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Abstract: Interval-censored data occur when subjects are assessed byaggitay follow up. In
such instances, we consider rank-invariant permutation tesestahte significance of a treat-
ment versus a control. For a wide class of such tests, which inclhdeReto & Peto class, we
present saddlepoint approximations for the exact permutatiorpraadues which achieve ex-
tremely small relative errors. The speed and stability of thasellsepoint computations make
them practicable for inverting the permutation tests and we comjuénal 100(1 — «)% con-
fidence intervals for the treatment effect. Such confidence inteara of substantial clinical
importance since, more than simply stating the level of statisigaificance, they quantify the
significant benefit of the treatment by providing a confidence intéovaéhe percentage increase

in mean (or median) treatment survival time as compares to cofitwmlmethodology makes
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heavy usage of nonparametric MLEs (NPMLES) for survival functionssamde limitations of
existing algorithms, such as the hybrid ICM algorithm, are narediaccommodated’he Cana-
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1. INTRODUCTION

Interval censoring occurs in clinical trials and longitudinal studies wdamts
of interest are assessed intermittently or at pre-scheduled timesch situa-
tions, each event or survival time, is observed to occur within anvaltef time.
The special case of current status data, in which there is destruesittegt or
animal sacrifice during assessment, deals with a single assessmantdoent
of interest. In such cases the survival time has either occurred béierast
sessment time, in which case it is left-censored, or has not yet occaoéds
right-censored. We consider both data types as well as partly intervediesh
data for which some exact survival times are observed. The data follow a two
sample design commonly used in clinical trials in which a treatngeoup is
compared with a control group.

To assess the significance of the treatment benefit, we consider a lage clas
of rank-invariant permutation tests which includes seven testsdtrestablished

in the literature and described in §2. For all the tests, we computemaddes
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by using saddlepoint approximations for the associated null permutation distri-
butions. The mids-values for these tests are simply thgivalues subtracting
half of the boundary probability for the observed cutoff value. The paiddue
saddlepoint approximations provide extremely accurate analytical substitut
exact permutation significance levels in both small and large sampdesrdail

no simulation. For mig»-values in the tails near the5 — 5% quantiles, approx-
imation based on simulation can be time consuming since it requires reasonabl
large simulation sample sizes to replicate saddlepoint accuraeynrs of com-
parable relative error. Normal approximations offer quite adequateoaima-

tion to significance levels of exact permutation tests in large samtasever,

in this and other applications, they are almost always less accuratsdddle-
point methods regardless of the sample size. Evidence for this is giviie in
simulations of §3.3.

These new methods extend the saddlepoint techniques, developed in Abd-
Elfattah & Butler (2007) for the log-rank class of permutation testsidgavith
right-censored data, to a general class of rank-invariant permutasts pro-
posed for use with general interval-censored data.

The speed, accuracy, and stability of saddlepoint methods in determining per
mutation midp-values allow for the inversion of interval-censoring tests to de-
termine arbitrary level confidence intervals for an assumed treatefiects. In

an accelerated failure time (AFT) model, éebe the treatment effect in log-time
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and assume independent interval censoring. Alggif denotes the saddlepoint
permutation significance for a one-tailed testfyf : 6 = 0, then we compute a
100(1 — «)% confidence intervall, R| for 6 which consists of those values of

6 that are not significant at level/2 in each of the one-tailed tests, i.e.
[£,R]={6:0/2<p(0) <1—af2}. 1)

The main benefit of such a confidence interval is that its image under the mapping
§ — 100(e® — 1) provides al00(1 — a)% confidence interval for the percentage
increase in median (or mean) treatment survival time over control sditinve in

the AFT model. Such percentage increases quantify the magnitude of the signif
icant benefit and therefore convey the clinical importance of the treatmectt

more than just a statement of the significance level. Such intervals halieemt
reported in the literature presumably due to the complexity and intensityeof t
computations involved.

Implementation of these rank-invariant tests is complicated by the tweed
compute the nonparametric maximum likelihood estimate (NPMLE) for gairvi
S”(t) as discussed in Peto (1973) and Turnbull (1976). Indeed, confidence inter-
val [£, R] requires intensive use of such NPMLE computations since g@gh
is computed over a fine grid of thousandséefalues and each(é) requires a
separate survival estimate denoted5a&). Both the EM algorithm in Turnbull

(1976) and the hybrid iterative convex minorant (hybrid ICM) algorithm irllWe

ner & Zhan (1997) failed to converge to the NPMLE at some point during the
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course of our computations. Failure of the EM was expected since its itarates
only assured of converging to a local maximum. Failure, however, ofGih |
algorithm was unexpected since its iterates have been proven to corwaage t
global maximumsee Wellner & Zhan (1997). To deal with this, we initially ran
the EM algorithm and used its output as input for the hybrid ICM algorithm. By
using both EM and ICM in tandem in this way, we always achieved convergence
to the NPMLE in our computations.

General purpose programs that implement all methodology of the paper are
available athttp://www.smu.edu/statistics/faculty/butler.htrilxecutable files
with instructions for use are provided to compute saddlepoint and normal ap-
proximations for permutation significance in the seven tests considereltr Ad
tional programs also compute arbitra§0(1 — a/)% confidence intervalgC, R]
for treatment effect based upon inverting the two most commonly usedta-
tion tests.

To summarize, this paper makes two important contributions for inferience
two sample designs subject to interval censoring. First, it provides sauate
approximations to compute permutation significance levels of treatment bene-
fit. Unlike other methods, such approximations can be routinely used with the
expectation that they are virtually exact in all situations involving batgée or
small sample sizes and with heavily or lightly censored data. Secondlyissts

are inverted to give00(1 — «)% confidence intervals for percentage increase in
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median (mean) treatment survival time over control time. Such confidetese
vals have not been considered in the literature. Our examples subgesegt
inversion based on saddlepoint approximation leads to intervals thiat ebta
erage levels in virtual agreement with their intended nominal levels.

