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Abstract

Judgement post-strati�cation is a method of data collection in which the members

of a random sample are strati�ed after selection by ranking each one among its own

randomly chosen comparison sample. The original random sample units are measured,

whereas those in the comparison sample are not. An estimator of the mean that is

similar to that from a ranked set sample can be constructed from this sample, and it

has similar properties. That is, if ranking is reasonably accurate and measurement is

expensive compared to ranking, this estimation procedure improves e�ciency in esti-

mation of the mean. In this paper, we develop several estimators of the mean that make

use of judgement ranks from more than one ranker from a judgement post-strati�ed

sample. We compare their performance through simulation. We also provide insights

about when extra rankers are useful.
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1 Introduction

In this paper, we examine a method of data collection studied by MacEachern, Stasny and

Wolfe (2004). In their procedure, each of a set of measured observations is ranked by eye

or some other relatively inexpensive method among its own set of unmeasured observations.

The assigned ranks provide auxiliary information about the measured units. Sampling theory

suggests a variety of ways that this information could be used, but when it is used to

form post-strata, MSW refer to the procedure as judgement post-strati�cation (JP-S). They

illustrate that when rankers are allowed to express uncertainty about ranks, which they

call imprecise ranking, rather than being forced into stating an exact ordering, then this

information can be used to construct estimators that perform better. They also show one

example simulation in which use of multiple rankers can provide better estimation than a

single ranker.

Judgement post-strati�cation proceeds as follows. A sample of size n is selected at

random, and the characteristic of interest is measured for each. Then a random sample of

H − 1 additional units is selected and compared with the �rst measured observation, and a

rank (or ranks, if there is more than one ranker) assigned to it. A second random sample

of H − 1 observations is selected and compared with the second measured observation, and

a rank is assigned to it. The procedure continues until all n observations have been ranked

among its own set of H − 1 randomly chosen units.

This method is similar, both in practical implementation and in theoretical development,

to ranked set sampling (RSS). In both cases, an independent sample of order statistics,

or judgement order statistics if ranking is imperfect, is available for analysis, along with

information about the (judgement) rank of each. Judgement post-strati�cation di�ers in

that the number of measured judgement order statistics of each rank is random, while for

ranked set sampling, it is typically �xed in advance. The earliest implementations of RSS

were designed for estimating the mean (McIntyre 1952, Takahashi and Wakimoto 1968).

Both RSS and JP-S provide gains in e�ciency for estimating the mean when measurement
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is much more expensive than ranking. Applications in agriculture (e.g., Cobby et al. 1985),

forestry (Dell and Clutter 1972), and environmental assessment (e.g., Kvam 2003) have been

most frequently reported.

MSW (2004) point out that an advantage of JP-S over RSS is that if one ignores the rank-

ing information, the measured observations can be analyzed using conventional statistical

methods, as they are a standard random sample. Ranked set samples are not, since they are

composed of independent (judgement) order statistics. For those fearing that subject mat-

ter journals will discourage nonstandard statistical analyses, or who anticipate using some

advanced data analysis methods not yet developed for ranked set samples, an underlying

random sample is attractive. The second advantage of JP-S is, that it is possible to allow

more than one ranker to provide ranking information on the same measured unit, while it

is impossible in RSS (unless the rankers agree), since the unit to be measured is determined

by the speci�ed rank. We will see that multiple rankers, when they have some ranking skill

and are not identical, can provide information that allows better estimation of the mean

than that of a single ranker. Another advantage is that JP-S might allow for a large number

of ranking classes (i.e., H) in some applications, since we only need the rank of each fully

measured unit among its comparison group. In RSS, by contrast, we need to determine,

within each set which is the one with a given rank, which is more di�cult when H is large

and the rank is close to H/2.

