ denotes the greatest integer less than or equal toT. (b) If M2 = 1,

then takeL = T− andR = T. (c) If M3 = 1, then simulate random assessment

time V so thatlnV is Normal (0, 1). If V ≤ T, then takeL = V andR =∞

so we have right-censoring, ifV > T then takeL = 0 andR = V so we have

left-censoring.

3. For a treatment group simulation, replaceT with T + β and proceed as in

2(a)-(c) but replacingT with T + β.

In this algorithm, vectorM designates the type of censoring, i.e. whether it is

interval-censored based on periodic follow up(M1 = 1), not censored(M2 = 1),

or a current status response(M3 = 1) leading to left- or right-censoring. Left-

and right-censoring occur with equal frequency in Table 4 since bothlnV and

lnT are symmetric solnV − lnT is symmetry about zero to makeP (V > T ) =

0.5. This is not the case in Table 5 wherelnT has an extreme value distribution

which is skewed to the left and which makes left-censoring more likely. For a

control simulation,P (V > T ) = 0.618 and61.8% tend to be left-censored; for a

treatment simulation, this percentage is lower and dependent on theβ-value used

for the treatment shift.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



20?? 19

Each subject in the simulation has an associated random vectorM whose

value indicates the way in which the subject is censored but also could be inter-

preted as the subpopulation from which the subject is taken. As such, the vector

could be considered a covariate assigned to the subject thus making the cen-

soring subject–dependent. As previously mentioned in §2.1, permutation tests

remain valid with such dependence.

3.3. Simulation Results

The table entries summarize the accuracy of saddlepoint and normal approxi-

mations when compared with “exact” mid-p-values. In each row,1000 data sets

were generated as described in §3.2 and for each data set the two mid-p-value

approximations were compared to an “exact” or Monte Carlo mid-p-value de-

termined from simulation of106 random permutations of the treatment/control

labels. (In the Supplementary Material online, we justify the use of such a Monte

Carlo value in place of the exact mid-p-value where it is shown to have a stan-

dard error of0.00022. Additionally, we show that the tabulated relative errors are

not affected by such substitution.) The column “Sad. Prop.” shows the percent-

age of the1000 data sets for which the saddlepoint mid-p-value approximation

was closer to the Monte Carlo mid-p-value than the normal approximation. In

Table 4, for both the LR test and the LW test, the saddlepoint approximation

was most often closer particularly with smaller sample sizes. The column “%

Sad. Rel. Err.” (“% Nor. Rel. Err.”) gives the average absolute relative error of

the saddlepoint (normal) mid-p-value from the Monte Carlo mid-p-value when

expressed as a percent. With log-logistic errors, relative errors of saddlepoint ap-

proximations range from0.9− 2.7% for the LR test and4.2− 14.1% for the LW

test; comparable errors for the normal approximations are16.0− 123.5% and

11.9− 50.6% respectively. The saddlepoint approximations show substantially

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



20 EHAB ABD-ELFATTAH AND RONALD BUTLER Vol. xx, No. yy

smaller percentage relative error overall than the normal approximations which,

unlike the saddlepoint approximations, have relative errors that deteriorate with

smaller sample sizes as well as with further deviation into the distributional tail.

Table 4: Simulations showing relative errors of mid-p-value approximations for
the LR and LW tests using varying compositions of partly interval-censoreddata.
Survival times were simulated as log-logistic.

LR LW

% Comp. β Sad. % Sad. % Nor. Sad. % Sad. % Nor.

Prop. Rel. Err. Rel. Err. Prop. Rel. Err. Rel. Err.

n1 = n2 = 20

100;0;0a 1.7b 95.2 2.7 123.5 90.0 6.6 50.6

70;10;20 1.7 93.8 2.3 104.4 95.9 4.5 42.0

40;20;40 1.7 94.3 2.5 99.5 96.2 4.2 43.2

n1 = n2 = 40

100;0;0 1.5 93.0 2.6 62.0 90.8 14.1 42.8

70;10;20 1.3 94.9 2.7 49.0 92.4 10.0 35.6

40;20;40 1.1 92.9 2.5 44.8 93.1 8.2 33.3

n1 = 80, n2 = 40

100;0;0 0.9 97.3 1.4 73.7 91.1 8.2 27.4

70;10;20 0.9 96.6 2.0 74.9 88.3 6.6 21.1

40;20;40 0.8 96.9 1.5 65.7 82.3 5.6 15.3

n1 = n2 = 80

100;0;0 0.8 92.4 0.9 9.9 73.2 7.2 11.9

70;10;20 0.8 93.0 1.6 16.0 76.2 8.6 15.3

40;20;40 0.75 93.0 1.9 16.9 79.1 7.9 14.8

aDenotes the multinomial percentages used for simulating the frequencies of
interval-censored, exact, and current status responses.bTreatment effect on the
time scale in the simulation.

