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Abstract

Exact calculations of model posterior probabilities or related quantities are often

infeasible due to the analytical intractability of predictive densities. Here new approxi-

mations to obtain predictive densities are proposed and contrasted with those based on

the Laplace method. The attractive features of the proposed methods include ease of

implementation, computational efficiency, and accuracy over a wide range of hyperpa-

rameters. In the context of variable selection in GLMs, they are employed to facilitate

the implementation of a Fully Bayes approach under three classes of informative priors on

regression coefficients, namely, normal, conjugate and power priors. Metropolis-Hastings

MCMC algorithms are used for stochastically searching high posterior models. An illus-

trative application demonstrates the effectiveness of our selection procedure.
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1 Introduction

Bayesian applications in a number of statistical problems need to be able to evaluate marginal

probability distributions of data, often called predictive distributions, or their ratios known as

Bayes factors for a set of competing models, which are often analytically intractable. Calcula-

tions of such quantities have been addressed by several authors, including sampling or Monte

Carlo methods (e.g., Gelfand & Smith 1990, Verdinelli & Wasserman 1995, Han & Carlin

2001) and analytic approximations based on the Laplace method (e.g., Tierney & Kadane

1986, Tierney et al. 1989, Gelfand & Dey 1994, Raftery 1996). The first part of this paper

presents new methods to approximate these predictive distributions, where we also discuss

and compare their theoretical properties with those of the Laplace method.

The other major part of the paper is devoted to the problem of Bayesian variable selection

in Generalized Linear Models (GLMs). There has been considerable recent work in this field,

for example, Carlin et al. (1992), George et al. (1994), Raftery (1996), Bedrick et al. (1997),

Kuo & Mallick (1998), Clyde & Parmigiani (1998), Clyde (1999), Chen et al. (1999), Ibrahim

et al. (2000), Meyer & Laud (2002), Ntzoufras et al. (2003), Wang & George (2004), etc. Here,

we consider a Fully Bayes approach under a hierarchical mixture setup for model uncertainty,

where the proposed approximation methods are used to facilitate the computation of posterior

probabilities as well as stochastic search of high posterior models. In particular, we review

and discuss informative prior classes for regression coefficients and obtain a unified framework

to take into account the uncertainty of unknown hyperparameters.

The remainder of the paper is organized as follows. In Section 2, we introduce new ana-

lytic methods for approximating predictive distributions. Section 3 describes every necessary

“brick” of a hierarchical Bayesian formulation for GLMs. We introduce settings and notations,

address prior and hyperprior specification, derive analytical approximations for the marginal

densities of the data, and propose MCMC sampling schemes for posterior computation and

stochastic search. Section 4 presents two examples, one providing a simulation evaluation and

comparison of various approximations, and the other illustrating an application of our FB

approach of variable selection. Section 5 concludes with a discussion.
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2 Methods for Approximating Predictive Distributions

2.1 The Methods with Normal Priors

We begin with an integral for a general predictive distribution based on normal priors,

I =

∫
Ln(β)π(β)dβ (2.1)

where β is a parameter vector with a domain Ω being Rm, Ln(β) is a likelihood function

based on n observations, and π(β) is a prior normal density on β with a mean vector β0 and

a covariance matrix λΣ0, λ > 0. The hyperparameter λ quantifies the strength of subjective

prior belief in β0. When λ = 0, π reduces to a point mass at β0. When λ → +∞, π reduces

to a flat prior for β but still integrates to 1.

Theorem 2.1. Suppose {ln = log Ln : n = 1, 2, . . .} is a Laplace-regular sequence of log-

likelihood functions, having strict local maxima {β̂n : n = 1, 2, . . .} and positive definite ma-

trices {Σn = [−l
′′
n(β̂n)]−1 : n = 1, 2, . . .}. Let

Ĩ = Ln(β̂n) ·
∣∣λΣ0Σ

−1
n + I

∣∣− 1
2 exp

{
−(β̂n − β0)

T (λΣ0 + Σn)−1(β̂n − β0)

2

}
(2.2)

and I is defined in (2.1) under the normal prior. Then Ĩ = I(1 + O(n−1)).

Laplace regularity has been discussed in depth in Kass et al. (1990), where they pointed

out it is straightforward to verify Laplace regularity for a wide range of situations, such as

exponential and curved exponential families, certain mixture models, etc. By assuming this

for {ln}, we know from Lemma 2 in Kass et al. (1990), ∃ c > 0 and δ > 0, such that for all

sufficient large n, ∫
Ω−Bδ(β̂n)

exp{ln(β)− ln(β̂n)}π(β)dβ < exp{−nc} (2.3)

where Bδ(β̂n) denotes the open ball of radius δ centered at β̂n. This reduces our consideration

of I to the integral of Ln(β)π(β) over a neighborhood Bδ(β̂n) because (2.3) assures that I

depends only on the behaviour of Ln near its maximum when n is large. Then Ĩ can be

obtained by first approximating ln(β) with a second-order Taylor series expanded at β̂n,

say l̂n(β), over the region Bδ(β̂n), then inserting it in (2.1) and integrating out β from the
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approximate integrand exp{l̂(β)}π(β). As a result, Ĩ is derived by taking advantage of the

normality assumed for π(β). A full proof of the theorem is given in Appendix A.

Under the conditions of Theorem 2.1, the well-known Laplace’s method is also legitimate

for the integral I. The resulting approximation to (2.1) is not unique and depends on how

one defines the Laplace-regular sequence {ln}. Defining ln = log Ln yields a standard-form

Laplace approximation, ĨL = I(1 + O(n−1)), namely,

ĨL = Ln(β̂n) · λ−
m
2

∣∣Σ0Σ
−1
n

∣∣− 1
2 exp

{
−(β̂n − β0)

TΣ−1
0 (β̂n − β0)

2λ

}
. (2.4)

Contrasting Ĩ with ĨL yields a couple of interesting results. Firstly, if Ln(β) is proportional

to a normal pdf for β, then the approximation Ĩ in (2.2) is exact, namely, Ĩ = I. This can be

seen by noting that in the normal case, the second-order approximation to the log-likelihood

is exactly itself. However, it is easy to verify ĨL 6= I in this case. Secondly, for large λ, Ĩ ≈ ĨL.

This follows directly from limλ→+∞ Ĩ/ĨL = 1. But for small λ, Ĩ may differ substantially from

ĨL. For ĨL, we have

lim
λ→0

ĨL =

 0 if β0 6= β̂n

+∞ if β0 = β̂n

; (2.5)

for Ĩ, we have

lim
λ→0

Ĩ = Ln(β̂n) · exp

{
−(β̂n − β0)

TΣ−1
n (β̂n − β0)

2

}
. (2.6)

Based on these limits, it appears that when λ is small, Ĩ is better than ĨL for approximating

I. For example, the value of I when λ = 0 is Ln(β0) since β is fixed at β0 in this case.

Comparing this with (2.6), we see that

lim
n→+∞

lim
λ→0

Ĩ = I(λ = 0) (2.7)

whenever β̂n → β0 as n → +∞, which occurs with probability 1 under mild regularity

conditions for many common-used models including GLMs if β̂n is the MLE . This limiting

equality does not hold for ĨL.