The purpose of this paper is to examine how the information from multiple rankers can

be used, and to determine when it is worthwhile to use them. In Section 2, we discuss three

estimators of the mean that can be computed from a sample that is judgement post-strati�ed

by m rankers. In Section 3, we use normal examples assuming large samples to provide

insights about how much and under what circumstances an advantage from additional rankers

can be expected. Section 4 reports simulation results for comparing those estimators based on

simulated data from a parametric model with di�erent types of distributions. The estimators

are also compared on a real data example. A discussion follows in Section 5.
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2 Estimators

Let Y = (Y1, Y2, . . . Yn)T be an i.i.d random sample from a population of interest with mean

µ and variance σ2. Let Y = (y1, y2, . . . yn)T, a realization of Y, denote values of those fully

measured units in a judgement post-strati�ed sample. Suppose there are m rankers; each of

them can be either perfect or imperfect in judgement ranking. De�ne I
(j)
ih = 1 if Ranker j

assigns the rank h to yi among its H−1 comparison units, otherwise I
(j)
ih = 0, for i = 1, · · · , n,

j = 1, · · · ,m and h = 1, · · · , H; the vector of ranks is denoted by Ri = (Ri1, · · · , Rim), where

Rij is the rank assigned to yi by Ranker j. There are thus Hm post-strata jointly grouped

by the ranks R = (Ri)
n
i=1. Let PSr denote the post-stratum in which Ri = r, and πr, µr,

nr, and Ȳ[r] denote the probability, mean, number and sample mean of observations falling

in PSr.

In what follows, we discuss three methods to estimate the mean µ, using information

from multiple rankers.

2.1 The MSW method

When assessments of ranks are available from m rankers for each yi, MacEachern et al.

(2004) proposed the estimator

µ̂
(m)
M =

1

H

H∑

h=1

∑n
i=1 yip̂ih∑n
i=1 p̂ih

, (1)

where p̂ih =
∑m

j=1 I
(j)
ih /m is the proportion of rankers who classify yi as having rank h. When

there is only one ranker (i.e., m = 1), (1) becomes the JP-S estimator studied in MacEachern

et al. (2004):

µ̂ =
1

H

H∑

h=1

∑n
i=1 yiIih∑n
i=1 Iih

. (2)

The estimator in (1) is easy to compute. However, it is di�cult to obtain its analytical

properties in the general case. For simplicity, we restrict attention to the case of m = 2
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rankers and investigate the question of whether using an extra ranker improves estimation

of the mean. We hope this can shed light on cases with more than two rankers.

Let PSs,t denote the post-stratum in which Ranker 1 assigns rank s (Ri1 = s) and Ranker

2 assigns rank t (Ri2 = t). The sample mean of Y for PSs,t is

Ȳ[s,t] =

∑n
i=1 I

(1)
is I

(2)
it yi

ns,t

, 1 ≤ s, t ≤ H.

By rearranging the terms of (1), one can write µ̂
(2)
M as a weighted average of the sample

means of the post-strata, namely,

µ̂
(2)
M =

H∑
s=1

H∑
t=1

ŵs,tȲ[s,t],

where

ŵs,t =
1

H

(
ns,t

ns¦ + n¦s
+

ns,t

nt¦ + n¦t

)
,

and ns¦ (n¦t) denotes the number of sample units for which Ri1 = s (Ri2 = t).

First note that µ̂
(2)
M is a consistent estimator of µ. This follows from the observations that

ns,t ∼ Binomial(n, πs,t), ns¦ (n¦t) ∼ Binomial(n, 1/H) , and E(Ȳ[s,t]) = µ[s,t]. Then ŵ[s,t] → πs,t

and µ̂
(2)
M → ∑H

s=1

∑H
t=1 πs,tµ[s,t] = µ as n → +∞.

We assess the variance of µ̂
(2)
M by conditioning on the realized post-stratum sample sizes.

This yields

V ar(µ̂
(2)
M |ns,t > 0; s = 1, ..., H; t = 1, ..., H) =

H∑
s=1

H∑
t=1

ŵ2
s,t

σ2
[s,t]

ns,t

.