The paper is organized as follows. Section 2 considers the class of rank in-
variant tests, discusses permutation significance versus asyenmbotnal sig-
nificance, and outlines how saddlepoint approximations are used to compute per-
mutation significance. Section 3 considers three real data examphegasons
to assess the accuracy of saddlepoint and normal significance computatbns, a
develops the test inversion for confidence interval determination. Secton-4
cludes with discussion of NPMLE computations for survival, the failurenef t

hybrid ICM algorithm and our solution for always finding NPMLEs.

2. GENERALIZED RANK-INVARIANT TESTS

In a comparison of two groups, suppose a treatment group @ compared

to a control group of, with n = n; + n,. Data from the pooled groups are
{(liyrs,z;) -1 =1,...,n} where(l;, r;] is the range of time within which thgh
survival is known to have occurred, andis the indicator of treatment group
membership. The model allows for the possibility of any combination of cen-
soring and non-censoring including interval-censored observatiprsr;), ex-
actly observed survival timéé;, = r, ), and right- and left-censored observations

(r; = oo andl; = 0 respectively). Lef; denote the perhaps unobserved survival
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time for subject.

If Si(t) and Sy(t) are the respective survival functions for treatment and
control groups, then we consider rank-based permutation tests for tégfing
S1(t) = Sy(t) = S(t) versus the one-sided stochastically ordered alternative

Hy : S1(t) > Sa(t). The test statistics take the form

i=1

where{c;} are various types of rank scores, and the tests réjgdor small
U. If u is the observed value df, then the attained one-sided mpealue is
computed a® (U < u) + P(U = u)/2 under the assumption thitis uniformly
distributed over all ") distinct permutations of its treatment labéls}.

When testingH, versus the two-sided alternativél; : S;(t) # Ss(t) for
somet, the two-sided test reject for sufficiently small or sufficiently large
U. Such a test is justified by reversing the roles of the treatment and control
groups and recognising that the resulting test rejects for small ¢;(1 — z;)
or whenU in (2) is large. Thus one option for a two-sided muidralue is
to compute the smaller of the two values B(U < u) + P(U = u)/2 and
P(U > u) 4+ P(U =u)/2 and double it. This corresponds to the two-siged
value assigned by an asymptotic normal approximation to the null permutation

distribution.
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Peto & Peto (1972, 84) proposed a subclass of such generalized rankabvaria

tests with the form

n

U=U(S) = Zzip{

=1

1)} — p{S(r:)}
1) 50, 3)

( B |
S(li) = S(rq)
where the weight functiop, defined on0, 1], determines the specific test. Sur-
vival estimateS is the NPMLE of the survival functio§ under the null hypothe-

sis computed by pooling the set of interval-censored fdtar;| : i = 1,...,n}

and making the assumption tiﬁtoo) = 01in (3). Also, for U to be meaningfully
defined, only weight functiong are considered for which(0) = 0 = p(1) are
defined by continuity. We consider three members of the Peto & Peto subclass
(3) as listed in Table 1.

Table 1: Three rank-invariant tests to be considered from the Peto &dobt
class along with their weight functign

Name Symbol o(y)
log-rank LR ylny
logistic-weighted LW v —y

Sun et al. (2005) SZZ (ylny)y(l —vy)

Four additional tests from the more general class (2) but not in the Peto &
Peto class are also considered. They include (i) GM, a Wilcoxon-typ@itest
posed by Gehan (1965) and Mantel (196#) and (iii) SG-E and SG-L, tests
from Self & Grossman (1986) that use their "Simple 2" option and are moti-
vated from AFT models with extreme minimum value errors and logistmrer
respectivelyand (iv) FS, a test proposed by Finkelstein (1986, egn. 12) and Sun

(1996) whose rank score weights are based on imputations of the EM algorithm
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when used to compute NPMLE Zhao & Sun (2004) have generalized this test
to accommodate partly interval-censored data. Explicit expressionsdaahk
score weights of all four tests are given in the Supplementary Materials

Based upon the underlying motivation in the development of the seven tests,
we can expect tests LR, SG-E, and FS to provide exceptional power agaast |
tional shifts in an accelerated failure time (AFT) model with exteeminimum
value errors. Furthermore, tests LW, GM, and SG-L should demonstrate good
power for detecting locational shifts in an AFT model with logisticoest The

weights for SZZ have been chosen to be the odd test out in the group.

2.1. Permutation and asymptotic normal significance

Permutation significances for tests in the class (2) are computad pobabili-
ties for the observed valué = v using the permutation distribution 6t This is
the empirical distribution fot/ obtained by permuting the treatment indicators
{2} over all possible(;" ) permutations while holding weights:;} fixed. Ad-
vocates of this approach included all the early researchers such as (:668),
Mantel (1967), and Peto & Peto (1972), as well as later researcherss&difa
& Grossman (1986) and Fay (1996).