Table 5 shows the same sort of simulations but with control group survival

timesTi generated from an Exponential(1) distribution solnTi has an extreme

value distribution. Treatment group survival times were again shifted upward

by β on the time scale. Saddlepoint approximations were most often closer to

the Monte Carlo mid-p-values with relative errors in the range1.6− 15.0% and
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3.2− 18.1% for the LR and LW tests respectively; the normal approximations

by comparison have relative errors16.9− 390.3% and6.1− 70.1%. One might

expect the normal approximations to perform poorly here with smaller sample

sizes since extreme value errors are left-skewed and not symmetricas in the log-

logistic setting.

Table 5: Relative errors as in Table 4 but with survival times simulated as
Exponential(1).

LR LW

% Comp. β Sad. % Sad. % Nor. Sad. % Sad. % Nor.

Prop. Rel. Err. Rel. Err. Prop. Rel. Err. Rel. Err.

n1 = n2 = 20

100;0;0 0.85 81.1 15.0 390.3 77.3 18.1 70.1

70;10;20 0.9 96.3 4.0 266.8 94.3 7.3 63.2

40;20;40 0.8 97.2 2.5 142.3 94.6 3.2 33.6

n1 = n2 = 40

100;0;0 0.7 86.0 6.0 83.8 78.9 9.7 26.5

70;10;20 0.7 95.0 5.5 109.1 91.2 7.2 25.3

40;20;40 0.55 94.6 1.6 38.5 88.9 3.4 13.7

n1 = 80, n2 = 40

100;0;0 0.6 94.0 5.8 205.1 86.2 8.4 29.4

70;10;20 0.5 98.1 1.9 107.3 91.4 3.2 15.4

40;20;40 0.55 97.8 2.7 135.2 91.6 6.1 24.0

n1 = n2 = 80

100;0;0 0.5 88.1 3.1 23.4 72.3 6.9 11.5

70;10;20 0.4 92.2 1.6 16.9 71.3 3.3 6.1

40;20;40 0.45 91.5 2.7 26.0 79.0 5.9 12.3

3.4. Discussion of saddlepoint accuracy in the simulations

The simulations demonstrate the accuracy that saddlepoint approximations can

achieve when approximating an empirical distribution such as a permutation or

bootstrap distribution. Such accuracy has already been well established in a sub-

stantial body of literature which includes Robinson (1982), Davison & Hinkley
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(1988, 1997), Feuerverger (1989), and Butler & Bronson (2002, 2012). Basically,

if the permutation distribution ofU is “coarsely” distributed, with large masses

on a few points, then the accuracy from fitting a smooth saddlepoint approxima-

tion is likely to suffer; alternatively it will likely improve when the permutation

distribution is “finer” and has small masses distributed over more points.

Our use of periodic follow up for censoring in the simulation presents

perhaps the most challenging setting for such accuracy since it leads to a coarse

permutation distribution forU . To see this, consider one of the simulations in

which there is100% interval censoring so that all interval-censored observations

take the form(j − 1, j] for integerj with many “tied” values andj ranges over

j = 1, . . . , N for the pooled data. The NPMLÊS(t) is characterized by the finite

values{Ŝ(j) : j = 1, . . . , N − 1}. If U∗ denotes a permuted value ofU in (3)

with randomized treatment labels{zi} which result inmj treatment values that

are assigned to range(j − 1, j], then

U∗ =
N∑

j=1

mj

ρ{Ŝ(j)} − ρ{Ŝ(j − 1)}

Ŝ(j)− Ŝ(j − 1)
.