We can also consider Laplace’s method in a fully exponential form (Tierney & Kadane,

1986; Tierney et al., 1989) by defining ln = log Ln + log π. Suppose {ln = log Ln + log π :

n = 1, 2, . . .} have strict local maxima {β̃n : n = 1, 2, . . .} and positive definite matrices
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{Ξn = [−l
′′
n(β̃n)]−1 : n = 1, 2, . . .}, then we have the approximation

ĨLF = Ln(β̃n) ·
∣∣λΣ0Ξ

−1
n + I

∣∣− 1
2 exp

{
−(β̃n − β0)

TΣ−1
0 (β̃n − β0)

2λ

}
(2.8)

and ĨLF = I(1+O(n−1)). Like Ĩ, if Ln(β) is proportional to a normal pdf for β, ĨLF is exact.

But unfortunately, the limiting equality (2.7) does not hold for ĨLF because for each n,

lim
λ→0

ĨLF =

 0 if β0 6= β̂n

Ln(β0) if β0 = β̂n

. (2.9)

It appears that Ĩ is better than either ĨL or ĨLF as λ approaches 0, which has been confirmed

in our limited experiments, as will be discussed in Section 4.1. We should note the limiting

behaviors discussed above may be useful under situations where we are interested in integrals

(2.1) for a wide range of λ, such as a sensitivity analysis on λ or a Fully Bayes (FB) approach

that entails choosing a prior on λ and integrating it out of I over the support (0, +∞).

2.2 The Methods with Non-normal Priors

We proceed to discuss methods for approximating the integral in (2.1) with a non-normal

prior. Here, the domain Ω is an open subset of Rm. A straightforward extension of Theorem

2.1 leads to the following result.

Corollary 2.1. Suppose {ln = log Ln : n = 1, 2, . . .} satisfies the same condition in Theorem

2.1; π(β) is a four-time continuous differentiable nonnormal prior on β with the mode β0;

and Σ0 = [−λ(log π)′′]−1
∣∣
β=β0

is positive definite, λ > 0. Let

ĨNN = Ĩ + ĨNN
L −ĨL (2.10)

where Ĩ is given in (2.2), ĨL is given in (2.4) and ĨNN
L = (2π)

m
2 |Σn|

1
2 Ln(β̂n) · π(β̂n); then

ĨNN = I(1 + O(n−1)).

Proof. Let πN(β) denote the pdf of N(β0, λΣ0). Note that we can write

I =

∫
Ln(β)πN(β)dβ +

∫
Ln(β)[π(β)− πN(β)]dβ. (2.11)

Applying Theorem 2.1 to the first integral at the right-hand side of (2.11) and applying the

standard-form Laplace approximation to the second integral yields (2.10) immediately.
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One can treat ĨNN as an improved Laplace approximation to I under the condition π(β)

can be approximated by πN(β), which is often satisfied when the prior is constructed from

the likelihood or posterior of β based on historical or imaginary data with valid asymptotic

normality. This is because in (2.10), ĨNN
L is indeed the standard-form Laplace approximation

to I; the remaining term Ĩ − ĨL provides a correction factor, using the difference between

the Laplace’s method and Theorem 2.1 based on the normality of πN(β). This correction is

useful when λ is small or when the prior sample size n0 (i.e., the size of historical data) is

close to or even larger than n. Under this case, the standard-form Laplace approximation

may not work well as Ln does not dominate π; ĨNN can achieve better performance because

π − πN is dominated by Ln when π is well approximated by πN . On the other hand, if

this approximate normality does not hold for π, no significant improvement can be achieved

through the correction so ĨNN would be similar to the standard-form Laplace approximation.

Like Ĩ for normal priors, an advantage of ĨNN for nonnormal priors over a Laplace approx-

imation to I is its nice limiting property. For example, when λ equals 0, π(β) reduces to a

point mass at its mode β0 so that I(λ = 0) = Ln(β0); in this case, the Laplace approximation

to the second integral in (2.11) is zero because π(β) = πN(β) ; this leads to ĨNN = Ĩ and

the equality limn→+∞ limλ→0 ĨNN = I(λ = 0) follows directly from (2.7). We also note that if

β̂n is within a small neighborhood of β0, then ĨNN
L ≈ ĨL. This occurs sometimes in practice,

for example, when the information contained in the current data agrees well with that in the

historical data where the prior of β is from. In this case, I can be approximated by Ĩ only.

3 Application to Bayes Variable Selection in GLMs

3.1 Basic Formulation

Suppose Y = (y1, y2, . . . , yn)T are independent observations and follow an exponential family

distribution

p (Y|θ, φ) = exp

{
θWY − b(θ)WJ

φ
+ c(Y, φ)J

}
(3.1)

indexed by the dispersion parameter φ and the unknown canonical parameters θ = (θ1, θ2, · · · θn)

that may depend on p observed covariates X1,..., Xp. The functions b(θ) = (b(θ1), b(θ2), · · · , b(θn))

and c(Y, φ) = (c(y1, φ, ), c(y2, φ), · · · , c(yn, φ)), assumed to be known, jointly determine the
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type of the distribution. The n× n matrix W is diagonal with its ith diagonal element being

wi, a known weight for the ith observation. J is the n× 1 vector of all 1’s.

To fix notation, let γ = 1, 2, . . . , 2p index all subsets of the covariates and let qγ be the size

of the γth subset. The problem here is to select the “best” model of the form g(E(Y)) = Xγβγ,

where g is a known link function that by definition is monotonic and differentiable, Xγ is a

n × (qγ + 1) covariate matrix with 1’s in the first column and the γth subset of Xj’s in the

remaining columns, and βγ is a (qγ + 1)× 1 vector of regression coefficients. Based on (3.1),

the γth model for Y in (3.5) may be expressed as

p (Y|γ,βγ, φ) = exp

{
θ(Xγβγ)WY − b(θ(Xγβγ))WJ

φ
+ c(Y, φ)J

}
(3.2)

Here, we denote θ(Xγβγ) explicitly for θ because θ = b′−1 ◦ g−1(Xγβγ) holds under model γ,

where ◦ denotes function composition.

A full Bayesian solution to variable selection uncertainty for the GLM setup proceeds as

follows. Consider prior formulations of the form

π(γ,βγ,ψ1,ψ2|φ) = π(γ|ψ1)π(βγ|γ,ψ2, φ)π(ψ1)π(ψ2) (3.3)

where ψ1 and ψ2 are unknown hyperparameters indexing the priors on γ and βγ, respectively;

and π(ψ1) and π(ψ2) are the the hyperprior distributions on ψ1 and ψ2, respectively. Such

prior distributions lead to posterior distributions over γ of the form:

π(γ|Y, φ) ∝ p (Y, γ|φ)

= π(γ)

∫
p (Y|γ,ψ2, φ)π(ψ2)dψ2 (3.4)

where π(γ) =
∫

π(γ|ψ1)π(ψ1)dψ1 is the unconditional prior density of γ and

p (Y|γ,ψ2, φ) =

∫
p (Y|γ,βγ, φ)π(βγ|γ,ψ2, φ)dβγ (3.5)

is the predictive distribution for model γ given ψ2 and φ. Note in (3.3) - (3.5), we treat φ

as a constant instead of a parameter. This indeed occurs in Poisson, Binomial and Negative

Binomial GLMs, where φ is equal to 1. For other members within the exponential family

such as Normal, Gamma and Inverse Gaussian GLMs, φ is unknown so we might further

consider a prior π(φ) on φ to formally account for its uncertainty and obtain π(γ|Y) from
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π(γ|Y) ∝
∫

p (Y, γ|φ) π(φ) dφ; or we might proceed as before but with φ replaced by an

estimate ( Raftery 1996 and Wang & George 2004).