Both permutation and asymptotic normal significances require independent
censoring mechanisms for their validity as well as censoring mestmarthat do
not depend upon group membership. Beyond this, however, the requirements for
permutation significances are quite weak and only require “balanced” cegsori
in the two groups which is generally achieved with randomized assignment of
subjects to groups. Thus, {fL;, R;, Z;} represent the observables for subjects,
then randomized assignment ensures {liat R, } is independent of Z; }. When

this is not the case, then permutation methods may not be valid as discussed in
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Fay and Shih (2012, 83) who provide examples in which assessmentltjnies
are allowed to depend on group membershiipHowever, assuming randomized
assignment of subjects to groups, then permutation significances still faltow
joint distributional dependence @f;, R; on the index; or covariate(s)); asso-
ciated with subject. Such dependence allows for the possibility that individual
subjects are censored according to their individual attributes and wass#dcus
extensively by Mantel (1967) who noted that heterogeneity in the disitvits
of {L;, R;} with i or y; balances out in the two groups with sufficiently large
samples. Such heterogeneity can, however, reduce the power of the test.
Asymptotic normal significances rely on proofs that make more resgictiv
assumptions than are required for validating permutation significanoegxF
ample, Sun et al. (2005) provided rigourous proofs that a standartiizeds-
ymptotically N (0, v?) with v? given in their Theorem 1. This applies for test sta-
tistics in the Peto & Peto subclass (3) under case Il independent censarmg (S
2006, p. 11-15) when the sequer{de, R;, T;} is i.i.d. underHy, i.e. when treat-
ment and control groups have a common survival distribution. Thus, formally,
censoring distributions cannot dependioor on an associated covariate value
y;, however one suspects that such restrictive conditions can be retaadadw
more diverse censoring conditions. To accommodate exact survival obseryations
Zhao et al. (2008) extended these asymptotic normal results thus allowinglnorm
approximation theory to apply to partly interval censored data. Oller & &>m
(2012) showed that such normal limits agree with the standard normal approxi-
mations for the permutation distributions as given in Prentice (1978) so that

”2:p:n—1<zc>z -7 7;?122 @

7j=1

wherev, has been given in Prentice (1978).

The Canadian Journal of Statistics/ La revue canadienndaatessque DOI:



2072 11
Perhaps the main point to be made here is that saddlepoint approximations

will be seen as providing virtually exact computation of permutation signifi

cances in all settings for which permutation tests are valid includetgngs

in which censoring may depend upon the individual. For example, assessment

timesL;, R; could depend on a covariagesuch as gender or some other subpop-

ulation designation. Of course the independent censoring (Sun, 2006, p. 11-15)

assumption must now apply conditional upon such covariates.

2.2. Software packages for p-value computation

Four existing software packages can be used to compusdues for treatment
significance with (partly) interval-censored data. The four packagebsted in

the rows of Table 2 and include three R packages and SAS (So, Johnson, & Kim,
2010). The R software includes the “interval” package (Fay & Shaw, 2010), the
“glrt” package (Zhao & Sun, 2010), and the “FHtest” package (Oller & Langohr,
2013). The various capabilities of the software are listed as the coloffes

ble 2. Such capabilities include the analysis of partly censored datacg@®es}
p-value computation foi- and2-sided tests (Taild and2); p-value distribu-
tions based upon asymptotic normality (Norm), Monte Carlo (MC), and art exac
network algorithm (Exact)and test statistics which can be computed (LR, FS,
LW, FH; and FH). The tests indicated by RHand FH represent two different
classes of generalized Fleming & Harrington (1981) tests. The SS&t&tsis a
member of the Fldclass considered by Sun et al. (2005) and Zhao et al. (2008)
with weight functionp(y) = (yIny)y"(1 — y)* for n > 0 < . The other class
FH, is due to Oller & Gomez (2012) and removes the fadtoy with weight
functionp(y) = y"(1 —y)* forn > 0 < A
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Our software computes migvalues using saddlepoint approximations
which have distinct advantages over these existing computational packages
particular, the Normal, MC, and Exact methods for computation are defrgent
spectively in accuracy, speed of computation, and range of applicabilipnas c

pares to saddlepoint methods.

Table 2. Listed capabilities for the four computational packages are indibgte
y (yes) with blank entries indicating no.

Part Tails Computations Test statistic coverage
Package cens1 2 Norm MC Exact LR FS LW FHB FH;
interval y y 'y y y y y y y
glrt y y y y |y y
FHtest y y 'y y y y y y y
SAS y y y y y

Part cens, handles partly censored datils, indicatesl- or 2-sided testing,
Norm, asymptotic normap-values MC, Monte Carlop-values Exact, exact
network algorithmp-values.*FH; and FH represent two different classes of
generalized Fleming & Harrington (1981) tests as described in the text.

Furthermore, none of the four packages support the computation of GM, SG-
E, or SG-L with Fay and Shaw (2010, §82.4) suggesting that the Self & Gross-
man (1986) procedures are too difficult to calculate. In addition, none of these
packages undertake the challenging computations for inverting theséaelst-

termine confidence intervals for the amount of treatment benefit.

2.3. Saddlepoint approximation

When considering the permutation distribution of statigtien (2) or (3), the
sequence of; variables is assumed to have the distribution of a random permu-
tation vectort = (&4, ..., &,)T consisting ofn; ones anch, zeros. Thus any one

of the distinct(;" ) permutations fot is assumed to have probabili([)’{l)_l. The
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null distribution forU = > | ¢;§; is determined by its linear dependence on the
permutation vectog. The fact that this dependence is lineargiheads to the
following characterization that makes it amenable to saddlepoint appatigim

as shown in Skovgaard (1987).

