THEMIS SIGNAL ANALYSIS STATISTICS RESEARCH PROGRAM

GENERALIZED ASYMPTOTES FOR EXTREME VALUE DISTRIBUTIONS
by

Charles L. Anderson

Technical Report No. 34
Department of Statistics THEMIS Contract

May 14, 1969

Research sponsored by the Office of Naval Research
Contract N00014-68-A-0515
Project NR 042-260

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.

DEPARTMENT OF STATISTICS
Southern Methodist University



GENERALIZED ASYMPTOTES FOR EXTREME VALUE DISTRIBUTIONS

A Dissertation Presented to the Faculty of the Graduate School
of
Southern Methodist University
in
Partial Fulfillment of the Réquirements
for the degree of
Doctor of Philosophy
with a

Major in Statistics

by

Charles Lloyd Anderson
(M.S5., Statistics, Southern Methodist University, 1967)

April 19, 1969



Anderson, Charles Lloyd B.A., Southern Methodist University, 1963
M.S., Southern Methodist University, 1967

Generalized Asymptotes for Extreme Value Distributions

Adviser: 1'rofessor John E. Walsh
Doctor of Philosophy Degree conferred May 25, 1969

Dissertation completed April 19, 1969

Some new asymptotic forms for extreme value distributions

are given, the most important being

exp (— exp (- a2(x - b)zsgn(x - by + c2))

where X is the identity function on the extended real line and
a, b, and ¢ are real parameters. The family of distributions of
this form is called the quadratic type of dne.

It is shown that the sequence of extreme value distributions
from a normal distribution is asymptotically attracted to the quad-
ratic type of dne in a stronger sense, related to Walsh's "Situation I,"
than the sense in which it is attracted to the linear type of dne,
or first asymptotic type of extreme value distributions, which con-
sists of all distributions of the form exp(- exp(-aX + b)) with a
positive.

It is also shown that the distribution of the largest value
in a sample from a normal population can be approximated rather
closely by a distribution in the guadratic type of dne even when
the sample size is fairly small.

Various senses of asymptotic attraction and asymptotic
equivalence for sequences of distribution functions are discussed
and compared re normal and Poisson populations.
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CHAPTER I

INTRODUCTION

The theory of asymptotic types of extreme value distributions may be
said to have been worked out completely, in the case of sampling from a fixed
univariate population, in the papers of Frechét [1], Fisher and Tippett [2],
and Gnedenko [3]. Gnedenko emphasized analogies with the theory of sums of
independent random variables and made it a point to answer in one paper all
of the questions concerning extreme values whose analogues in the theory of
sums had been the central problems of probability theory. More recent work
has been centered on non-sample or multivariate generalizations, or else on
problems of statistical inference. For discussions of this work, see Walsh [4]
and Gumbel [5], each of whichhave extensive bibliographies. Two earlier papers,
those of de Finetti [6] and von Mises [7], have remained somewhat out the main-
stream of work on extreme values inasmuch as they do not start with the
classical functional equation of Fisher and Tippett.

Although Gnedenko's paper evidently wrapped up the theory of asymptotic
types of extreme value distributions, one is nevertheless led to seek for
generalizations because of the well-known fact that, for samples from a normal
population, the asymptotic form for the distribution of the largest value does
not furnish a decent approximation to the true distribution unless the sample
size is extremely large. The discrepancy may be seen in the numerical results

of Dronkers [8], who also gives more exact expressions for the corresponding

frequency function.



In this paper we consider a simple asymptotic form for extreme value
distributions which seems to be useable for normal populations even when the
sample size is fairly small. The asymptotic form which we consider, which
we call the guadratic type of the double negative exponential distribution,
proves to be of some interest in itself, and we show that it represents the
asymptotic form of the distribution of the largest value in a sample from a
normal population in a stronger sense than does the usual form, which is the
(linear) type of the double negative exponential distribution. What we
show, in fact, is that the quadratic type yields a weakened form of what
Walsh [9] calls "Situation I."

Much of what we shall have to say about the senses in which extreme
value distributions are or are not attracted to the linear and/or quadratic
types of the double negative exponential (dne) distribution could be applied
more generally to give other asymptotic forms of extreme value distributions.
We are giving a method for extending the Gnedenko theory of extreme values,
but we are presenting this method mainly by means of the one important example
which motivated our research in the first place. However, we have phrased
our remarks somewhat more generally when this could be done without getting
away from the central issue, and, as a second and somewhat more pathological
example, we have included a short discussion of extreme value distributions
from a Poisson distribution.