In what follows, we demonstrate that the asymptotic methods proposed in the previous

section can facilitate the implementation of the above fully Bayes framework for various prior

choices of βγ. We believe these methods are preferable here to Laplace methods (Raftery 1996

and Gelfand & Dey 1994 ) on grounds of the behaviors at small λ and ease of implementation.

3.2 Prior Distributions on Regression Coefficients

Choices of prior forms for model-specific parameters βγ have been fruitfully explored by

existing literature. Here we restrict attention to informative priors only. Our hope is to

achieve some unification of the informative priors on βγ where we base our discussions on.

There are in general three classes of informative priors on βγ that we are aware of, normal,

conjugate and power priors. Before we proceed to discuss these priors, for notation simplicity,

we denote the whole data of the current analysis as D = (n,Y,X,W) and the subset data for

model γ as Dγ = (n,Y,Xγ,W), denote the likelihood (3.2) as L(βγ, φ|Y,Xγ,W) or simply

L(βγ, φ|Dγ), and denote the Hessian matrix of L(βγ, 1|Dγ) as H(βγ|Dγ).

1. The normal prior denoted πN has been widely used for GLMs (Dellaportas & Smith

1993 and Meyer & Laud 2002). Here we consider the general form

βγ|γ, φ, λN ∼ N(mγ, λ
NφUγ) for λN > 0 (3.6)

where λN is a hyperparameter reflecting the importance given to the prior mean mγ and

Uγ is a multiple of the prior covariance matrix of βγ.

2. For the conjugate prior denoted πC , we follow Meyer & Laud (2002) and look it as the

likelihood for parameters (βγ, λ
Cφ) with DC

γ = (n,µ0,Xγ,W) as the data:

πC(βγ|γ, φ, λC) ∝ L(βγ, λ
Cφ|DC

γ ) for λC > 0 (3.7)

where µ0 is the prior guess for Y, and λC is a hyperparameter that reflects the quality

of the information conveyed by µ0. The theoretical properties of this prior are discussed

in Chen & Ibrahim (2003).
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3. The power prior denoted πP , proposed in Chen et al. (2000a) with its optimality prop-

erties described in Ibrahim et al. (2003), is based on historical data sets containing the

same response and covariates as the current study. Without loss of generality, we restrict

our attention to a single historical data set DP = (n0,Y0,X0,W0). Then πP can be

expressed as

πP (βγ|γ, φ, λP ) ∝ L1/λP

(βγ, φ|DP
γ ) ∝ L(βγ, λ

P φ|DP
γ ) for λP > 0 (3.8)

where λP is a hyperparameter weighing the likelihood of the historical data relative to

that of the current study. This meaningful prior provides a natural route to quantify

historical data and incorporate them into the current study.

Although seemingly different in forms, the three classes of priors on βγ are closely related via

their large sample properties. The conjugate prior πC is asymptotically normal as the sample

size n →∞:

πC(βγ|γ, φ, λC) → N(β̂
C

0γ, λ
CφV̂C

0γ) (3.9)

where β̂
C

0γ is the MLE of βγ|γ using µ0 rather than Y as the response vector; and V̂C
0γ is minus

the inverse of H(βγ|DC
γ ), the Hessian matrix of the likelihood L(βγ, 1|µ0,Xγ,W), evaluated

at β̂
C

0γ. This result can be obtained from Theorem 2.1 in Chen (1985) under some mild

normality conditions. Similarly, the power prior πP is asymptotically normal as the historical

sample size n0 →∞:

πP (βγ|γ, φ, λP ) → N(β̂
P

0γ, λ
P φV̂P

0γ) (3.10)

where β̂
P

0γ is the MLE of βγ based on the historical data DP
γ , and V̂P

0γ is minus the inverse of

H(βγ|DP
γ ), evaluated at β̂

P

0γ.

Comparing the three normal distributions given by (3.6) , (3.9) and (3.10) yields insightful

findings. Firstly, the hyperparameters λN , λC and λP essentially play the same role in the

three classes of priors, weighing the impact of the prior information relative to the current

data. This provides a formal justification that a unified hyperprior can be chosen for any λ

no matter which prior class it is from. From now on, we ignore the superscripts of λ’s and

simply use λ to denote any of λN , λC and λP . Secondly, the conjugate and power priors

are asymptotically special cases of the normal prior. (3.9) and (3.10) indeed sheds light on
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choosing mγ and Uγ in the normal prior (3.6) when real and meaningful prior information

is available. A reasonable choice for mγ is β̂
P

0γ and for Uγ is V̂P
0γ when historical data exist;

when the prior guess µ0 for Y can be obtained from a prior prediction based on theoretical

models, expert opinions etc., a reasonable choice for mγ is β̂
C

0γ and for Uγ is V̂C
0γ, or their

surrogates requiring less computing efforts (Laud & Ibrahim, 1996 and Meyer & Laud, 2002).

Under the situation where strong prior information does not exist, a natural default choice

for mγ is (β̄0, 0, . . . , 0)T (Chipman et al., 2003 ), where β̄0 is the MLE of β0 under the null

model, namely g(Ȳ ) for any link function g or specifically b
′−1(Ȳ ) for a canonical link . A

simple choice for Uγ in this case is the identity or diagonal matrix that assumes the apriori

independence thus completely ignores the correlation structure among βγi’s. A more realistic

choice of Uγ is minus the inverse of H(βγ|Dγ), evaluated at β̂γ (i.e., the MLE of βγ based on

the current data Dγ). This choice, using the correlation structure estimated from the data,

leads to great analytical tractability of model posteriors under the fully Bayes framework

described in Section 3.1, as shown in Wang & George (2004).

The prior specification for βγ is completed by choosing a hyperprior distribution for λ. For

posterior probabilities, Bayes factors or related quantities to be well defined in the context of

variable selection, a proper joint prior for βγ and λ, i.e., π(βγ, λ|γ, φ), is desirable. Under our

prior structure (3.3), it is easy to verify such a joint prior is proper when both π(βγ|γ, φ, λ)

and π(λ) are proper. The propriety of the conjugate prior (3.7) and the power prior (3.8)

on βγ has been established for GLMs under some very general conditions in Meyer & Laud

(2002) and Chen et al. (2000a). In addition, a natural proper prior for λ is an inverse gamma

IG(a, b), which leads to a proper joint prior under the conjugate or power priors of the form

π(βγ, λ|γ, φ) ∝
L(βγ, λφ|D0γ)∫

L(βγ, λφ|D0γ)dβγ

λ−(a+1) exp(− b

λ
) (3.11)

whereD0 isDC for the conjugate prior and isDP for the power prior. Note here the normalizing

part
∫

L(βγ, λφ|D0γ)dβγ of πC or πP is a function of λ and φ and varies from model to

model, so cannot be ignored from the the joint prior (3.11) when model uncertainty is under

consideration. This makes (3.11) quite different from those considered in Chen & Ibrahim

(2003) and Chen et al. (2000a) that ignored the normalizing part directly.