Note that all of the
(

n1
m1,...,mN

)
possible permutations out of the

(
n1+n2
n1

)
total

that allocatemj treatment labels to(j − 1, j] for j = 1, . . . ,N lead to the same

permuted value ofU∗ and this contributes to the coarseness of the permutation

distribution with100% interval censoring. At the other extreme, when no data

are censored or tied, then such tied values ofU∗ are unlikely and there can be

as many as
(
n1+n2
n1

)
distinct permuted values ofU∗ which makes the permutation

distribution considerably finer.

This discussion explains some of the saddlepoint accuracy seen in Tables

4 and 5. Accuracy tends to be the worst with 100% interval–censoring (100;0;0

% Comp.) and best with the most uncensored observations (40;20;40 % Comp.).
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A referee has suggested that other simulation schemes should be considered that

incorporate random overlapping of intervals and random interval lengths. From

the discussion above, it should be clear that such censoring mechanisms will

result in a “finer” distribution of mass for NPMLÊS(t) which in turn will lead

to a finer permutation distribution forU. Thus, in such contexts, even greater

saddlepoint accuracy can be expected than is given in Tables 4 and 5.

3.5. Confidence interval for the treatment effect

Let the data from the pooled groups assume the form{(ln li, ln ri, zi) : i =

1, . . . , n} on the log-scale. A treatment effectδ (on the log-scale) is a mean-

ingful parameter in an AFT model that assumeslnTi = δzi + εi with {εi} as

i.i.d. error responses from a continuous distribution. We also assume indepen-

dent interval censoring (Sun, 2006, §1.3.5) of any type so that censoring bounds

provide no further information about survival times other than the bounds on

their values. Under such assumptions, theδ-translated treatment intervals are

indistinguishable from untranslated control intervals in the sense that they rep-

resent censoring from a single common control distribution. Thus, the intervals

in {(ln li − δzi, ln ri − δzi) : i = 1, . . . , n} represent interval censored data com-

ing from a common control distribution. Detailed arguments for this assertion are

given in the Supplementary Material online.

Such indistinguishability ensures that the data set{(ln li − δzi, ln ri −

δzi, zi) : i = 1, . . . , n} satisfies the null hypothesis whenδ is the true treatment

effect in the AFT model. The significance of the valueδ can be assessed by us-

ing a permutation test that this data follow from a common control distribution.

In performing this test, supposêSδ is the NPMLE of survival for the pooled

data{(ln li − δzi, ln ri − δzi) : i = 1, . . . , n} and p̂(δ) is the one-sided saddle-
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point mid-p-value for the LR or LW test ofH0 versusH1 : S1(t) > S2(t). Then, a

100(1− α)% confidence interval forδ is [L,R] = {δ : α/2 ≤ p̂(δ) ≤ 1− α/2}.

In practical applications,δ assumes values over a grid of increment0.001 within

range[−B1, B2] for someB1 > 0 < B2.

A plot of p̂(δ) vs. δ is a step function that can only change value when the

incrementδ → δ + 0.001 results in a change in the structure of(ln l, ln r)-bins

within which Ŝδ places its mass. Such change can only occur when a treatment

value,ln li1 − δ or ln ri2 − δ, jumps over a control value,ln ri3 or ln li4 respec-

tively, with incremental changeδ → δ + 0.001. In applications, these plots have

always been increasing however a proof for such is lacking. See Figure 1 in

Abd-Elfattah & Butler (2007) for a similar plot with right-censoring.

Table 6: Confidence intervals for the effect of adjuvant chemotherapy on the log-
time scale for breast cosmesis data.

LR LW

Method L R ∆p̂(L)a ∆p̂(R)b L R ∆p̂(L) ∆p̂(R)

95% level

Exact -0.8652 -0.1647 0.0017 0.0286 -0.8332 -0.0804 0.01850.0002

Sad. -0.865 -0.165 0.0023 0.0285 -0.833 -0.076 0.0185 0.0006

Norm. -0.865 -0.165 0.0022 0.0282 -0.833 -0.076 0.0183 0.0006

99% level

Exact -1.0766 -0.0585 0.0082 0.0002 -0.8845 0.0515 0.0012 0.0019

Sad. -1.129 -0.062 0.0014 0.0002 -0.885 0.052 0.0013 0.0019

Norm. -1.129 -0.054 0.0015 0.0003 -0.885 0.053 0.0014 0.0012

aDenotes the step height∆p̂(L) = p̂(L+ 0.001)− p̂(L) at grid pointL com-
puted according to the associated row; e.g. via simulation for the Exact row and
via saddlepoint (normal) approximation for the Sad. (Norm.) row.

bStep height∆p̂(R) = p̂(R)− p̂(R− 0.001).