To conclude this introductory chapter, we describe our notation and
summarize the basic facts about extreme value distributions.

Notation. Since we will be dealing with sequences of distribution
functions and related functions, it will be convenient to denote by X the
identity function on the extended real line. Except where otherwise noted,

we also use n to denote the identity function on the positive integers.



For construction of test statistics and for related purposes, we adopt
the convention that if Q is a proposition formula, then [Q] denotes unity
when Q is true and zero when Q is false.

Distribution functions and probability integral transformations are
imbedded in a larger class of functions which we shall call distribution
transformations. By a distribution transformation (dt), we mean a monotonic
non-decreasing function F = F(X) from the extended real line into the extended
real line which is continuous on the right at each finite point and continuous
at the ideal limit points % « .,

If F is a dt, then the unique dt F satisfying F(F (F)) = F will be
called the pseudoinverse of F. O0Of course, F = F, and F (x) is the infimum

of extended real numbers y such that F(y) > x or else y = = .

The exact distribution of extreme values and the Poisson approximation.

If m and n are positive integers with m no greater than n, let V(X; m, n) be
the distribution function for the m-th largest value in a sample of size n
from a population which is distributed uniformly on the interval between zero
and one. The same statistic, taken from a population with arbitrary distri-
bution function F would have V(F; m, n) as its distribution function. 1In
such an experiment, the number of sample values exceeding a given value has

a binomial distribution, and thus one obtains the formula

n

V(F; m, n) = m-L (k

n-k k
k=0 ) F (1-F) e e e o o o » o o « (1)

An equally simple argument, considering the probability that the m-th largest

value will fall in a fixed small interval, yields the following equation,
which could also be derived analytically from (1):
F 1

V(F; m, n) = S p" ™ (1-p)™ " dp/B(n-m+l, m) = IB(F; n-m+l, m), « « . . (2)
0



where B and IB are the Beta function and the incomplete Beta function re-
spectively. One may consider V(F; m, n) to be defined by (2) even when
m and n are not integers.

Equation (1) may be rewritten as follows:
nKl-m*
nk(— log F)kFk

m-1 (- log FH ¥

n
V(F; m, n) = F Zk=o on

e e e e e .. (3)

As n > « with m fixed, V (p; m, n) >~ 1, for each fixed p in the open interval
(0, 1), and hence the difference between V(F; m, n) and W(Fn; m) approaches

zero uniformly, where

W(p; m) = p Zi;é (- log p)k/k! O -3

Note that if N is a Poisson random variable and if p is the probability
that N = 0, then W(p; m) is the probability that N is less than m. Note also
that F_ = V(F; 1, n) is the distribution function for the maximum in the
sample. The uniform approximation of V(F; m, n) by W(Fn; m), or alternatively
by W(exp(-n/(1-F)); m), which is more common in the literature, will be
referred to as the Poisson approximation. It allows us to concentrate our
attention on the distribution of the largest value, assuming the large sample
size, and we need not consider V(F; m, n) especially for fixed values of m
other than 1.

It may also be pointed out that the m-th smallest order statistic in
a sample of size n from F has distribution function equal tc 1-V(1-F(X-0); m, n),
and hence our results on the largest order statistics apply immediately to the
smallest order statistics.

Finally, we note that W(F; m) is given by the incomplete Gamma function
I' . The well-know eguation. gives

o

m-1
X

W(F; m) = 1 - IT(~ log F; m) = _/ e X dx/T (m) e e« + » (5)

-log F



This equation may be taken as a definition when m is not an integer.

For large n, it is often convenient to replace —log(Fn) by n(1-F).
The justification is that if n approaches infinity while x varies with n
so Fn(x) remains more or less constant, we then have F(x) approaching unity
and so 1-F(x) is asymptotic to -log F(x). This is the same argument which
would be used in demonstrating the approximation of V(F; m, n) by W(Fn; m) .