In practice, the range of all plausible values of λ can be used to guide the choice of

the hyperprior parameters values for (a, b). Unless the prior information on βγ is extremely
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important, as will be rarely the case, λ is often set to be ≥ 1, assigning less or equal importance

to the prior compared to the data. Also, Meyer & Laud (2002) suggested a guide value for

λ is n/nπ, where nπ is a sample size judged to be equivalent to the information in the prior.

Based on this, it is reasonable to expect that λ will be smaller than n. Using these values as

guides, a and b would be chosen so that the prior on λ assigns large probability to the interval

(1, n) and meanwhile allows for a reasonable spread within the interval. In any case, it may

be appropriate to explore the consequences of several different hyperprior choices.

3.3 Elicitation of Prior Model Probabilities

The prior on γ often takes the form of prior evidence for the inclusion of a variable rather

than an individual model (Raftery & Richardson, 1993, Clyde, 1999, etc.), namely

π(γ|ω1, ω2, . . . , ωp) =

p∏
i=1

ωγi

i (1− ωi)
1−γi (3.12)

where ωi is the prior probability that Xi is present in a model and γi is the indicator of

whether Xi is present in the γth model. Under conjugate hyperpriors ωi ∼ beta(αi, βi), the

unconditional prior distribution of γ is then

π(γ) ∝
p∏

i=1

{Γ(γi + αi)Γ(1− γi + βi)/Γ(1 + αi + βi)} . (3.13)

In a practical situation, there may be subjective prior information about the importance

of a covariate available from previous studies or expert systems. This can easily be taken

into account by adjusting the choice of (αi, βi) for each ωi in the prior (3.13), even if such

information is verbal and vague. Another sensible prior on γ, proposed in Chen et al. (1999)

and Ibrahim et al. (2000), is the posterior probability of model γ based on historical data or its

generalization. This allows for objective inference and efficient use of historical information.

However, it requires extensive computing and also is limited by the existence and quality of

historical data. In this paper, we consider the prior (3.13) only.

3.4 Approximate Predictive Distributions

We proceed to derive approximate representations, using the asymptotic methods proposed in

Section 2, for the marginal likelihoods or the predictive distributions in (3.5) with ψ2 replaced
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by λ, based on the three classes of meaningful priors on βγ. As will be shown next, the analytic

asymptotics we present have advantages of conceptual simplicity and ease of implementation

for users with standard computing resources.

A direct application of Theorem 2.1 yields an approximation for p (Y|γ, λ, φ) based on the

normal prior (3.6), namely

p̃(Y|γ, λ, φ) = L(β̂γ, φ|Dγ)
∣∣∣λUγV̂

−1
γ + I

∣∣∣− 1
2
exp

{
− (β̂γ−mγ)T (λUγ+V̂γ)−1(β̂γ−mγ)

2φ

}
(3.14)

where β̂γ is the MLE of βγ using the current dataDγ = (n,Y,Xγ,W), and V̂γ = −H−1(β̂γ|Dγ).

When Y is normally distributed so that the canonical link GLM is the familiar normal linear

model, this approximation is exact, i.e. p̃ (Y|γ, λ, φ) = p (Y|γ, λ, φ). Another attractive fea-

ture of (3.14) is that, if Uγ is set to V̂γ, it can yield great analytical tractability when further

integrating λ out . This can be seen from

p̃(Y|γ, λ, φ) = L(β̂γ, φ|Dγ)(λ + 1)−
qγ+1

2 exp
{
− (β̂γ−mγ)T V̂−1

γ (β̂γ−mγ)

2φ(λ+1)

}
that is conjugate to a prior of λ in form of 1/(λ + 1) ∼ Truncated Gamma(a, b). As shown

in Wang & George (2004), the resulting model posterior has computational simplicity and

adaptive performance in selection.

Corollary 2.1 can be employed to approximate p(Y|γ, λ, φ) in (3.5) with the conjugate

or power prior of βγ. As we only know π(βγ|γ, φ, λ) up to a normalizing constant, we first

calculate the constant from the Laplace method, namely∫
L(βγ, λφ|D0γ)dβγ ≈ (2π)

qγ+1

2

∣∣∣λφV̂0γ

∣∣∣ 1
2 · L(β̂0γ, λφ|D0γ) (3.15)

where D0 is defined in (3.11); for the conjugate prior (3.7), V̂0γ and β̂0γ are V̂C
0γ and β̂

C

0γ

in (3.9), respectively; for the power prior (3.8), V̂0γ and β̂0γ are V̂P
0γ and β̂

P

0γ in (3.10),

respectively. Then Corollary 2.1 yields

p̃(Y|γ, λ, φ) = L(β̂γ, φ|Dγ) ·
{∣∣∣λV̂0γV̂

−1
γ + I

∣∣∣− 1
2
exp

{
− (β̂γ−β̂0γ)T (λV̂0γ+V̂γ)−1(β̂γ−β̂0γ)

2φ

}
+∣∣∣λV̂0γV̂

−1
γ

∣∣∣− 1
2

[
L(β̂γ ,λφ|D0γ)

L(β̂0γ ,λφ|D0γ)
− exp

{
− (β̂γ−β̂0γ)T V̂−1

0γ (β̂γ−β̂0γ)

2λφ

}]}
(3.16)

where β̂γ and V̂γ are defined in (3.14). Due to the asymptotic normality in (3.9) and (3.10),

(3.16) is in general better than the standard-form Laplace approximation, as discussed in
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Section 2.2. When β̂γ is close to β̂0γ, the second term in the brace of (3.16) is about zero so

p(Y|γ, λ, φ) can be approximated only by the first term, which simplifies the calculation in

some degree.

One can easily calculate (3.14) and (3.16) using statistical packages for GLMs, in which

MLEs and estimated covariance matrices are often standard outputs. For example, V̂γ can

be calculated from the estimated covariance matrix divided by φ̂γ that is fitted to estimate

φ|γ by the software, based on the current data D = (n,Y,X,W); V̂0γ can be calculated in

the same way but based on the prior guess data DC = (n,µ0,X,W) for the conjugate prior

of βγ , and based on the historical data DP = (n0,Y0,X0,W0) for the power prior.

Raftery (1996) proposed methods for approximating Bayes factors based on Laplace’s

method and Newton’s method. Like those derived here, his methods use only the output of

standard computer program for GLMs. In this context, the idea can be extended directly for

approximating the marginal likelihood (3.5) with the conjugate or power prior of βγ. To see

this, first apply Laplace’s method in a fully exponential form along with the approximation

(3.15) to the normalizing constant to obtain

p(Y|γ, λ, φ) ≈
∣∣∣λV̂0γΨ̃

−1

γ

∣∣∣− 1
2 L(β̃γ, φ|Dγ)L(β̃γ, λφ|D0γ)

L(β̂0γ, λφ|D0γ)
(3.17)

where β̃γ is the posterior mode of βγ under model γ given φ and λ, D0 is defined as in (3.15),