Suppose that, ..., Z, are i.i.d. Bernoulli(¢) for any 6 € (0,1). Then the
conditional distribution of Z = (Zy, ..., Z,)* given>_" | Z; = n; is the mar-
ginal permutation distribution fof. Thus, for fixedn;, the marginal null distri-
bution of U = }"7" | ¢;&; is the conditional distribution of = > | ¢;Z; given
X =>"" Z;=ny. From this equivalence, if,, is the observed value of the

statistic (2) or (3), then the permutation midsalue is

P(U < ug) + 3P(U =up) = P(Y <up| X =ny) + P(Y =ug| X =ny).
5)
This distributional equivalence is needed because the right side of (5) rabiae
to saddlepoint approximation whereas the left side is not. To understand-the
ture of this approximation, we need to recognize two important facts: First,
given values ofuy andny, the conditional probability on the right side of (5)
is uniquely determined from the joint moment generating function (MGF) of

(X,Y). Secondly, this MGF is simple to compute from the i.i.d. Bernddllias

Mxy(s,t) = [J{1 - 6 + Oexp(s + cit)}. (6)
=1
The Skovgaard (1987) saddlepoint approximation now provides the means by
which Mx y (s, t) and valuesi, andn, can be converted into an approximation
for the right side of (5). Details of this are straightforward saddlepoimtrthand

are given in the Supplementary Material online.
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3. EXAMPLES, SIMULATIONS, AND CONFIDENCE INTERVALS

Three standard data examples have been used almost exclusivelystaié

two sample tests with interval or current status data. In §83.1, wéhese three

data sets to show the performance of saddlepoint and normal approximations for
the various permutation rank tests. In 83.2 we describe a simulation study tha
compares the accuracy of saddlepoint methods with asymptotic normal methods
and present the numerical results in 83.3. The saddlepoint accuracy achieve
in the simulations is discussed in 83.4. Finally, in 83.5, we invert the L&R an
LW tests using both saddlepoint methods and asymptotic normal methods to
determine confidence intervals for the treatment effect.

To judge the accuracy of saddlepoint and normal approximations, an “exact”
permutation significance is needed to make comparisons. Since such computa-
tion is well beyond the capabilities of the network algorithm in the “indérv
package of R with larger sample sizes, we have chosen to use Monte Garlo m
p-values based upotD® permutations as surrogates for exact computations in
our comparisons throughout. In order to check the accuracy of such a strategy,
we used the network algorithm in R to compute an exact one-gidedue for
the LW test statistic applied to the first ten observatigns= 10 = n,) of the
breast cosmesis data of Finkelstein & Wolfe (1986) as described bElmwe-
sulting exactp-value 0f(0.48655 can be compared to a Monte Caglevalue of
0.4864 =+ 0.00098 based upon0° permutations where the error provide85
confidence interval. The attained relative error-i3031% and indicates an ac-

ceptable level of error to use in the accuracy assessments.
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3.1. Example data sets

The breast retraction data of Finkelstein & Wolfe (1986) consist entifalyter-

val censored data. Control group 2 received radiotherapy while tezdtgnoup

1 received radiotherapy supplemented with chemotherapy. The dilterhg-
pothesis isH; : S (t) < Sa(t), that retraction time was shortened with adjuvant
chemotherapy. One-sided midvalues for the seven tests using saddlepoint and
normal approximations are displayed in the upper portion of Table 3 along with
Monte Carlo midp-values.

The saddlepoint approximation is somewhat closer to the simulateg-mid-
values than the normal approximation that usgs, vg) with vf, given in (4).
Because of the relatively large sample sizes, the normal approximatien-i
tirely adequate for the application. The three tests motivated by estvaine
weights show mids»-values in the rang@ 0029 — 0.0038 while those using logis-
tic weights range fron.0148 — 0.0187. The values are consistent withvalues
reported by Fay (1996) and Sun et al. (2005).

The saddlepoint and normal approximations for the seven tests are standard
output of our downloadable executable program which executed in abgut
seconds for each pair of rows. Most of this time was used to compute the NPMLE
S of the survival function for the pooled data, a fact also noted by Fay and Shaw
(2010, 84.2). By comparison, the Monte Carlo midalues in each row required
about5.04 seconds of execution time using a separate executable program.

The lung tumor data from Hoel & Walberg (1972) are current-status responses
at death times where status is the (non)presence of a lung tumer=for44
RFM mice subjected to two treatments. The middle portion of Table 3 provides
mid-p-value approximations for the alternativé : S;(¢) > Ss(t). Except for

SZZ, the saddlepoint approximation is more accurate although both approxima-
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tions perform well for the large sample sizes.

Table 3: One-sided mig-value approximations for the three data sets listed.
Simulatedp-values agreed with simulated midvalues to the accuracy dis-
played.

Extreme-value weights Logistic weights
LR SG-E FS GM LW SG-L SzzZ
Breast cosmesis data n; = 48 ns = 46

Sim. midp-valu¢  0.0033 0.0029 0.0034 0.0185 0.0149 0.0153 0.0001
Saddlept. Approx. 0.0034 0.0029 0.0036 0.0184 0.0148 0.0154 0.0001
Normal Approx. 0.0036 0.0030 0.0038 0.0187 0.0151 0.0157 0.0002
Lung tumor data n; = 48 ns = 96
Sim. midp-valu¢®  0.1465 0.1256 0.1418 0.2048 0.1347 0.2827 0.1074
Saddlept. Approx. 0.1461 0.1252 0.1410 0.2044 0.1348 0.2821 0.1077
Normal Approx. 0.1455 0.1244  0.1405 0.2026 0.1341 0.2819 0.1075

AlIDs data ny =17 ny = 14

Sim. midp-valu¢*  0.0016 0.0008 0.0016 0.0001  0.0009 0.0003 0.0014

Saddlept. Approx. 0.0018 0.0008 0.0016 0.0001 0.0010 0.0003 0.0012
Normal Approx. 0.0027 0.0011 0.0024 0.0004 0.0014 0.0005 0.0018

“Based onl0° randomly generated permutations of treatment/control labels
from the(r’;l) possible holding:; andn, fixed.

The AIDs data were taken from Table Il of Lindsey & Ryan (1998) who ana-

lyzed the original data given in Richman, Grimes, & Lagakos (1990). @fést

is the time to development of drug resistance to zidovudine and its dependence
on the stages of the disease, early or late, which define the tretasme con-

trol groups respectively. The data consist of treatment (control) patierdegam
which 7 (11) are interval-censored and) (3) are right-censored. Lindsey &
Ryan (1998) note that this is a challenging data set to analyze due to small sam-
ple sizes and the very wide intervals for interval censoring that resériten

infrequent periodic assessment. The bottom of Table 3 providegpwadides

The Canadian Journal of Statistics/ La revue canadienndaatessque DOI:



2077 17
for Hy : Si(t) > S2(t) suggesting that late-stage patients show an earlier onset

of drug resistance than early-stage patients. With such smalletesaings, sad-

dlepoint approximations show greater accuracy than normal approximations.