We consider the distribution of the largest value by transforming to the
double negative exponential distribution function dne = dne(X) = exp(-exp(-X)).
More generally, we may transform to any distribution of this same linear type.
(Two distribution functions F and G are of the same linear type if there is a
linear dt A = aX + b, with a > 0, such that F(A) = G.) All distribution
functions of the type of dne are of the form

X
dne(X; a, b) = (1/a) (/P

= dne(X log b - log log a) ,
where a and b are constants greater than unity. The distributions functions
all have the property that exponentiation reduces to translation. Thus
V(dne(X; a, b); 1, n) = (dne(X; a, b))n = dne(x-logb n; a, b). Among the
distributions of the dne type, perhaps more interesting for practical purposes
is dne(X; 2, 10), which has the property that the median largest value in a
sample of size n is log10 n . We consider the dt T = TF = dne (F; 2, 10) =

- loglo(— log2 F), which, if F is continuous and strictly increasing, is
the unique dt which, when applied to a random variable having distribution
function F, gives a random variable having distribution function dne(X; 2, 10).

A graph of T contains much information. When the ordinate is 1og10 n,

the abscissa is the median largest value. When the ordinate is the common
logarithm (lOglo) of n times (logz)/log(l/p), the abscissa is the p-quantile
of the largest value. If qP is the p-quantile of F, then T(qp) - T(ql/2)
= 10910 10910 P - loglo log10 (1/2) is a constant not depending on n. Thus a
vertical shift of the graph of T amounts to replacing the median by a different

quantile.



CHAPTER 1T
ASYMPTOTIC FORMS FOR EXTREME VALUE DISTRIBUTIONS

A dt of the form aX + b will be called a linear dt only if it is
strictly increasing, i.e. only if the constant a is strictly positive.

A dt of the form

2 2
a (X - b)2 sgn (X - b) - ¢

will be called a quadratic dt provided that the constant a is strictly
positive. We will be interested usually in the form of a dt only where
its values are fairly large. Hence it is mainly for convenience that
we define a quadratic dt in this fashion, i.e. symmetrically about the
. 2
point (b, - c ).
The linear type of a distribution function F is the set of dis-

tributions F(A), where A ranges over the linear dt's. The set of distri-

butions F(A), where A ranges over the quadratic dt's, will be called the
quadratic type of F.

The linear types form a partition of the set of all distribution
functions into equivalence classes. We point out that this is not true
of the quadratic types. Nevertheless, the notion of quadratic type may
prove useful in studying the useful asymptotic forms of extreme value

distributions, and this for two reasons. In the first place, a quadratic

type appears naturally, as we shall see, as the asymptotic form for the
distribution of the largest value in a sample from a normal population.

6



7

In the second place, quadratic types are among the most simply structured
classes of distributions, next to linear types, and hence they form a
good testing ground for a generalized theory of asymptotic form.

Generally speaking, the goal of our research into generalized
asymptotic forms of extreme value distributions is to find fairly simple
parametric families K of distribution functions such that, for distribu-
tions F belonging to a fairly large non-parametric family, the sequence
F"' tends to be attracted asymptotically in some sense to the family K.
The sense of this attraction should be that when sample size is large,
one may assume without significant error that the distribution of the
maximum belongs to K. We shall assume that attraction of the sequence
F' to K may be defined to be equivalent to the existence of a sequence
Gn from K, possibly satisfying certain stability conditions related to
the behavior of a sequence of extreme value distributions in general,
which is asymptotically equivalent to the sequence F' in some meaningful
sense.

Aamong the many possible families K, other than the linear types,
we choose to work with one of the simplest, which is the quadratic type
of dne. Also we try to consider asymptotic equivalence in as simple a
sense as possible.

If Fn and Gn are sequences of distribution functions, we shall say
that Fn and Gn are asymptotically eguivalent, written Fn L Gn’ in Sense O
if Fn - Gn converges uniformly to zero as n tends to infinity. If K is
a class of distribution functions and if Fn is a sequence of distribution
functions, we shall say that Fn is attracted to K in Sense O if there is
a sequence Gn from K such that Fn i Gn in Sense 0. We shall say that a

sequence Gn of distribution functions satisfies Condition O if there is a
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distribution function F such that Gn 1 ¥ in Sense O.

Theorem 1. Let Gn be a sequence of distribution functions. If Gn is
attracted to the linear type of dne in Sense O, then G, is attracted to
the quadratic type of dne in Sense 0. Conversely, if Gn is attracted to
the quadratic type of dne in Sense 0, and if Gn satisfies Condition O,
then Gn is attracted to the linear type of dne.

Proofs of this and other theorems in this chapter are collected in
an appendix.

The following lemma is worth noting since it relates our discussion
to the treatment of asymptotic linear types of extreme value distribu-
tions given by Gnedenko.