To measure the marginal value of the second ranker, we need to compare µ̂
(2)
M to µ̂ ranking

5



with only Ranker 1, as in (2) . The (conditional) variance of the latter is

V ar(µ̂|ns¦ > 0; s = 1, ..., H) =
1

H2

H∑
s=1

σ2
[s,¦]
ns¦

,

where σ2
[s,¦] = V ar(Yi|Ri1 = s). The ratio of the variances of µ̂ and µ̂

(2)
M is denoted by RE.

Then

ARE = lim
n→∞

RE =

∑H
s=1 σ2

[s,¦]/H∑H
s=1

∑H
r=1 πs,tσ2

[s,t]

. (3)

ARE ≥ 1 since

σ2
[s,¦] = ES [V ar(Yi|Ri1 = s,Ri2 = t)] + V arS [E(Yi|Ri1 = s, Ri2 = t)]

= H

H∑
t=1

πs,tσ
2
[s,t] +


H

H∑
t=1

πs,tµ
2
[s,t] −H2

(
H∑

t=1

πs,tµ[s,t]

)2



≥ H

H∑
t=1

πs,tσ
2
[s,t].

Thus, using an extra ranker with the estimator (1) is bene�cial at least in an asymptotic

sense.

2.2 The BLUE of rankers' JP-S estimators

For a JP-S sample with multiple rankers, each ranker can have his own estimator of µ in

the form of (2) based on the set of ranks he assigns to Y. We propose and estimator which

linearly combines the estimators from the m rankers to form a new one having minimum

mean squared error (MSE).

Let µ̂j denote Ranker j 's estimator of the form (2) and wj denote the weight associated

with Ranker j, for j = 1, · · · ,m. We begin with

µ̃(m) = wTµ̂ (4)
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where µ̂ = (µ̂1, . . . µ̂m)T, and w = (w1, . . . wm)T. Since each µ̂j is unbiased, µ̃(m) is unbiased

if
∑m

j=1 wj = 1. Let Σ be the covariance matrix of µ̂ so V ar(µ̃(m)) = wTΣw. Our objective

is to

min
w

V ar(µ̃(m)) s.t. wT · 1 = 1

where 1 is a vector of all 1's. The solution to this optimization problem is given by

w0 =
Σ−11

1TΣ−11
(5)

and the minimized variance is

V ar(µ̃
(m)
B ) =

1

1TΣ−11
(6)

where µ̃
(m)
B denotes the best linear unbiased estimator (BLUE), i.e., µ̃(m) with the optimal

weights w0. Based on (5) and (6), the optimal weight associated with Ranker j is the sum

of elements in the jth row of Σ−1, divided by the sum of all elements of Σ−1; the minimum

variance is the inverse of the sum of all elements of Σ−1. Obviously , V ar(µ̃
(m)
B ) ≤ V ar(µ̂j)

for any j, so that µ̃
(m)
B improves the JP-S estimator from any single ranker. Also, adding

an extra ranker is bene�cial because V ar(µ̃
(m+1)
B ) ≤ V ar(µ̃

(m)
B ) since in µ̃

(m)
B , we can set

wm+1 = 0 to get a µ̃(m+1)that is not optimal.

Calculating the BLUE µ̃
(m)
B requires the covariance matrix Σ of µ̂. It can be veri�ed

using the delta method that

var(µ̂j) ≈ 1

n

[
σ2 − 1

H

H∑

h=1

(
µj

[h] − µ
)2

][
1 +

H − 1

n

]
(7)

cov (µ̂k, µ̂l) ≈ 1

n

H∑
s=1

H∑
t=1

pk,l
[s,t]

{[
µk

[s] − µk,l
[s,t]

] [
µl

[t] − µk,l
[s,t]

]
+

(
σk,l

[s,t]

)2
}

(8)

where µj
[h] = E

(
Yi|I(j)

ih

)
, pk,l

[s,t] = E(I
(k)
is = 1, I

(l)
it = 1), µk,l

[s,t] = E
(
Yi|I(k)

is = 1, I
(l)
it = 1

)
and

(
σk,l

[s,t]