3.2. Simulation Study

The saddlepoint accuracy seen in Table 3 occurs consistently over a wike ra
of conditions. For the log-rank (LR) and logistic-weighted (LW) tests, we con-
ducted a simulation study to determine the accuracy of saddlepoint and normal
mid-p-value approximations over balanced sample sizes;of n, = 20, 40,
and80 and over unbalanced samples with= 80 andn, = 40; using various
proportions of partly interval-censored dadad using both logistic and extreme-
value distributions for log-survival times. Simulation results from thpeetve
error distributions are shown in Tables 4 and 5.

Each row in the tables represents a particular settingf@ndn, along with
a particular choice for the proportions of the various types of partly interval-
censored data. For example in row 2 of Tabld @0 data sets were simulated
with n; = ny, = 20. Each observation in each data set could be interval-censored
(due to periodic follow up) with probability (w.p0.7, exactly observed w.p.1,
or left- or right-censored as a current status response (due to a sisgésaent)
w.p. 0.2. Control survival times were simulated BO!" is standard logistic (with
mean zero and variance 1) while treatment survival times were shifteard
on the time scale by the amoufit= 1.7 as shown in the second column. The
value of 3 was chosen so that the mean midalue over the 1000 data sets was
in the range2.5 — 5%. The primary reason for using sug¢hvalues is to show
the saddlepoint accuracy at the boundary of significance which is the setting

in which mid9-value accuracy is most important. A second reason is that such
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choice will allow us to assess the coverage accuracy for treatmfent aihen
such tests are inverted as described in 83.5. The specific algorithrmiglasing

partly censored data, as it concerns row 2 of Table 3, is as follows:

1. SimulateM = (M, M5, M3) ~ Multinomial (1;p,,...,ps) such thatp; +
p2 + p3 = 1. In our examplep; = 0.7, p, = 0.1, andpz = 0.2.
2. For a control group simulation, simuldi€l” as standard logistic (with mean
zero and variance 1) for Table 4. For Table 5, simulAtas Exponentia(1).
(a) If My = 1, thenT is interval censored by taking = |7'| andR = |T'| + 1
where |T'| denotes the greatest integer less than or equal () If M, =1,
thentakeL =T~ andR = T. (c) If M3 = 1, then simulate random assessment
time V' so thatln V' is Normal (0,1). If V' < T, then takeL =V andR = oo
so we have right-censoring, f > T then takeL = 0 and R = V' so we have
left-censoring.
3. For a treatment group simulation, replé€ewvith T+  and proceed as in
2(a)-(c) but replacing” with 7' + 3.

In this algorithm, vectoM designates the type of censoring, i.e. whether it is
interval-censored based on periodic follow(dg;, = 1), not censored)M, = 1),
or a current status respon&k/; = 1) leading to left- or right-censoring. Left-
and right-censoring occur with equal frequency in Table 4 since lhdthand
In T are symmetric sim V' — In T is symmetry about zero to makgV > T') =
0.5. This is not the case in Table 5 whérel" has an extreme value distribution
which is skewed to the left and which makes left-censoring moreylikar a
control simulationP(V > T') = 0.618 and61.8% tend to be left-censoreébr a
treatment simulation, this percentage is lower and dependent ghvhleie used

for the treatment shift.
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Each subject in the simulation has an associated random \&dttehose

value indicates the way in which the subject is censored but also coulddpe int

preted as the subpopulation from which the subject is taken. As such, tioe vec

could be considered a covariate assigned to the subject thus making the cen-

soring subject—dependent. As previously mentioned in 82.1, permutation tests

remain valid with such dependence.

3.3. Simulation Results

The table entries summarize the accuracy of saddlepoint and normal approxi-
mations when compared with “exact” midvalues. In each row,000 data sets
were generated as described in 83.2 and for each data set the twoevailige
approximations were compared to an “exact” or Monte Carlo pridlue de-
termined from simulation of0® random permutations of the treatment/control
labels. (In the Supplementary Material online, we justify the use of suchraéMo
Carlo value in place of the exact midvalue where it is shown to have a stan-
dard error 00.00022. Additionally, we show that the tabulated relative errors are
not affected by such substitution.) The column “Sad. Prop.” shows the percent-
age of thel000 data sets for which the saddlepoint midalue approximation

was closer to the Monte Carlo mjgvalue than the normal approximation. In
Table 4, for both the LR test and the LW test, the saddlepoint approximation
was most often closer particularly with smaller sample sizes. Dharm “%

Sad. Rel. Err.” ("% Nor. Rel. Err.”) gives the average absolute ikedatrror of

the saddlepoint (normal) migkvalue from the Monte Carlo mig-value when
expressed as a percent. With log-logistic errors, relative erroesdollspoint ap-
proximations range frord.9 — 2.7% for the LR test and.2 — 14.1% for the LW

test comparable errors for the normal approximations &® — 123.5% and

11.9 — 50.6% respectively. The saddlepoint approximations show substantially

DOI: The Canadian Journal of Statistics/ La revue canadienndatessque



20 EHAB ABD-ELFATTAH AND RONALD BUTLER Vol. xx, No. yy

smaller percentage relative error overall than the normal approxinsaivhich,
unlike the saddlepoint approximations, have relative errors that deterioith
smaller sample sizes as well as with further deviation into the bigtanal tail.
Table 4: Simulations showing relative errors of midkalue approximations for

the LR and LW tests using varying compositions of partly interval-censiaead
Survival times were simulated as log-logistic.