Lemma l. Let F be a distribution function. Then F is attracted to
the linear type of dne if and only if there is a sequence An of linear
dt's such that Fn(An) converges to dne pointwise, i.e. in the weak-star
topology for distributions (defined by the convergence of the expected
values of each fixed bounded continuous statistic.)

Gnedenko gave necessary and sufficient conditions for F' to be
attracted to the linear type of dne in Sense 0, or rather in the equivalent
sense given in the lemma. According to Theorem 1, exactly the same
conditions are necessary and sufficient for F' to be attracted to the
quadratic type of dne in Sense O. Neve?theless, it may be true that,
for moderate values of n, the approximation of ' by a distribution in
the quadratic type of dne may be much better than any approximation from
the linear type.

Normal distributions afford an appropriate example. Letting
§ = dne(T) be the standardized normal distribution function, we have the

familiar asymptotic formula



TTE L1 L F0 ~ 8 (0 /x

as x approaches infinity. It follows that the difference between T(x)
and %(x2 + log (2 x)) approaches zero as x approaches infinity, and

thence it follows that
n 1.2
§ = dne(g X" sgn(X) - (log n - 2Jlog n))

in Sense 0. To understand this formula, it is convenient to study the
conditions under which dne(Ah) * dne(Bn) in Sense 0, where An and Bn
are sequences of dt's which fix the ideal points  «. When dne(An) and
dne(Bn) are asymptotically equivalent in Sense 0, we shall say that

An * Bn in Sense 0'.

Lemma 2. Let An and Bn be sequences of dt's., For An % Bn in Sense O'
it is necessary and sufficient that the following condition hold for all
real z, for all positive h, and for all sufficiently large integers m:
For any real x, if Am(x).s z, then Bm(x) < z+4+ h, and if Am(x) 2 z,
then Bm(x) > 2z - h,

Corollary. If An and Bn are sequences of dt's and if each term of
An is continuous and strictly increasing, then An * Bn in Sense O' if and
only if Bn(A;)-; X pointwise.

For the most part, it will be the Corollary which will be used in
this paper, since linear and quadratic dt's are continuous and strictly
increasing.

It is worth remarking that the dt T = dne” (F) is a very convenient
way of specifying the distribution F for the population from which extreme
values are taken, charting as it does the logarithm of sample size versus

a certain quantile of the largest value.
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In Figure 1, we give a graph of the common logarithm of sample
size versus the median largest value, assuming that the underlying

distribution function is

S
3 = dne(T) = (%)(1/10) .

Notice that S is T loglo e plus a constant. Hence in Figqure 1 we draw
an approximation to S of the form (% log10 e) x2 sqn(X) - c. The -
approximation is dotted, and it is clearly a hetter approximation to
the solid graph S than could be obtained by a straight line, even for
these relatively small sample sizes. The graph of S is based on a
table given by de Finetti [6].

It is also clear that we could write a different quadratic approxi-
mation to S which would be virtually indistinguishable from S in the
graph, which contains most of the important information about extreme
values for moderate sample sizes. Hence there would be some real utility
in studying the quadratic type of dne as a parametric family of dis-
tributions for which statistical procedures ought to be developed.

We shall do nothing at this time with the problems of estimating or

testing the parameters of the quadratic type of dne, on the basis of

the various kinds of data which may be available in work with extreme
order statistics. We mention only that the quadratic dt is essentially
linear in its three parameters in the region of interest and that

standard procedures for fitting a quadratic polynomial to a set of

points may be used to give estimation procedures, for instance, whose
properties would be well worth studying. We note that many of the obvious

difficulties with such procedures have already been encountered in work
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with the linear type of dne. See Gumbel, for instance, for references to
this work, and, in particular, see Gumbel's discussion of "plotting
position," but note that Gumbel is using the usual least-squares tech~
nique to fit a straight line to T_, which is rather different from our
problem of fitting a quadratic to T by least squares or other curve-
fitting methods.