Table 6 shows 95% and 99% confidence intervals forδ computed over

[−1.5, 1] with incremental change0.001 using the breast cosmesis data. For all

three intervals, endpointsL andR were determined so the interval[L,R] is
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conservative witĥp(L) ≤ α/2 < p̂(L+ 0.001) andp̂(R− 0.001) < 1− α/2 ≤

p̂(R).

Intervals in the Sad. row, obtained by inverting saddlepoint valuesp̂(δ), are

extremely accurate when compared to “Exact” intervals, obtained by determin-

ing eachp(δ) using 106 random permutations of the treatment/control labels.

Normal intervals (Norm.) agree with saddlepoint intervals at the 95% level but

differ at the 99% level. The reason for this agreement is due to large stepsizes

that occur in the tails of the step-function plots ofp̂(δ) for both saddlepoint and

normal probabilities which share the same step locations; see the values∆p̂(L)

and∆p̂(R) in Table 6. The pile up of mass occurring in the step-function plots

of p̂(δ) is a consequence of the pile up of mass in certain(l, r]-bins that occur

in the NPMLEŜδ as a result of interval censoring. Thus, while saddlepoint sig-

nificance levels were seen to be considerably more accurate than theirnormal

counterparts, this accuracy is not always converted into better or even different

intervals with test inversion for the reasons described.

The inversion of such permutation tests has substantial clinical importance

because it allows for more than simply a statement that “the treatment group

had a significantly shorter recovery time than the control group.” It rather al-

lows “shorter” to be quantified by providing a100(1− α)% confidence interval

for the percentage decrease in mean (or median) recovery time for treatment ver-

sus control group in the AFT model. These confidence intervals are computed by

mapping[L,R] through the functionδ → 100(eδ − 1). Thus, for the LR test, this

gives [−57.9,−15.2] and [−67.7,−6.01] as95% and99% confidence intervals

respectively. From the first interval we may conclude that adjuvant chemother-

apy reduces the mean (or median) time to breast retraction by15.2% to 57.9%

with confidence level95%. Inversion of the LW test gives[−56.5,−7.32] and
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[−58.7, 5.34] as the respective95% and99% confidence intervals.

Our downloadable executable file which inverts saddlepoint and normal tests

for the LR and LW statistics required14.0 minutes to determine the 99% confi-

dence intervals in Table 6 using a grid forδ of increment0.001 over the range

[−1.5, 1]. By comparison,105 minutes were required to determine the “exact"

intervals using a different executable simulation program.

The coverage accuracy attained by the saddlepoint and normal intervals can

be assessed using the relative error entries computed in Tables 4 and 5. The

analysis in the Appendix shows that such an assessment is possible if we assume

that saddlepoint relative error is roughly the same in the left and right tails of

the null permutation distribution for log-survival times. In particular, this error

analysis shows that a saddlepoint relative error ofR% = 2.5%, as in the Sad.

LR entry for Table 4 row 6, leads to an absolute error of coverage ofR%/20 =

2.5%/20 = 0.12% as indicated in Table 7. When using saddlepoint tests, the

largest error in coverage is therefore0.41% for the LW test and quite small while

for normal tests the largest coverage error is2.24% for the LR test.

Table 7. Percentage coverage error when inverting saddlepoint (Sad.) and normal
(Nor.) permutation tests for95% confidence intervals of the treatment effect. The
two settings represent the sixth rows of each table in whichn1 = n2 = 40 and
censoring has percentage composition40; 20; 40.

Settings LR LW

Sad. Nor. Sad. Nor.

Table 4: extreme value 0.12 2.24 0.41 1.66

Table 5: log-logistic 0.08 1.92 0.17 0.69

4. ALGORITHMS FOR COMPUTATION OF NPMLE Ŝδ

Since permutation tests only require a single computation of NPMLEŜ, pro-

grams, such as the R “interval” package, that computep-values can base com-
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putations on the EM algorithm as long as a check is performed to be sure the

EM iterates to the NPMLE and not a local maximum. This is not adequate in the

simulation studies of §3.2 wherein each setting required 1000 automated compu-

tations of such NPMLEs. Nor is it satisfactory for the test inversion in §3.3 which

also required computation of̂Sδ for hundreds of potential choices of treatment

effect δ. In both of these instances, we need to be sure that the algorithm has

converged to the NPMLE and both the EM algorithm, as outlined in Peto (1973)

and Turnbull (1976), and the hybrid iterative convex minorant (hybrid ICM) in

Wellner & Zhan (1997) failed in this automated computation of the NPMLE.