LR Lw
% Comp. (3 Sad. % Sad. % Nor. Sad. % Sad. % Nor.
Prop. Rel. Err. Rel. Err. Prop. Rel.Emr. Rel. Err.
niy = ng = 20
1000;0* 1.7 952 2.7 123.5 90.0 6.6 50.6
70;,10,20 1.7 93.8 2.3 104.4 95.9 4.5 42.0
40;,20,40 1.7 943 25 99.5 96.2 4.2 43.2

n1=n2=40

1000;0 15 93.0 2.6 62.0 90.8 141 42.8
70;10,20 13 94.9 2.7 49.0 92.4 10.0 35.6
40,2G;,40 11 92.9 25 44.8 93.1 8.2 33.3

ny = 80,712 =40

1000;0 09 973 14 73.7 91.1 8.2 27.4
70,10,20 09 96.6 2.0 74.9 88.3 6.6 21.1
40;,20,40 0.8 96.9 15 65.7 82.3 5.6 153

n1:n2:80

100,0;0 0.8 92.4 0.9 9.9 73.2 7.2 11.9
70;10,20 0.8 93.0 1.6 16.0 76.2 8.6 153
40,2040 0.75 93.0 1.9 16.9 79.1 7.9 14.8

“Denotes the multinomial percentages used for simulating the freqsesicie
interval-censored, exact, and current status respotiBesatment effect on the
time scale in the simulation.

Table 5 shows the same sort of simulations but with control group survival
timesT; generated from an Exponentidl) distribution soln 7; has an extreme
value distribution. Treatment group survival times were again shiftecacgpw
by (6 on the time scale. Saddlepoint approximations were most often closer to

the Monte Carlo migs-values with relative errors in the range — 15.0% and
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3.2 — 18.1% for the LR and LW tests respectivelthe normal approximations

by comparison have relative errar§.9 — 390.3% and6.1 — 70.1%. One might
expect the normal approximations to perform poorly here with smaller sample
sizes since extreme value errors are left-skewed and not sym@agiriche log-

logistic setting.

Table 5: Relative errors as in Table 4 but with survival times &ited as

Exponential(1).
LR Lw
% Comp. g3 Sad. % Sad. % Nor. Sad. % Sad. % Nor.
Prop. Rel. Err. Rel. Err. Prop. Rel. Err. Rel. Err.

n1=n2=20

100,0;0 0.85 811 15.0 390.3 77.3 18.1 70.1
731020 09 96.3 4.0 266.8 94.3 7.3 63.2
40,2640 0.8 97.2 25 142.3 94.6 3.2 33.6

n1=n2=40

1000;0 0.7 86.0 6.0 83.8 78.9 9.7 26.5
70,1620 0.7 95.0 55 109.1 91.2 7.2 25.3
40,2040 055 946 1.6 38.5 88.9 3.4 13.7

n1 = 80,n2 = 40

100,0;0 06 940 5.8 205.1 86.2 8.4 294
7310620 05 981 1.9 107.3 91.4 3.2 15.4
40,2040 055 97.8 2.7 135.2 91.6 6.1 24.0

n1=n2=80

1000;0 05 881 3.1 234 72.3 6.9 115
731020 04 922 1.6 16.9 713 3.3 6.1
40,2640 045 915 2.7 26.0 79.0 59 12.3

3.4. Discussion of saddlepoint accuracy in the simulations

The simulations demonstrate the accuracy that saddlepoint approximations can
achieve when approximating an empirical distribution such as a peliontat
bootstrap distribution. Such accuracy has already been well estabirshesub-

stantial body of literature which includes Robinson (1982), Davison & Hinkley
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(1988, 1997), Feuerverger (1989), and Butler & Bronson (2002, 2012). Basically,
if the permutation distribution of/ is “coarsely” distributed, with large masses
on a few points, then the accuracy from fitting a smooth saddlepoint approxima-
tion is likely to suffer alternatively it will likely improve when the permutation
distribution is “finer” and has small masses distributed over more points

Our use of periodic follow up for censoring in the simulation presents
perhaps the most challenging setting for such accuracy since it leads tesa coar
permutation distribution fof/. To see this, consider one of the simulations in
which there isl00% interval censoring so that all interval-censored observations
take the form(j — 1, j] for integer; with many “tied” values ang ranges over
j=1,..., N forthe pooled data. The NPMLE(t) is characterized by the finite
values{S(j):j =1,...,N —1}. If U* denotes a permuted value &fin (3)
with randomized treatment labe{s; } which result inm; treatment values that

are assigned to randg¢ — 1, j], then

~

N~ P86 pfSG - 1)
P TR

M ..) possible permutations out of thg" ™) total
that allocaten; treatment labels t¢j — 1, 5] for j = 1,..., N lead to the same
permuted value o/* and this contributes to the coarseness of the permutation
distribution with100% interval censoring. At the other extreme, when no data
are censored or tied, then such tied value#/tfare unlikely and there can be
as many ag"™ ") distinct permuted values &f* which makes the permutation
distribution considerably finer.

This discussion explains some of the saddlepoint accuracy seen in Tables

4 and 5. Accuracy tends to be the worst with 100% interval—-censoringQ;000

% Comp.) and best with the most uncensored observatior@d%40 % Comp.).
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A referee has suggested that other simulation schemes should be cahtidére
incorporate random overlapping of intervals and random interval lengths. From
the discussion above, it should be clear that such censoring mechanisms will
result in a “finer” distribution of mass for NPMLE(¢) which in turn will lead

to a finer permutation distribution fdv. Thus, in such contexts, even greater

saddlepoint accuracy can be expected than is given in Tables 4 and 5.