We return to more theoretical questions by introducing the
subject of stability conditions, by which we mean conditions which it
might be proper to impose on a sequence Gn which is to be used to approxi-
mate the sequence Fn of extreme value distributions for some distribu-
tion function F. We note that Condition O is a rather minimal stability
condition for Gn. Of considerable historical importance is the stability
condition for Gn which was imposed by Fisher and Tippett namely that
each term of the sequence be of the same linear type. This condition,
together with Condition 0, or the apparently but not actually weaker
condition that there be a distribution functbn F, not of the unitary type,
and a sequence An of linear dt's such that Gn(An) :Gl, and Fn(An)-» Gl
in weak-star, implies that the linear type of the distribution Gn is
the linear type of (exactly) one of the following: (1) dne;
(2) [X > 0] dne(logB X) for some B > 1; (3) [X « 0] dne(~ logB(-X))+[sz]
for some B » 1; and (4) [X » 0}, representing the unitary type.
These types were given by Fisher and Tippett. A complete proof of their
uniqueness was given by Gnedenko.

The ﬁeed for stability conditions was made apparent by Walsh [4]
when he made the distinction between "Situation I" and “Situation II."
Basically, Walsh pointed out that an approximation of Qm by a distribudon
dne (A) in the linear type of dne cannot be used to approximate ﬁk when

k and m are very different, however large they may be. On the other
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hand , a distribution such as the exponential F = (1 - e-x)[X > 0]
has the property that Fn 1 (dne)n = dne (X - log n), and hence the
sequence of approximations fram the linear type of dne possesses, Or
rather can possess, a strong stability allowing one to pass from one
sample size to another under the sole condition that each sample size
be sufficiently large. The importance of being able to make such a
passage is one of the reasons for our study of the quadratic type of
dne as a source of approximations to the extreme value distributbns from
normal populations.

If K is a set of distributions and if F is a distribution func-
tion, we shall say that the sequence Fn is attracted to K in Sense 1
if there is a distribution function G such that G is a sequence in K,
a trivial condition when K is the linear or quadratic type of some dis-
tribution, and such that F' L " in Sense 0, which means simply that
1 -Fx)~ 1 - G(x) as F(x) approaches unity.

Theorem 2. Let F = dne(T) be a distribution function. For Fn to
be attracted to the linear (quadratic) type of dne in Sense 1, it is
necessary and sufficient that there be a linear (quadratic) dt A such
that T(x) - BA(x) approaches zero as F(x) approaches unity. Hence F
cannot be attracted to both the linear and the quadratic types of dne
in Sense 1. If F© is attracted to the linear or quadratic type of dne in
Sense 1, then so is Fn(A) where 2 is an arbitrary linear dt.

Corollary. Let F be a distribution function. If F is of the

X) [X » 0], then F' is attracted to the linear

linear type of (1 - e
type of dne in Sense 1. If F is of the linear type of §, then Flis
not attracted to either the linear or the quadratic type of dne in

n . .
Sense 1. If F is of the linear type of §, then F is attracted in

Sense 1 to the set of distributions which can be written in the form
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dne (T) where

2 2
T=a (X -Db) sgn(X - b) - c2 + d2 log X

For practical purposes, the disadvantages of introducing the
logarithm term and the fourth parameter d2 would seem to outweigh the
slight advantages, which are not of the same order as the advantages
gained by introducing a quadratic term. Hence, we introduce a weaker

but still significant stability condition and a corresponding sense of

. n .
attraction. We shall say that the sequence F is attracted tc a set K
of distributions in Sense 2, assuming that K contains with each member
n
G the entire sequence G , if there is a distribution G in K and a

c(n)

sequence c¢ (n) of constants such that Fn G in Sense 0.
Theorem 3. Let F be a distribution function. Then Fn cannot be

attracted in Sense 2 to both the linear and the quadratic types of dne.

If F is normal, then Fn is attracted in Sense 2 to the quadratic type of
dne and hence not to the linear type of dne.

To emphasize the distinction between attraction to the linear and
the quadratic types of dne, we consider the law of large numbers,
which was a point of departure in the pioneering work of von Mises [7]
and de Finetti. It was dudied by Gnedenko also.

A sequence Yn of random variables is said to satisfy the law
of large numbers if there is a sequence c. of constants such that
Yn - cn converges to zero in probability.

Theorem 4. Let Xn be a sequence of independent random variables
each having the distribution function F. Let Yn be the maximum of

n . R
o - ey, Xn. If F is attracted to the quadratic type of dne in

Sense 2, then the sequence Yn satisfies the law of large numbers,
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but if F' is attracted to the linear type of dne in Sense 2, then Y
does not satisfy the law of large numbers. Generally, if F = dne(T)
then Yn satisfies the law of large numbers if and only if the difference
between T(x + h) and T(x) diverges, as x increases without bound, for
every fixed h.