Ψγ = −[H(βγ|Dγ) + H(βγ|D0γ)/λ]−1 and Ψ̃γ is Ψγ evaluated at βγ = β̃γ. Next, apply

one-step Newton’s method to approximate β̃γ from β̂γ, namely

β̃γ ≈ β̂γ + Ψ̂γX
T
0γA

−1
0γ [Y0 − b′(θ(X0γβ̂γ))] (3.18)

where Ψ̂γ is Ψγ evaluated at βγ = β̂γ; A0γ is diagonal with its ith diagonal element being

aγi = λb′′(θ̂0γi)g
′(b′(θ̂0γi))/wi, and θ̂0γi = b′−1 ◦ g−1(X0γiβ̂γ). In (3.18), Y0 = µ0 and X0 = X

for the conjugate prior of βγ. Now noting Ψ̃γ ≈ Ψ̂γ = [V̂−1
γ + (λV̂0γ)

−1]−1 and substituting

this and (3.18) in (3.17) yields an approximation for p(Y|γ, λ, φ)

p̃MR(Y|γ, λ, φ) ≈
∣∣∣λV̂0γV̂

−1
γ + I

∣∣∣− 1
2 L(ˆ̃βγ, φ|Dγ)L(ˆ̃βγ, λφ|D0γ)

L(β̂0γ, λφ|D0γ)
(3.19)

where ˆ̃βγ is the right hand side of (3.18). Based on Raftery (1996), rather than using

L(ˆ̃βγ, φ|Dγ) to approximate L(β̃γ, φ|Dγ) and L(ˆ̃βγ, λφ|D0γ) to approximate L(β̃γ, λφ|D0γ)
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in (3.17), we should further approximate them by their second-order and first-order Taylor

series expanded around β̂γ, respectively. This is not employed here because L(ˆ̃βγ, φ|Dγ) and

L(ˆ̃βγ, λφ|D0γ) are quite easy to compute given (3.18) and such steps do not reduce computing

efforts but cause less accuracy than (3.19). Due to this difference, we refer (3.19) as a modified

Raftery method.

The approximation (3.19) appears less accurate than the full-exponential Laplace approx-

imation (3.17) because of the Newton’s step (3.18). However, it avoids the need of calculating

the posterior mode β̃γ, to which an user often does not have a direct access using standard

statistical software. And it provides an alternative way to approximate p (Y|γ, λ, φ) in case

that the prior of βγ cannot be approximated by a normal density well.

3.5 Posterior Computation and Stochastic Search

In situations where both the hyperparameter λ and the dispersion parameter φ are known or

can be reasonably specified, the analytic asymptotics we have derived offer the advantage of

analytical simplification which allows for exhaustive posterior evaluation in moderately sized

problems. On the other hand, when a single value of λ is difficult to specify a priori or empir-

ically, a prior on λ is necessary. Except for certain restricted examples, one cannot integrate

λ out from the marginal density of the data p (Y|γ, λ, φ) or its approximate representations

p̃ (Y|γ, λ, φ), so the model posterior π(γ|Y) (up to a normalizing constant) is analytical in-

tractable. MCMC methods have become a standard workhorse for calculating such posterior

probabilities. Even if π(γ|Y) is in close form, MCMC can be employed to stochastically search

for high posterior models, to avoid the burden of calculating the posterior probabilities of all

2p models. For recent discussion and comparison of available MCMC methods for Bayesian

variable selection, see George & McCulloch (1997), Chen et al. (2000b), Dellaportas et al.

(2002), Han & Carlin (2001) and the references therein.

Without loss of generality, suppose that λ and φ are both unknown here. An MCMC

algorithm for computing π(γ|Y) typically operates over the sampling space created by model

indicators and parameters jointly (Carlin & Chib 1995, Green 1995, etc.), i.e., (γ,βγ, λ, φ)

in this context. As we now proceed to show, the analytic approximations p̃ (Y|γ, λ, φ) for

p (Y|γ, λ, φ) derived in Section 3.4 greatly reduce the dimension of the sampling space by sim-
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ulating a Markov chain with limiting distribution p̃ (γ, λ, φ|Y) ∝ p̃ (Y|γ, λ, φ)π(γ)π(λ)π(φ).

We begin with a simple Metropolis-Hastings (MH) algorithm that updates γ, λ and φ

simultaneously. Starting with an initial state S0, this algorithm generates each transition

from St = (λt, φt, γt) to St+1 = (λt+1, φt+1, γt+1) as follows.

1. Generate candidate values S∗ = (λ∗, φ∗, γ∗) with probability distribution q(St, S∗).

2. Set St+1 = S∗ with probability

α(St, S∗) = min

{
p̃ (Y|S∗)π(γ∗)π(λ∗)π(φ∗)q(S∗, St)

p̃ (Y|St)π(γt)π(λt)π(φt)q(St, S∗)
, 1

}
; (3.20)

otherwise, set St+1 = St.

There are many variations or simpler versions of this MH algorithm, depending on how the

transition kernel q(St, S∗) is specified. In particular, a practical scheme is, (1) generate model

γ∗ from γt by randomly selecting one or more covariates and switching their status in γt

(present or absent); (2) simulate a random walk from log λt to log λ∗, where the step of the

move, log(λ∗/λt), is proposed based on a symmetric distribution; (3) propose log φ∗ from

log φt in a similar way. Under this case, qγ(γ
t, γ∗) is symmetric in (γ∗,γt), so the acceptance

probability (3.20) becomes

α(St, S∗) = min

{
p̃ (Y|S∗)π(γ∗)π(λ∗)π(φ∗)λ∗φ∗

p̃ (Y|St)π(γt)π(λt)π(φt)λtφt
, 1

}
. (3.21)

To avoid traps at local maxima, achieve better mixing behaviours and increase sampling

efficiency, one can easily adopt methods of parallel tempering (Geyer 1991b, Geyer & Thomp-

son 1995) or evolutionary Monte Carlo (Liang & Wong 2000, Liang & Wong 2001) here. The

basic idea of such methods is, instead of using a single long chain, one can simulate a popula-

tion of Markov chains in parallel where each chain is attached to a different temperature; the

population is then updated by both within-chain (mutation) and between-chain operations

(crossover or exchange). For example, an MCMC algorithm with parallel tempering that

entails mutation and exchange operations can be described as follows.

1. Initialize a population of size M , S0 = {S0
1 , ..., S

0
M} at random, and decide a temperature

ladder τ = {τ1, ..., τM} with τ1 < · · · < τM and one of them is set to 1.
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2. For each member of the population St at the tth iteration (say member m), run a MH

algorithm to generate a sample St+1
m . Note the transition probability in (3.20) now is

αPT (St, S∗) = min

{[
p̃ (Y|S∗)π(γ∗)π(λ∗)π(φ∗)

p̃ (Y|St)π(γt)π(λt)π(φt)

]1/τm q(S∗, St)

q(St, S∗)
, 1

}
. (3.22)

3. Exchange St+1
l with St+1

k for M pairs (l, k) with probability

αPT
E (St+1

l , St+1
k ) = min

{[
p̃ (Y|St+1

k )π(γt+1
k )π(λt+1

k )π(φt+1
k )

p̃ (Y|St+1
l )π(γt+1

l )π(λt+1
l )π(φt+1

l )

]1/τl−1/τk

, 1

}
(3.23)

where l is sampled uniformly on {1, · · · , N}; for 1 < l < M , k = l ± 1 with probability

0.5, for l = 1, then k = 2 and for l = M , then k = M − 1.

4. Repeat step 3 and 4 for the (t + 1)th iteration until the chains converge.

For the purpose of variable selection, models with high posterior probabilities are selected

according to their frequencies in the simulated Markov chain with temperature 1. In situations

where a single model is needed, the most-frequent model is selected.