The EM algorithm sometimes converged to local maxima, while the hybrid ICM

sometimes lead to cumulative sum diagrams that dropped below thex-axis thus

resulting in negative probability estimates. For the specific problem we encoun-

tered, see Supplementary Material online.

To deal with this, our EM-hybrid ICM algorithm runs 200 iterations of the

EM algorithm starting with an initial estimate that places uniform mass in all

(l, r]-bins. If the resulting survival estimate is judged to be the NPMLE, the al-

gorithm stops and uses the resulting survival estimate. If judged to not be the

NPMLE, the current survival estimate is used as the input for the hybridICM

algorithm in Wellner & Zhan (1997) and this algorithm runs until the current

estimate is judged to be the NPMLE. To be judged so at either stage in our pro-

grams, the current estimate must satisfy the Fenchel conditions given in equation

25 of Wellner & Zhan (1997) with error toleranceε = 10−7. Our EM-hybrid

ICM algorithm succeeded in computing the NPMLE in all our simulations and

confidence interval computations. This algorithm underlies all our executable

programs for computing permutation significance levels and inverting LR and

LW tests and ensures that NPMLEs are used.
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5. CONCLUSIONS

We have shown how to use saddlepoint approximations to approximate mid-p-

values for treatment benefit in a large class of permutation tests when the data

are partly interval-censored data. The approximations are almost always more

accurate than the existing normal approximations found in SAS and R software

packages.

The speed, stability, and accuracy of these approximations allow us to invert

the permutation tests to determine arbitrary100(1− α)% confidence intervals

for the treatment effect under an assumed AFT model. Such intervals have not

been previously computed presumably due to the extensive amount of computa-

tion. Simulations suggest that the resulting saddlepoint intervals have coverage

accuracy which is close to exact. The importance of such test inversionis that

it quantifies the treatment benefit. For example, with the breast cosmesisdata,

rather than simply stating that adjuvant chemotherapy has a statistically signifi-

cant benefit(p = 0.0033 in a one-sided test), the intervals allow for the following

confidence statement: “Adjuvant chemotherapy reduces the mean (or median)

time to breast retraction by15.2% to 57.9% with confidence level95%.”
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APPENDIX

Coverage probability error analysis for Table 7.The relative errors in Tables 4

and 5 are not affected by using Monte Carlo mid-p-values in place of exact val-

ues as noted in the Supplementary Material online. With95% confidence interval

[L,R], letR% = 100r% represent the percentage relative error ofp̂(L) for p(L)

occurring at the2.5 percentile. We also suppose that1− p̂(R) hasR% relative

error for1− p(R). Thus we suppose that saddlepoint accuracy is the same in the

left and right tails. There are two reasons why such a supposition is reasonable.

First, empirical evidence suggests that this is a reasonable assumption when the

underlying null log-survival time distribution has a MGF that is convergent in

an open neighbourhood of0 as occurs with our exponential and logistic exam-

ples. Secondly, the permutation distribution forU has a central limit theorem

so it should be roughly symmetric. Saddlepoint approximations for symmetric

distributions preserve tail symmetry (Butler, 2007, §2.1.2) so relative error of

saddlepoint approximation is also symmetric. Thus we can expect roughly com-

parable relative errors at the2.5 and97.5 percentiles.

With this supposition, the true values are bounded as

0.025(1− r) = p̂(L)(1− r) < p(L) < p̂(L)(1 + r) = 0.025(1 + r)

0.025(1− r) = {1− p̂(R)}(1− r) < 1− p(R) < {1− p̂(R)}(1 + r) = 0.025(1 + r)

so that two-sided coverage error is bounded as

0.05− 0.05r < p(L) + 1− p(R) < 0.05 + .05r.

This indicates a relative error ofr and an absolute coverage error of5r% =

(R/20)% as indicated in Table 7.
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