For purposes of comparison with Theorem 4, we state a theorem
of Gnedenko's in the notation of our Theorem 4: For there to exist a
sequence c(n) of constants such that Yn/c(n) - 1 converges to zero in
probability, in which case Gnedenko says that Yn is relatively stable,
it is sufficient that one or both of the following conditions hold:
Either there is a finite point x with F(x) = 1, or F' is attracted to
the linear type of dne in Sense 0. On the other hand, Gnedenko's
Theorem 2 and Gnedenko's Theorem 4 may be compared to show that, if F
is attracted to the linear type of [X > O]dne(logB X) for some B > 1,
then Yn is not relatively stable.

The bulk of the present paper has thus far been aimed at demon-
strating properties, both practical and theoretical, possessed by the
quadratic type of dne which seem to justify it as an object for further
study, particulary with regard to the very complex problems of inference.
In concluding this argument, we wish to make some remarks about the
general idea of using as the asymptotic form of extreme value distri-
butions a distribution containing parameters other than location and
scale parameters, i.e. using approximations from a parametric family
other than a linear type.

In using parametric families other than linear types, we are
making a small break with the elegant tradition of such works as that of

Gnedenko. Our main reason for doing so is the well-known fact that, for
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a normal population, enormous sample sizes are required before the
distribution of the largest value can be satisfactorily approximated
by a distribution of the linear type of dne. The graph in Figure 1
illustrates this fact clearly enough, but for a more exact description
of the discreprancy, one can refer to Dronkers [8], who alsé gives a
variety of asymptotic expressions for the densities of the extreme
value distributions from normal and other populations with smooth density
functions. It is hoped that this present paper may complement Dronker's
paper by giving asymptotic forms of the distribution function rather
than the density function, thus avoiding most of Dronker's regularity
conditions, and by concentrating on theoretical 1limit theorems which
are similar to those of Gnedenko et al. for linear types.

Thus the theory of linear types gives poor approximatins in the
case of the normal distribution. More generally, the theory is some-
what restrictive because of the paucity of linear types which attract
any sequence G" of extreme value distributions.

Von Mises was apparently the first to give an example of a dis-
tribution function F = dne(T) for which Fn is not attracted to any of
the linear types, even in Sense 0., His example can be specified by
letting T = X + % sin X. One verifies by a glance at the graph of T,
with its regular oscillation about the equiangular line, that T - log n
is asymptotically equivalent in Sense 0' to no sequence of linear dt's
or, still less, to a seqguence of dt's of one of the logarithmic forms
x> 0] log, X or [X< 0] (- logy (-X)).

If von Mises' example seems far-fetched, consider the case of a

Poisson distribution
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- - -]
F=e 1Zk=0 (1/k!) [k € X1 = dne(T),

which fails to be attracted in Sense 0 to the linear (or quadratic)
type of dne for exactly the same reason that von Mises' example fails
to be so attracted, namely because of a "wave" in T which is in this
case solely due to the fact that T increases only at regqularly spaced
points, namely at the integers.

Calculations given in the appendix show that, as x approaches

infinity through the integers only, T(x) = S(x) + o(l), where
S =1+ log 2rx + X(log X - 1).

Theorem 5. Let F be the Poisson distributbn with mean 1 as
above, and let S be the dt defined by the above equation. Then F is
not attracted even in Sense 0 to either the linear or the quadratic
type of dne, but the difference between F and (dne(S))n approaches
zero uniformly on the positive integers. Moreover, (dne(S))n is attracted
in Sense 0 to the linear (or quadratic) type of dne, but it is attracted
to neither of these in Sense 1 or even in Sense 2. However,
dne (S - log n) = (dne(S))n is attracted in Sense 2 to the family of
all positive powers of the distribution function (dne (X)) exp X. Even
if the Poisson distribution F is made continuous by convolving it with
the uniform distribution on the interval (O, 1), the sequence of extreme
value distributions (powers) of the resulting distribution function is
still not attracted in Sense 0 to the linear type of dne.

One further point needs to be made in favor of the study of
families other than linear types. Gnedenko and others, in their theory

- of linear types, have underscored analogies betweer the asymptotic theory
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of extreme values and the asymptotic theory of sums of random
variables. Recently, however, Walsh [9] pointed out an essential
difference: In the theory of extreme values, every distribution is,
in effect, infinitely divisible. In fact, if m and k are positive
integers with k € m and if G is a distribution function then
there exists a distribution function ¥ such that G is the distribu-
tion of the k-th largest value in a sample of size m from F.
This extra freedom is reflected in the variety of limit theorems
which can be obtained.