3.5. Confidence interval for the treatment effect

Let the data from the pooled groups assume the f¢fml;, Ilnr;, z;) i =
1,...,n} on the log-scale. A treatment effe€t(on the log-scale) is a mean-
ingful parameter in an AFT model that assunte§; = 6z; + ¢; with {¢;} as
i.i.d. error responses from a continuous distribution. We also assume indepen-
dent interval censoring (Sun, 2006, §1.3.5) of any type so that censoring bounds
provide no further information about survival times other than the bounds on
their values. Under such assumptions, thieanslated treatment intervals are
indistinguishable from untranslated control intervals in the sense thatdjpe
resent censoring from a single common control distribution. Thus, thevaiser
in{(Inl; — éz;,Inr; — 62;) : i =1,...,n} representinterval censored data com-
ing from a common control distribution. Detailed arguments for this tisgeare
given in the Supplementary Material online.

Such indistinguishability ensures that the data $@inl; — 6z;,Inr; —
6z;,2;) 11 =1,...,n} satisfies the null hypothesis whérns the true treatment
effect in the AFT model. The significance of the valuean be assessed by us-
ing a permutation test that this data follow from a common control digiob.
In performing this test, suppos® is the NPMLE of survival for the pooled
data{(Inl; — éz;,Inr; — 6z) :i=1,...,n} andp(d) is the one-sided saddle-
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point midp-value for the LR or LW test off, versusH; : Si(t) > Ss(t). Then, a
100(1 — «)% confidence interval fofis [£, R] = {6 : a/2 < p(6) <1 — a/2}.
In practical applications} assumes values over a grid of increm@nd1 within
range[— B, Bs] for someB; > 0 < Bs.

A plot of 5(6) vs. ¢ is a step function that can only change value when the
incrementd — 6 + 0.001 results in a change in the structure (@i, Inr)-bins
within which Ss places its mass. Such change can only occur when a treatment
value,Inl;, — ¢ orInr;, — é, jumps over a control valuénr;, or Inl;, respec-
tively, with incremental changé — ¢ + 0.001. In applications, these plots have
always been increasing however a proof for such is lacking. See Figure 1 in

Abd-Elfattah & Butler (2007) for a similar plot with right-censoring.

Table 6: Confidence intervals for the effect of adjuvant chemotherapy on the log-
time scale for breast cosmesis data.

LR Lw
Method L R Ap(L)*  AB(R)® L R Ap(L)  AP(R)
95% level
Exact  -0.8652 -0.1647 0.0017  0.0286 -0.8332 -0.0804 0.01850002
Sad. -0.865 -0.165  0.0023  0.0285 -0.833 -0.076  0.0185 6.000
Norm. -0.865 -0.165  0.0022  0.0282 -0.833 -0.076  0.0183 (BOO
99% level
Exact  -1.0766 -0.0585 0.0082  0.0002 -0.8845 0.0515  0.00120010
Sad. -1.129  -0.062  0.0014  0.0002 -0.885 0.052  0.0013 0.0019
Norm.  -1.129  -0.054  0.0015  0.0003 -0.885 0.053  0.0014 @001

“Denotes the step heightp(L) = p(L + 0.001) — p(L) at grid pointC com-
puted according to the associated r@ag. via simulation for the Exact row and
via saddlepoint (normal) approximation for the Sad. (Norm.) row.

bStep heightAp(R) = p(R) — p(R — 0.001).

Table 6 shows 95% and 99% confidence intervals fatomputed over
[—1.5, 1] with incremental change.001 using the breast cosmesis data. For all

three intervals, endpoint§ and R were determined so the intervgl, R] is
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conservative withp(L£) < o/2 < p(L + 0.001) andp(R — 0.001) < 1 — /2 <
B(R).

Intervals in the Sad. row, obtained by inverting saddlepoint vaiués are
extremely accurate when compared to “Exact” intervals, obtained leyrdat-
ing eachp(8) using 10° random permutations of the treatment/control labels.
Normal intervals (Norm.) agree with saddlepoint intervals at the 95% laxel b
differ at the 99% level. The reason for this agreement is due to largesigiep
that occur in the tails of the step-function plotspgf) for both saddlepoint and
normal probabilities which share the same step locatises the valueAp(L)
andAp(R) in Table 6. The pile up of mass occurring in the step-function plots
of p(¢) is a consequence of the pile up of mass in certain)-bins that occur
in the NPMLES; as a result of interval censoring. Thus, while saddlepoint sig-
nificance levels were seen to be considerably more accurate thamdneial
counterparts, this accuracy is not always converted into better or &erent
intervals with test inversion for the reasons described.

The inversion of such permutation tests has substantial clinical ianpoat
because it allows for more than simply a statement that “the treatmeunp gr
had a significantly shorter recovery time than the control group.” It rather al
lows “shorter” to be quantified by providingl®0(1 — «)% confidence interval
for the percentage decrease in mean (or median) recovery time fonéneiater-
sus control group in the AFT model. These confidence intervals are computed by
mapping[£, R] through the functiod — 100(e® — 1). Thus, for the LR test, this
gives[—57.9, —15.2] and[—67.7, —6.01] as95% and99% confidence intervals
respectively. From the first interval we may conclude that adjuvannotiger-
apy reduces the mean (or median) time to breast retractiar.By; to 57.9%

with confidence leve95%. Inversion of the LW test gives-56.5, —7.32] and
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[—58.7, 5.34] as the respectives% and99% confidence intervals.

Our downloadable executable file which inverts saddlepoint and normal tests
for the LR and LW statistics requireldt.0 minutes to determine the 99% confi-
dence intervals in Table 6 using a grid fof increment).001 over the range
[—1.5,1]. By comparison,105 minutes were required to determine the “exact"
intervals using a different executable simulation program.