)2

= V ar
(
Yi|I(k)

is = 1, I
(l)
it = 1

)
, for h, s, t = 1, · · · , H and j, k, l = 1, · · · ,m. The

proof is lengthy and omitted for brevity. These approximations work well for large n.
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Formulas (7) and (8) can be computed under certain distributional assumptions with

known parameters. This is quite restrictive in practice. A nonparametric approach is to

substitute sample proportions, means, and variances in the post-strata as surrogates of those

pk,l
[s,t], µj

[h], µk,l
[s,t] and

(
σk,l

[s,t]

)2

. However, we have found that the resulting weights are unstable,

and the estimator performs poorly. To mitigate this di�culty, we propose a bootstrapping

procedure to compute Σ, which is outlined by the following steps .

1. Take a sample D′ of size q (q < n) with replacement from the data D = (yi,Ri)
n
i=1

collected by judgement post-strati�cation.

2. For each ranker, calculate the JP-S estimator µ̂j based on D′. Let µ̂ = (µ̂1, . . . µ̂m)T .

3. Repeat the above steps A times.

4. Calculate the sample covariance Σ̂ matrix for µ̂(1), · · · µ̂(A). This will be used to ap-

proximate Σ.

This procedure requires no distributional assumptions, and is easy to implement. We have

found that for large n, (6) provides a good approximation to the variance of µ̃
(m)
B with the

bootstrapping procedure.

2.3 The raking method

From sampling theory, we know that post-strati�cation can improve estimation of the mean

when the proportion of units in each post-stratum is known from some source outside the

sample. Commonly, post-strata are de�ned by cross-classifying units by several variables. If

only the marginal proportions are known, a method known as raking (Deming and Stephan

1940) can be used for estimating the proportions in the cross-classi�ed cells. Raking involves

iterative proportional �tting of the cell proportions to successively match the known one-

dimensional marginal probabilities.
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In judgement post-strati�cation, we consider the rank assignment of each ranker as one

post-stratifying variable, and their joint ranks, denoted by r, to de�ne the post-strata. We

do not know the probability of a randomly selected unit falling in any post-stratum unless

assumptions are made about both the distribution of Y and the ranking process. But we

do know the probability that each ranker classi�es a unit into each category; i.e., Pr[Rir =

s] = 1/H for all i,r,and s. So we propose to use raking for estimating the cell probabilities

non-parametrically, resulting in an estimator of the form

µ̂
(m)
R =

∑
r

π̂r(n)Ȳ[r]

where the summation is over all Hm realizations of the rank vector, n is the random vector

containing the counts of Y in the Hm post-strata; and π̂r(·) is the estimate of the cell

probability based on raking.

Both µ̂
(m)
R and µ̂

(m)
M can be thought of as weighted averages of estimated post-stratum

cell means, where the weights are nonparametric estimates of cell proportions. They di�er

in the way these cell proportions are estimated. Another way the two estimators di�er is

that µ̂
(m)
R cannot be calculated when there exist one or more empty ranking classes for some

ranker, as raking is then not possible. So µ̂
(m)
R is a feasible estimator only when H is small

relative to n so that empty ranking classes are unlikely to occur.

3 When are extra rankers helpful?

Here, we are interested in the question when extra rankers are helpful. To aid intuition,

we use examples that assume large samples from a multivariate normal distribution. Our

discussion is based on the estimator µ̂
(m)
M . For the other two estimators, the patterns appear

similar, so are not reported here.

We �rst consider the e�ect of ranker similarity and quality. Suppose ranking is done via

concomitant variables X1 and X2. Let Y , X1, X2 follow a multivariate normal distribution,
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Figure 1: Asymptotic E�ciency of µ̂M (2 rankers, equally e�ective) to µ̂ (1 ranker)
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Figure 2: Asymptotic E�ciency of µ̂M (2 rankers, ranker 2 worse than ranker 1) to µ̂ (best
ranker), H = 4
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so that ρX1,Y and ρX2,Y measure the e�ectiveness of ranker 1 and 2, respectively, and ρX1,X2

measures the similarity of rankers 1 and 2. We shall compare the performance of µ̂
(2)
M based

on the large-sample property in (3) for various values of ρ's, where variances were calculated

using numerical quadrature (see Wang and Stokes 2005).