We consider now weakened forms of the stability conditions
underlying attraction in Sense 1 and attraction in Sense 2.
We recall that in the definitions of these senses of attraction
we referred to the existence of an approximating sequence Gn in
which the entire sequence was already determined by the first
term, in the case of attraction in Sense 1, and determined except
for one simple parameter, representing the appropriate vertical
shift of dne—(Gn), in the case of attraction in Sense 2. In prac-
tice, however, the sequence of approximations would usually be
based on data whose information about the parameters increased with
sample size. One might wish to impose upon the actual sequence of
approximating distribution functions a stability condition which
asymptotically represents the conditions underlying attraction in
one of the two stronger senses which have been considered. The
conditions that we want should guarantee that one can pass from
one sample size to another provided that both are large but without
the restriction, which would be needed in the general situation,

that their ratio be close to unity.
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Let G = dne(An) be a sequence of distribution functions. We are
interested in two cases, the terms of An being linear in the first
case and quadratic in the second case., However, we shall at present
assume only that the terms of An are continuous and strictly increasing
and that they fix the ideal points & .

We shall say that the sequence Gn satisfies Condition 1 if
Gi/k - Gm converges uniformly to zero as m and k tend to infinity
independently except that k must remain larger than m. Thus in view of
Lemma 1, in which generalized sequences could be used instead of sequences,
Condition 1 says that Ak(A;x) - log k+ logm - X pointwise as m, k > =
with k > m. In particular, we may let xn = A;(O) and observe that, for
any h > 0, if m is sufficiently large, then U(xm) € logm+ h and also
L(xm) > log m - h, where, for any extended real number x, U(x) and L(x)
are the limits superior and inferior, respectively, of Ak(x) + log k
as Kk *w. It is clear that L is a non-decreasing function and hence
that there is a distribution function F, which could be taken to agree
with dne (L) at every point of continuity, such that Gn * Fn in Sense O.
Thus Gn satisfies Condition O.

Now let us assume that each term of An is a linear dt. We continue
to assume that Gn satisfies Condition 1. We want to show that there is
a linear 4t A such that An % A - log n in Sense 0 and hence Gn is
attracted in Sense 1 to the linear type of dne. Let Bn = An + logn =
= an + cn. One can find x and y such that -«w <L(x) € U(x) < L(y) € U(y) <
and this implies that the sequences bn and c. eventually lie in certain
finite intervale and hence possess finite limit points b 7 O and ¢ respec-
tively, which are easily seen to be unique. Thus bn-» b and cn-a c,
whence Bn-o A = bX + ¢ and An * A - log n in Sense 0',

Now we consider the case that the terms of An are quadratic dt's.
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et B A -logn=a (X-Db) sgn(X ~b) -~ c . Now there are two

n n n n n n
cases to consider. First suppose that the sequence bn is bounded. As in
the linear case, this will force the sequences ai and ci to be bounded
also, and, as in the linear case, the sequences bn' ai, ci will converge

2

to finite numbers b, a2 # 0, ¢ respectively. Then Gn will be attracted
to the quadratic type of dne in Sense 1.

On the other hand, let us assume that the sequence bn is not
bounded. We shall show that Gn is attracted in Sense 1 to the linear
type of dne. First suppose that there is a subsequence N of the positive
integers such that bN diverges monotonically to - w. We shall show that
for each real number u, there is a linear dt Cu such that, for 0 < x < u,
L{x) € Cu(x) € U(x). Thus for a properly chosen sequence u(n) of real
numbers, C

u(n) (n)

whence Gn is attracted in Sense 1 to the linear type of dne by what was

- logn= An in Sense 0 and Cu satisfies Condition 1,
just shown. Let Cu be the linear dt which agrees with L at 0 and at u.
For large m, the éecond derivative of Bm is positive for arguments
between 0 and u. Hence Cu(x)'> Bm(x) - o(m) when 0 €« x < uand m - .
This proves that Cu(x) > L(x) for 0 < x <« u. On the other hand, suppose
that there is a value x such that 0 < x ¢ u and such that Cu(x) 2 Ux).
This puts a lower bound on the amount by which Bm "bende" in the interval
(0, u), for large m, and thus puts a lower bound on bm, which is contrary
to hypothesis.