4 Examples

4.1 Evaluation in a Simple Case

We first study the performance potential of the method proposed in Theorem 2.1 on a very

simple Poisson linear model with a canonical link function. Two datasets, with n = 10 and 100

respectively, were simulated by generating (x1i, x2i) from N(0, I) and each yi from independent

Poisson with mean µi given by log µi = 1+x1i−0.5x2i for i = 1, . . . , n. Note β = (1, 1,−0.5)T ,

and φ = 1, b(θi) = µi = exp(θi) and c(yi, φ) = − log(yi!) in (3.1). For comparison, we

used various methods to calculate the marginal likelihoods of the simulated data, p (Y|λ) =∫
p (Y|β)π(β|λ)dβ, based on normal priors on β in form of N(m, λI). For each dataset, we

considered two prior means, m = (0, 0, 0)T and m = (1, 1,−0.5)T , and seven different λ values

varying from very small to large. The methods include SL (standard-form Laplace), FEL

(full-exponential Laplace), R (Raftery’s method) and IS (Importance Sampling) in addition

to the proposed one. The formulas for these methods are available in Appendix B. As noted
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in Green (1992), it is hard to find an importance sampling distribution that works well for a

wide range of λ. To overcome the difficulty, we adopt a mixture distribution to generate β

when applying IS (Geyer 1991a). We also keep generating samples until the estimate of IS

for each λ stabilizes within a small range, so the results from IS can be treated as surrogates

of exact values. For implementation details about IS, see Appendix B.

The results are shown in Table 1. All methods work equally well when λ ≥ 1. But their

performance differs greatly for λ < 1. In this case, FEL and the proposed method are much

better than SL and R, especially when n is small or λ gets closer to 0. From results for

λ = 1E−20 in Table 1, we can see that as λ → 0, no analytic method gives results converging

to exact values except for the proposed one under the case of m = β. When m 6= β, as will

be typically the case in the practice, both FEL and the proposed method give reasonable

estimates for λ as small as 0.01.

It may be helpful to discuss the methods from a computational perspective. SL, R and the

proposed method only involve the MLE of β, estimated covariance matrix and likelihood, so

they are easy to program using standard statistical software. FEL requires more programming

effort because an user needs to calculate the posterior mode of β via an optimization algorithm

and the corresponding posterior covariance matrix involving detailed formulas. IS, as a

sample-based method, is easy to code but requires fine tune for fast convergence. Turning to

the CPU time, based on calculations for the dataset of size 100 and a fixed λ on a workstation

with 1.8GHz Xeon processor and 1GB of RAM, it is 33 ms for SL, R and the proposed

method, 68 ms for FEL, and for IS to get an estimate with an error within ±0.05, the time

varies from 270 ms to 51 seconds for different λ. Overall, it appears that the proposed method

is promising because of greater accuracy, less human effort and faster computing speed.

4.2 Intensive Care Unit Data

We consider a dataset from Hosmer & Lemeshow (1989) with 200 subjects, who were part of

a much larger study on survival of patients following admission to an adult intensive care unit

(ICU). The response STA is the vital status of a patient at the time of hospital discharge

(0=Lived, 1=Died). There are 19 predictor variables in the dataset: (1) Age; (2) Sex; (3) Race

(White/Black/Other); (4) service at ICU admission (SER, Medical/Surgical); (5) cancer part
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of Present Problem (CAN , No/Yes); (6) History of Chronic Renal Failure (CRN , No/Yes);

(7) Infection Probable at ICU Admission (INF , No/Yes); (8) CPR prior to ICU Admission

(CPR, No/Yes); (9) Systolic Blood Pressure at ICU Admission (SY S); (10) Heart Rate at

ICU Admission (HRA); (11) Previous Admission to an ICU within 6 Months (PRE, No/Yes);

(12) Type of Admission (TY P , Elective/Emergency); (13) Long Bone, Multiple, Neck, Single

Area, or Hip Fracture (FRA, No/Yes); (14) PO2 from Initial Blood Gases (PO2, > 60/ ≤ 60);

(15) PH from Initial Blood Gases (PH,≥ 7.25/ < 7.25); (16) PCO2 from Initial Blood Gases

(PCO, ≤ 45/ > 45); (17) Bicarbonate from Initial Blood Gases (BIC, ≥ 18/ < 18); (18)

Creatinine from Initial Blood Gases (CRE, ≤ 60/ > 60); (19) Level of Consciousness at ICU

Admission (LOC, No Coma/Deep Stupor/Coma). Our aim is to select models with highest

posterior probabilities out of 219 or 524288 possible logistic regression models to predict the

probability of survival and study the risk factors associated with ICU mortality. Note for

Logistic regression, φ = 1, b(θi) = log(1 + eθi) and c(yi, φ) = 0 in (3.1).

To begin with, we randomly split the dataset into two parts, one with 120 subjects for

conducting variable selection and the remaining 80 subjects for cross validation. Here, we

considered conjugate priors (3.7) on regression coefficients and inverse gamma hyperpriors

IG(a, b) on the hyperparameter λ, whose joint prior density is in form of (3.11). For illustrative

purposes, the prior guess µ0 was obtained from a prior prediction using the logistic regression

model reported in Lemeshow et al. (1988), namely

log
µ0i

1− µ0i

= −1.37 + 2.44LOCi + 1.81TY Pi + 1.49CANi + 0.974CPRi + 0.965INFi

+0.0368AGEi − 0.0606SY Si + 0.000175SY S2
i . (4.1)

This model was fitted from the data collected on 755 patients admitted to the ICU at Baystate

Medical Center in Springfield, Massachusetts between February 1 and August 15, 1983. In an

actual ICU data analysis, µ0 can be easily supplied by subjective models based on variables

and associated weights determined by panels of medical “experts”, such as APS and SAPS

systems (see Lemeshow et al. 1988 and the references therein). For the choices of a and b,

we explored four sets of values with prior means of λ at 2, 5, 10, and 50, respectively: (i)

(a, b) = (3, 4); (ii)(a, b) = (2.5, 7.5); (iii)(a, b) = (2.5, 15); and (iv) (a, b) = (2.25, 62.5). For

prior model probabilities, to reflect no real prior information, we took αi = βi = 1 in (3.13)

(i.e., uniform(0, 1) distribution on each ωi), which is equivalent to assigning equal probability
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to each possible model. To efficiently search high posterior models, parallel tempering was

applied in this example. For each pair of (a, b), four chains were simulated in parallel with a

temperature ladder τ = {1, 2, 3, 4} and each running 50,000 iterations; the overall acceptance

rate of local updating were about 0.4, and the overall exchange rate were about 0.6.

Table 2 shows summary statistics for the prior and posterior distributions of λ for the four

sets of (a, b). Overall, the posterior of λ is sensitive to the choice of (a, b). For the first set

(a, b) = (3, 4), the upper bound of the posterior HPD is bigger than that of the prior HPD,

indicating the first prior may incorrectly concentrate on small λ values so do not assign enough

probability mass to larger values (e.g., λ > 4.90); for the other three sets, the posterior HPDs

are all tighter than the corresponding prior HPDs. To further decide a reasonable choice of

(a, b), we calculated the average misclassification rate on the test dataset for the top 50 models

from the MC chains under each hyperprior. From Table 2, (a, b) = (2.25, 62.5) gives the lowest

misclassification rate although (a, b) = (2.5, 7.5) and (a, b) = (2.5, 15) also give similar rates.