Figure 1 shows the ARE for two equally e�ective rankers (i.e, ρX1,Y = ρX2,Y ≡ ρX,Y ) and

the three values each of ρX,Y and H. It shows that the gain from the second ranker can be

substantial. It increases as the ranking quality or the number of ranking classes increases,

and decreases as the two rankers become more similar. Note that the patterns of gain are

similar for di�erent H. This is true for all the other examples in this section, so we only

consider H = 4 below.
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Figure 3: Asymptotic E�ciency of µ̂M (2 rankers with one perfect) to µ̂ (perfect ranker),
H = 4
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Figure 4: Asymptotic E�ciency of µ̂M (2 rankers with one independent of Y ) to µ̂ ( best
ranker), H = 4
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Figure 5: Simulated E�ciency of µ̂M to µ̂ (best ranker), ranking by concomitants, similar
rankers, H = 4, normal model, n = 100
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Figure 2 shows that a �bad� ranker can help a better one. Surprisingly, the gain is not

monotonically increasing as the quality of the �bad� ranker increases; the advantage is lowest

when she has a correlation of around .20�0.30 with Y .

The second ranker can be useful even when it might not be expected to. Figure 3 shows

that if perfect ranking on Y is available through Ranker 1 (i.e., ρX1,Y = 1 and ρX2,Y = ρX1,X2),

using the information from Ranker 2 is helpful in estimating µ except when she is too poor

or too good in ranking. In the latter case she will be too similar to the better ranker and

thus provides little additional information. Figure 4 shows that there can be bene�t from

Ranker 2 even when she is independent of Y (i.e., ρX2,Y = 0). In this case, the advantage

comes from the information Ranker 2 contains about Ranker 1. The �gure also con�rms

that the bene�t increases with ρX1,X2 .

Figure 5 shows simulated e�ciency for di�erent numbers of equally e�ective rankers and

and the three values of ρX,Y . Here, we �x the sample size at n = 100, and let ρXi,Xj
=

ρXi,Y · ρXj ,Y , which implies that ρXi,Xj |Y = 0, for any i and j; e�ciency is de�ned as MSE of

µ̂
(m)
M to µ̂, where MSE is estimated from 10,000 replicates. In this case, using more rankers

helps but not much after the number of rankers reaches about 4.

4 Comparison of the estimators

4.1 A simulation study

In order to study the behavior of the three estimators discussed in Section 2, we model the

imperfect ranking process by regarding Y as the concomitant of a vector of ranking variables

that can be accurately and easily measured. That is, we assume that Ranker j, j = 1, · · ·m,

behaves as if he assesses the rank of Yi by assigning it the true rank that some ranking

variable Xij has among its comparison group of size H. Further, assume Xij = Yi + eij,

where eij ∼ N(0, σ2
j ) and eij is independent of Yi for each i and j. We restrict attention to

the case of m = 2 rankers in our numerical comparison for simplicity. So in the discussion
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below, we omit the superscripts of the estimators µ̂
(m)
M , µ̃

(m)
B and µ̂

(m)
R .