Secondly, suppose that there is a subsequence N of the positive
integers such that bN diverges monotonically to + e, This case is merely
a reflection of the first case and may be treated similarly. This con-

cludes our discussion of Condition 1 and its relation to attraction in

Sense 1.
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One can define a weaker stability condition which is related to
attraction in Sense 2 just as Condition 1 is related to attraction in
Sense 1. We say that the sequence Gn satisfies Condition 2 if it
satisfies Condition 1 and if there is a sequence c(n) of constants such

i(k)/c(m) * Gm in Sense 0 ( i.e. the difference converges uniformly

to zero) as m, k @a with m < k. The analysis of Condition 2 parallels

that G

that of Condition 1, and we may summarize these results in a final
theorem,

Theorem 6. If Gn is a sequence of distributions from the linear
type of dne which satisfies Condition 1 (respectively Condition 2), then
Gn is attracted to the linear type of dne in Sense 1 (respectively Sense 2).
If Gn is a sequence of distributions from the quadratic type of dne which
satisfies Condition 1 (respectively Condition 2), then Gn is attracted to
the quadratic type of dne in Sense 1 (respectively Sense 2) if the
sequence bn is bounded, bn being the point of inflection of dne-(Gn),
and Gn is attracted to the linear type of dne in Sense 1 (respectively

Sense 2) otherwise.



APPENDIX

PROOFS OF THEOREMS

Proof of Lemma 1. To prove Lemma 1, let F be a distribution

function for which F" is attracted to the linear type of dne. We shall
show that Fn(An(x)) -» dne (x) , where An is a sequence of linear dt's for
which F'* dne (A;) in Sense 0. Let h > 0 and let x be a real number.
Let m be sufficiently large that IFn - dne (A;)l < h. Then, in par-
ticular, an(An(x)) ~ dne (A;(An(x)))l < h, Since A;(An(x)) = x, we have
completed the proof.

Conversely, suppose that An is a sequence of linear dt's such that
Gn = Fn(An) converges to dne pointwise. Let h > 0. Find a finite

increasing sequence x e+« 4 X , with x = - XO = &, such that

o’ ° o+l mt1

dne (x ) - dne(xi) <hfori=0, .., mn Let x be any real number.

i+l

. )+ <
i1 Then dne(x) < dne (xi+1) < dne (xl) h

Take i so that xig X € %
< Gk(xi) + 2h ¢ Gk(x) + 2h. Similarly dne(x) < Gk(x) - 2h. Thus

k - . - -
IGk - dne| < 2h, and so |F' - dne(Ak)l IGk(Ak) - dne(Ak)l < 2h. Thus
dne (A;) 2 ¥ in Sense O.

Proof of Lemma 2. First suppose that the condition holds for

each real number z, for each h > 0, and for m sufficiently large.

Let k¥ > 0. Choose a finite, strictly increasing sequence zo, « o o ¢ zM+l

such that Zpe1 = - 24

i=o0, ..., M, Take m sufficiently large that the condition holds

=w and such that dne (Zi+1) - dne (zi) < k for

=
.
ct
=
N
1}

. . and h = % min{z, -~ z. z -z, where
4 . [ ZM { i zl)'

1’ i-1" “it1

i=1, ..., M. For any real x, one can find j§ among 0, . . . , M

22
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to Gnedenko's lemma stating that the law of large numbers holds for Yn
if and only if (1 - F(x + h))/(1l - F(x)) @ 0 as x » o, for every fixed
real number h.

Proof of Theorem 5. If F = dne(T) is the Poisson distribution

with mean 1, then

1-Fm-D =e ) (k)

=31 ® [x]
on? (1 + x=1 (1/(n + k) 1)

=31

= et (1 + o(1)).

]

Thus T(n - 1) 1+ log{n!) + o(l) = T(n) + o(l). By Sterling's

1+ log V2r+ (n+ % logn - n+ o(l) = S(n) + o(l).

formula, T(n)
Since S(n) - S{n -~ 0) = =, there can be no attraction of Fn to the
linear type of dne, even in Sense O.

Looking now at S = X log X + A(X), we see that A(X) rises much

more slowly than X log X when S is large and hence that
S - logn®* X log X - log n+ log A(xn)

in Sense 0', where xn log xn = log n. Thus (dne(S))n % (dne(X log X))C(n)

in Sense 0, where c(n) = n/A(xn) .

Note on Theorem 6. The proof of this theorem precedes its state-

ment in the text, beginning on page 19,
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