The coverage accuracy attained by the saddlepoint and normal intergals ca
be assessed using the relative error entries computed in Tables 4 ahé 5. T
analysis in the Appendix shows that such an assessment is possibles$uae
that saddlepoint relative error is roughly the same in the left and rigist déi
the null permutation distribution for log-survival times. In particukkis error
analysis shows that a saddlepoint relative erroRR6§ = 2.5%, as in the Sad.

LR entry for Table 4 row 6, leads to an absolute error of coverage’of20 =
2.5%/20 = 0.12% as indicated in Table 7. When using saddlepoint tests, the
largest error in coverage is therefare1% for the LW test and quite small while

for normal tests the largest coverage errar.81% for the LR test.

Table 7. Percentage coverage error when inverting saddlepoint (Sad.) and norma
(Nor.) permutation tests f@5% confidence intervals of the treatment effect. The
two settings represent the sixth rows of each table in whick- n, = 40 and
censoring has percentage compositlon20; 40.

Settings LR LW
Sad. Nor. Sad. Nor.

Table 4: extreme value 0.12 2.24 0.41 1.66

Table 5: log-logistic 0.08 1.92 0.17 0.69

4. ALGORITHMS FOR COMPUTATION OF NPMLE S

Since permutation tests only require a single computation of NPM|_Bro-

grams, such as the R “interval” package, that compttalues can base com-
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putations on the EM algorithm as long as a check is performed to be sure the
EM iterates to the NPMLE and not a local maximum. This is not adequate in the
simulation studies of 83.2 wherein each setting required 1000 autonuatgulie
tations of such NPMLESs. Nor is it satisfactory for the test invamsn 83.3 which
also required computation &f; for hundreds of potential choices of treatment
effect 6. In both of these instances, we need to be sure that the algorithm has
converged to the NPMLE and both the EM algorithm, as outlined in Peto (1973)
and Turnbull (1976), and the hybrid iterative convex minorant (hybrid IQM) i
Wellner & Zhan (1997) failed in this automated computation of the NPMLE.
The EM algorithm sometimes converged to local maxima, while the hybrid ICM
sometimes lead to cumulative sum diagrams that dropped belowdlies thus
resulting in negative probability estimates. For the specific prolvie encoun-
tered, see Supplementary Material online.

To deal with this, our EM-hybrid ICM algorithm runs 200 iterations of the
EM algorithm starting with an initial estimate that places uniforrasshin all
(1, r]-bins. If the resulting survival estimate is judged to be the NPMLE, the a
gorithm stops and uses the resulting survival estimate. If judged toentieb
NPMLE, the current survival estimate is used as the input for the hyGhd
algorithm in Wellner & Zhan (1997) and this algorithm runs until the current
estimate is judged to be the NPMLE. To be judged so at either stage in our pro-
grams, the current estimate must satisfy the Fenchel conditions givgoatien
25 of Wellner & Zhan (1997) with error toleranege= 10~7. Our EM-hybrid
ICM algorithm succeeded in computing the NPMLE in all our simulations and
confidence interval computations. This algorithm underlies all our executable
programs for computing permutation significance levels and inverting LR an

LW tests and ensures that NPMLESs are used.
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5. CONCLUSIONS

We have shown how to use saddlepoint approximations to approximatg-mid-
values for treatment benefit in a large class of permutation tests thieedata
are partly interval-censored data. The approximations are almoayslmore
accurate than the existing normal approximations found in SAS and R software
packages.

The speed, stability, and accuracy of these approximations allow usetd inv
the permutation tests to determine arbitraf¥)(1 — «)% confidence intervals
for the treatment effect under an assumed AFT model. Such intervadsnioa
been previously computed presumably due to the extensive amount of computa-
tion. Simulations suggest that the resulting saddlepoint intervals haesage
accuracy which is close to exact. The importance of such test invessibat
it quantifies the treatment benefit. For example, with the breast cosoasis
rather than simply stating that adjuvant chemotherapy has a statissaaiifi-
cant benefi{p = 0.0033 in a one-sided test), the intervals allow for the following
confidence statement: “Adjuvant chemotherapy reduces the mean (or median)

time to breast retraction by5.2% to 57.9% with confidence leved5%.”
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APPENDIX

Coverage probability error analysis for Table 7The relative errors in Tables 4
and 5 are not affected by using Monte Carlo miglalues in place of exact val-
ues as noted in the Supplementary Material online. With confidence interval

(£, R], let R% = 100r% represent the percentage relative errgi(@) for p(L)
occurring at the2.5 percentile. We also suppose that p(R) hasR% relative
error forl — p(R). Thus we suppose that saddlepoint accuracy is the same in the
left and right tails. There are two reasons why such a supposition isnabile.
First, empirical evidence suggests that this is a reasonable assumptiothghe
underlying null log-survival time distribution has a MGF that is convergent i
an open neighbourhood 6fas occurs with our exponential and logistic exam-
ples. Secondly, the permutation distribution térhas a central limit theorem

so it should be roughly symmetric. Saddlepoint approximations for symmetric
distributions preserve tail symmetry (Butler, 2007, §2.1.2) so relatik@ ef
saddlepoint approximation is also symmetric. Thus we can expect roughly com
parable relative errors at tl2e5 and97.5 percentiles.

With this supposition, the true values are bounded as

0.025(1 — 7) = p(L)(1 — ) < p(L) < HL)(1 +7) = 0.025(1 + 7)

0.025(1 —r)={1—-p(R)}1—-7)<1—=p(R) < {1 —-p(R)H1+7r)=0.025(1+r)
so that two-sided coverage error is bounded as
0.05 —0.057 < p(L) +1—p(R) < 0.05 + .05r.

This indicates a relative error of and an absolute coverage errorf =

(R/20)% as indicated in Table 7.
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