We implemented two sets of simulations. In the �rst set we study two nonequally e�ective

rankers, where we chose V ar(X1) = 3.3, V ar(X2) = 0.5, the correlations ρ(X1, Y ) ≈ 0.58,

ρ(X2, Y ) ≈ 0.88, and ρ(X1, X2) ≈ 0.50. Here, Ranker 2 is more e�ective than Ranker

1. In the second set we study two equally e�ective rankers, where we chose V ar(X1) =

V ar(X2) = 1, the correlations ρ(X1, Y ) = ρ(X2, Y ) ≈ 0.71 and ρ(X1, X2) ≈ 0.50. For each

case, we set H to be 2, 4, 10 and n to be 10, 30, 60, 150. We simulated Y from four types

of distributions: normal, uniform, lognormal and exponential. We chose parameters their

parameters to achieve the speci�ed correlations and variances. When calculating µ̃B from

each sample, we used the bootstrapping method with q = n/2 and A = 200. Figure 6 and

7 report the simulated relative e�ciency of the �ve estimators, µ̂M , µ̃B,µ̂R, µ̂ ranking with

only Ranker 1, and µ̂ ranking with only Ranker 2 to the SRS estimator Ȳ for each setting.

Here, e�ciency is de�ned as the ratio of the variance of Ȳ to MSE of each estimator, where

MSE is estimated from 10,000 replicates. We denote these �ve estimators MSW, BLUE,

Raking, JP-S(X1) and JP-S(X2) respectively in the �gures.

The results in Figure 6 show that in all cases, using two rankers is much better than

using the bad one; and the performance with two rankers is better or comparable to that

with the better one. This indicates that if the quality of rankers is unknown, combining is

bene�cial on average. For the lognormal distribution, the bad ranker can help the better

one if using with µ̂M or µ̃B; furthermore, it appears that µ̃B is better than µ̂M except for

the cases with large H and small n. For the other three distributions, the bad ranker often

provides little or slight help to the better one, except for using µ̂M with small n. This

appears to contradict the results for normal data in Figure 2. But it is not since Figure 2 is

based on asymptotic properties while Figure 6 is based on �nite samples. Further, Figure 6

suggests that the e�ciency of µ̂M over µ̂ is not a monotonically increasing function of n. So

in practical situations when n is not very large, if we know which ranker is better, use µ̂M

for small n and simply use the better ranker otherwise for normal, uniform and exponential
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Figure 6: Simulated e�ciency of the estimators, ranking by two nonequally e�ective rankers.
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data.

Figure 7 shows for two equally e�ective rankers, µ̂M appears to be the best nearly in

all the cases. This is not surprising since the MSW method treats each ranker equally. It

prorates a measured value among the ranking classes receiving any �votes� from a ranker.

So its best scenario is that all the rankers are of the same quality.

Figure 6 and 7 also show that overall the raking method does not work well. It cannot

be applied when empty ranking classes occur, including the cases of H = 10 and n = 10.

Although it appears to be the best for large n and small H, the improvement over the second

best estimator is often small.
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Figure 7: Simulated e�ciency of the estimators, ranking by two equally e�ective rankers
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4.2 An empirical comparison: adjusted brain weights of mammals

Following Section 5 in MacEachern et al. (2004), we use a data set that consists of allometric

measurements for 62 species of mammals, and set our goal as estimation of the mean of Y ,

the log of adjusted brain weight, de�ned as Y = log{brain weight/(body weight)2/3}.
The data were randomly grouped into 20 sets of 3 species (2 species were randomly

selected and discarded for this purpose). We assume that each of the 20 sets represent three

independent draws from a large population of species. Each set was presented to two rankers

that assigned ranks within the set independently. The rankers made judgements based on

the conjecture that a �clever� species tends to have a large adjusted brain weight. The data
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generated are described by Table 1.

Table 1: A judgement post-strati�ed sample (2 rankers, H = 3) based on the mammals data
mammals set Ranker1 Ranker2 y mammals set Ranker1 Ranker2 y

Genet 1 2 1 2.63 Cat 11 2 2 2.45
Rat 1 3 2 1.49 Human 11 1 1 4.43
Cow 1 1 3 1.95 Rabbit 11 3 3 1.88

African giant pouched rat 2 3 2 1.89 Artic fox 12 1 1 2.98
Kangaroo 2 2 3 1.66 Nine-banded armadillo 12 3 3 1.54
Red fox 2 1 1 2.96 Brazilian tapir 12 2 2 1.75