Finally, we chose (a, b) = (2.25, 62.5) also because the corresponding hyperprior has a heavier

right tail than the others. This choice indicates the prior guess (4.1) is not to have much

impact compared to the data.

Table 3 reports the top 50 models from the MC chain of temperature 1 under (a, b) =

(2.25, 62.5). The posterior probability of model γ was estimated from the frequency of γ

in the chain divided by 40,000 (the first 10,000 iterations were discarded for the burn-in

process). For comparison, we also give AIC and BIC values and ranks for each of the models:

AICγ = log L(β̂γ|Dγ)−qγ and BICγ = log L(β̂γ|Dγ)−qγ log n/2. We can see from Table 3 that

the “best” model selected by our FB procedure contains 6 covariates: RACE, SER, CAN ,

TY P , FRA, and LOC, denoted γFB; the “best” model given by AIC contains 10 covariates:

AGE, RACE, SER, CAN , PRE, TY P , FRA, PH, PCO and LOC, denoted γA; and the

“best” model given by BIC contains only three covariates: CAN , TY P , and LOC, denoted

γB. It is well known that AIC tends to favor large models while BIC tends to favor small

models, so it is interesting to see that γB ⊂ γFB ⊂ γA here. In addition, γFB is the very

model that AIC and BIC agree most (i.e., the model with the smallest rank sum). Another

interesting feature for this dataset is, none of the top 50 models selected by AIC agrees with

the top 50 models selected by BIC; for example, γA ranks 8098 in BIC, γB ranks 2588 in AIC,
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but both of them are in the top 50 list of our procedure, which implies that our procedure

agrees partially with both AIC and BIC, as would be expected for a good selection procedure.

We shall note that the “best” model γFB represents only 0.47% of the total posterior prob-

ability, indicating a fair amount of model uncertainty in the ICU data. For better predictive

performance, Bayesian model averaging based on the top models would be recommended.

5 Discussion

In this paper, we propose new methods to approximate predictive distributions, and compare

them with several existing methods. The proposed methods, when applicable, are accurate

over a wide range of hyperparameter values, easy to implement and computationally efficient;

in contrast, none of the other methods possess all these advantages. In the context of variable

selection in GLMs, the proposed methods are employed to facilitate the implementation of a

Fully Bayes approach under informative priors on regression coefficients. Ways of specifying

hyperprior distributions are suggested. MCMC algorithms that operate in a sampling space

with a fixed low dimension (≤ 3) are presented for posterior exploration. An illustrative

example is provided to demonstrate the feasibility and usefulness of our selection procedure.

We mention that our approach to variable selection in GLMs is different from the related

previous Bayesian work. Raftery (1996) presented asymptotic analytics to approximate Bayes

factors and accounted for model uncertainty in GLMs; but he did not take into account

the uncertainty due to the unknown hyperparameters. He also assumed independent normal

priors on regression coefficients, which is a special case of our approach. Chen et al. (1999)

and Ibrahim et al. (2000) concentrated on variable selection for logistic and Poisson regression

models respectively, so their approaches are case specific. Also, their computation of model

posteriors is purely sample-based without using any analytic approximations. Wang & George

(2004) proposed several closed-form FB selection criteria for GLMs, using specific normal

priors on regression coefficients. An integrated Laplace method was used to achieve analytical

tractability, which is a special case of our proposed methods; the classes of conjugate and power

priors were not discussed there. In conclusion, what distinguishes our work from these papers

is the generality of our Fully Bayes approach and the novelty of our analytical approximations.
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A Proof of Theorem 2.1

This proof is similar in part to that of Theorem 1 in Kass et al. (1990). Without loss of

generality, we consider the case m = 1 for simplicity. The higher-dimensional case involves

straightforward modifications. Let hn(β) ≡ −ln(β)/n so that the integrand Ln(β)π(β) of (2.1)

can be written as exp[−nhn(β)]π(β), and let u ≡ n1/2(β − β̂n) so that for a fixed u, (β − β̂n)k

is of O(n−k/2). Now expanding nhn(β) about β̂n and e−x about zero to the terms of order

smaller than O(1) yields

exp[−nhn(β)]π(β) = exp

[
−nhn(β̂n)− 1

2
h
′′

n(β̂n)u2

]
·
{

1− 1

6
n−1/2h(3)

n (β̂n)u3 + Rn(u)

}
π(β)

where Rn(u) is of order O(n−1) uniformly on Bδ(β̂n) defined in (2.3). Then∫
Bδ(β̂n)

exp[−nhn(β)]π(β)dβ = exp
[
−nhn(β̂n)

]
· (E1 + E2)

where

E1 =

∫
Bδ(β̂n)

exp

[
−1

2
h
′′

n(β̂n)u2

]
π(β)dβ

and

E2 =

∫
Bδ(β̂n)

exp

[
−1

2
h
′′

n(β̂n)u2

]
·
{
−1

6
n−1/2h(3)

n (β̂n)u3 + Rn(u)

}
π(β)dβ.

Let’s look at E1 first. Note by changing the variable from β to u, we have

E1 =

∫
Bδ(n)(0)

exp

[
−1

2
h
′′

n(β̂n)u2

]
· π(n−1/2u + β̂n) · n−1/2du (A.1)

where δ(n) = n1/2δ. Since the integration region Bδ(n)(0) is expanding at the rate O(n1/2)

as n → +∞, replacing this region by the whole real line incurs an error of exponentially

decreasing order for the integral in (A.1), and yields (after some algebra)

E1 ≈ exp
[
nhn(β̂n)

]
· Ĩ (A.2)

in which Ĩ is given in (2.2) . For E2, expanding π(β) about β̂n and changing the variable from

β to u, we have

E2 =

∫
Bδ(n)(0)

exp

[
−1

2
h
′′

n(β̂n)u2

]
·
{
−1

6
n−1/2h(3)

n (β̂n)u3 + Rn(u)

}
·
{

π(β̂n) + n−1/2π
′
(β̂n)u + Sn(u)

}
n−1/2du (A.3)
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where Sn(u) is of order O(n−1) uniformly on Bδ(β̂n). Using the same reasoning as for E1, we

replace Bδ(n)(0) by the real line in (A.3) and note that the third central moment of a normal

distribution vanishes, so

E2 = O(n−1) (A.4)

holds as long as the ith derivative of hn( i ≤ 4) is uniformly bounded, which is satisfied

automatically from the Laplace regularity of ln. Combining (A.2) , (A.4) and (2.3) yields

Ĩ = I(1 + O(n−1)), which completes the proof.