Lesser short-tailed shrew 3 3 3 1.57 Tree hyrax 13 3 3 2.05
Jaguar 3 1 1 1.99 Pig 13 1 2 1.69

Rock hyrax-a 3 2 2 2.70 Guinea pig 13 2 1 1.68
Baboon 4 1 1 3.62 Water opossum 14 3 3 0.53

Phalanger 4 2 2 2.11 Rhesus monkey 14 1 1 3.91
Sheep 4 3 3 2.49 African elephant 14 2 2 2.78
Gorilla 5 1 1 2.45 N.A. opossum 15 3 3 1.49

Giant armadillo 5 3 3 1.66 Roe deer 15 1 2 2.79
Yellow-bellied marmot 5 2 2 1.90 Okapi 15 2 1 2.51

Echidna 6 3 2 2.49 Donkey 16 1 2 2.55
Owl monkey 6 1 1 3.23 Mountian beaver 16 3 3 1.89

Gira�e 6 2 3 2.34 Horse 16 2 1 2.31
Grey wolf 7 1 1 2.39 Tree shrew 17 3 3 2.43

Big brown bat 7 3 3 1.31 Galago 17 1 1 2.68
Goat 7 2 2 2.53 Golden hamster 17 2 2 1.41

Little brown bat 8 1 3 1.68 European hedgehog 18 3 3 1.41
Tenrec 8 2 1 1.03 Ground squirrel 18 1 1 2.91

Desert hedgehog 8 3 2 1.27 Rock hyrax-b 18 2 2 2.19
Asian elephant 9 3 1 3.21 Raccoon 19 1 2 2.70

E. American mole 9 2 2 1.91 Mouse 19 2 1 1.60
Verbet 9 1 3 3.11 Musk shrew 19 3 3 0.92

Chinchilla 10 2 2 2.43 Star-nosed mole 20 3 3 1.88
Grey seal 10 1 3 2.82 Slow loris 20 2 2 2.30
Mole rat 10 3 1 2.50 Patas monkey 20 1 1 3.21

To compare the estimators with one or two rankers, we conducted a simulation. In each

iteration, a sample of n = 20 species was selected, with one species from each set. The

following table summarizes the results based on 10,000 iterations. Again, the BLUE was

calculated using bootstrapping with q = 10.

Table 2: Comparing simulated relative e�ciency of the estimators to the SRS estimator Ȳ
Estimator JPS(Ranker 1) JPS(Ranker 2) MSW BLUE Raking

RE 1.30 1.06 1.54 1.44 1.17

Table 2 shows that combining the two rankers using either the MSW or BLUE method

de�nitely has a value in improving estimation of the mean. In this example, Ranker 1 is

much better than Ranker 2; the distribution of Y is roughly symmetric. It is interesting to
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observe the MSW method performed better than the BLUE method here. Although ranking

in this example was not done through concomitants, this result is consistent with what we

�nd in Section 4.1; that is, for two nonequally e�ective rankers, MSW works best for small

n, except for the case with lognormal data.

5 Discussion

In this paper, we have discussed three methods for combining information from multiple

rankers, for use with judgement post-strati�ed samples. Through examples and simulation,

we have provided insights about when it is worthwhile to use extra rankers and which method

to use. We show that when rankers are not identical, there can be considerable bene�t in

having more than one. Especially in applications where the quality of rankers is hard to

assess, combining can help avoid getting the worst estimation and achieve similar or better

performance than the best ranker. Among the three estimators, the MSW method was the

best when rankers are similarly e�ective. The raking method generally performed poorly.

The BLUE method was found useful for lognormal data.

Finally, we should mention several directions for future investigation. First, we have

shown that multiple rankers are useful for estimating the mean. They might lead to better

estimation of other parameters, too. Second, using multiple rankers provides optimization

opportunities that take into account quality of rankers, number of rankers, sample size

and number of ranking classes, etc. Last, the same idea can be applied to ranked set

sampling, with one primary ranker to specify units to measure and others to provide auxiliary

information. This could be still bene�cial.
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