B Formulas For Calculations in Section 4.1

For a GLM described by (3.2), consider calculating the marginal density of the data p (Y|γ, λ, φ)

based on a normal prior π(βγ) in form of N(mγ, λφUγ), λ > 0. Below list the formulas we

derive for approximating p (Y|γ, λ, φ) using different methods:

1. Standard-form Laplace

p̃L (Y|γ, λ, φ) = L(β̂γ, φ|Dγ)
∣∣∣λUγV̂

−1
γ

∣∣∣− 1
2
exp

{
− (β̂γ−mγ)T (λUγ)−1(β̂γ−mγ)

2φ

}
2. Full-exponential Laplace

p̃LF (Y|γ, λ, φ) = L(β̃γ, φ|Dγ) ·
∣∣∣λUγṼ

−1
γ + I

∣∣∣− 1
2
exp

{
− (β̃γ−mγ)T (λUγ)−1(β̃γ−mγ)

2φ

}
where β̃γ is the posterior mode of βγ; Ṽγ = (XT

γ DγXγ)
−1 where Dγ is diagonal with

its ith diagonal element being dγi, and θ̃γi = b′−1 ◦ g−1(Xγiβ̃γ),

dγi =
1

b′′(θ̃γi)[g′(b′(θ̃γi))]2
+ [yi − b′(θ̃γi)]

[b′′(θ̃γi)]
2g′′(b′(θ̃γi)) + b(3)(θ̃γi)g

′(b′(θ̃γi))

[b′′(θ̃γi)]3[g′(b′(θ̃γi))]3
.

3. Raftery’s method

p̃R(Y|γ, λ, φ) ≈
∣∣∣λUγV̂

−1
γ + I

∣∣∣− 1
2
L(β̂γ, φ|Dγ)

· exp
{
− (β̂γ−mγ)T (λUγ+V̂γ)−1[V̂γ(λUγ+V̂γ)−1+I−V̂γ(λUγ)−1](β̂γ−mγ)

2φ

}
.

This formula is derived from equation (11) in Raftery (1996).
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4. Importance Sampling:

p̃IS(Y|γ, λ, φ) =
1

M

M∑
t=1

p (Y|γ,β(t)
γ , φ)π(β(t)

γ )

h(β(t)
γ )

where β(t)
γ , t = 1, ...,M , are independent samples, each with probability r generated

from π(βγ), i.e., N(mγ, λφUγ) and with probability 1− r generated from N(β̂γ, φV̂γ);

and h(βγ) is the density of the mixture, h(βγ) = rπ(βγ) + (1− r)f(βγ), where f(βγ) is

the pdf of N(β̂γ, φV̂γ). In our experiment, for λ of 1E− 20, we set r equal to 0.8; for λ

of 0.001, r = 0.1 and for any larger λ, r = 0.5; M is chosen to be large enough so that

the estimate p̃IS(Y|γ, λ, φ) stabilizes within a small region.
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Table 1: Approximate Log Marginal Likelihoods For the Poisson Regression Model
n m λ SL FEL R Proposed IS

10 (0,0,0) 1.0E-20 -8.5E+19 -2.0E+12 8.5E+19 -24.3 -20.5
0.001 -851.8 -20.4 799.4 -24.1 -20.4
0.01 -94.1 -20.1 43.4 -20.9 -20.1
0.1 -21.4 -18.1 -16.7 -18.6 -18.1
1 -17.2 -17.3 -17.3 -17.3 -17.3
10 -19.9 -19.9 -19.9 -19.9 -19.9
100 -23.3 -23.3 -23.3 -23.3 -23.3

(1,0.5,-1) 1.0E-20 -6.0E+18 -4.4E+10 6.0E+18 -14.0 -14.1
0.001 -66.3 -14.1 44.1 -14.0 -14.1
0.01 -15.5 -14.1 -9.7 -14.0 -14.1
0.1 -13.5 -14.5 -14.3 -14.4 -14.5
1 -16.4 -16.6 -16.6 -16.6 -16.6
10 -19.8 -19.9 -19.9 -19.9 -19.9
100 -23.3 -23.3 -23.3 -23.3 -23.3

100 (0,0,0) 1.0E-20 -1.1E+20 -4.8E+11 1.1E+20 -1853.9 -939.4
0.001 -1283.7 -710.9 -657.6 -841.1 -862.2
0.01 -292.9 -285.3 -285.2 -285.9 -285.5
0.1 -197.0 -196.9 -196.9 -196.9 -196.9
1 -190.5 -190.5 -190.5 -190.5 -190.5
10 -192.9 -192.9 -192.9 -192.9 -192.9
100 -196.3 -196.3 -196.3 -196.3 -196.3

(1,0.5,-1) 1.0E-20 -5.5E+17 -5.3E+09 5.5E+17 -181.2 -181.2
0.001 -184.5 -181.7 -177.6 -181.7 -181.7
0.01 -183.0 -183.2 -183.1 -183.2 -183.2
0.1 -186.0 -186.0 -186.0 -186.0 -186.0
1 -189.4 -189.4 -189.4 -189.4 -189.4
10 -192.8 -192.8 -192.8 -192.8 -192.8
100 -196.3 -196.3 -196.3 -196.3 -196.3

Table 2: Summary Statistics For the Prior and Posterior Distributions of λ
(a, b) Prior Posterior Misclass.

Mean Mode SD 95% HPD Mean Mode SD 95% HPD Rate (%)

(3, 4) 2 1 2 (0.29, 4.90) 2.49 1.83 1.21 (0.52, 6.13) 15.64
(2.5, 7.5) 5 2.14 7.07 (0.58, 13.11) 4.69 3.00 2.98 (0.94, 10.01) 12.97
(2.5, 15) 10 4.29 14.14 (1.17, 26.21) 6.91 3.54 4.78 (1.74, 13.65) 12.72
(2.25, 62.5) 50 19.23 100 (5.07, 135.99) 17.45 10.20 11.89 (6.01, 33.49) 12.55
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Table 3: Top 50 Models From MCMC for the ICU Data
Model No. Variables Est. Posterior AIC (rank) BIC (rank)
3,4,5,12,13,19 6 4.70 -51.20 (11) -63.75 (61)
2,3,4,5,12,13,19 7 4.67 -51.72 (44) -65.66 (593)
3,4,5,12,19 5 3.95 -52.28 (173) -63.43 (41)
3,4,5,11,12,13,19 7 3.87 -51.12 (8) -65.06 (312)
2,3,4,5,11,12,13,19 8 3.15 -51.74 (45) -67.07 (2326)
3,4,5,6,12,13,19 7 2.70 -51.83 (58) -65.76 (657)
1,3,4,5,8,11,12,13,16,19 10 2.55 -51.64 (33) -69.76 (16867)
3,4,5,6,11,12,13,15,16,19 10 2.50 -51.79 (51) -69.91 (18400)
1,3,4,5,11,12,13,19 8 2.45 -51.28 (12) -66.61 (1501)
1,3,4,5,12,13,16,19 8 2.35 -51.14 (9) -66.47 (1318)
2,3,4,5,11,12,13,18,19 9 2.20 -52.41 (228) -69.13 (11251)
3,5,12,19 4 2.15 -53.44 (1435) -63.19 (30)
3,4,5,12,13,15,19 7 2.07 -51.96 (87) -65.89 (752)
3,4,5,6,10,12,13,19 8 2.00 -52.78 (470) -68.11 (5364)
3,4,5,8,11,12,13,16,19 9 2.00 -52.00 (98) -68.72 (8428)
3,4,5,12,13,16,19 7 1.97 -51.60 (31) -65.54 (530)
2,3,4,5,6,12,19 7 1.87 -53.16 (916) -67.10 (2382)
3,4,5,8,11,12,19 7 1.80 -52.87 (562) -66.81 (1786)
3,4,5,11,12,13,14,19 8 1.80 -51.91 (78) -67.25 (2696)
5,8,12,15,16,19 6 1.77 -53.42 (1399) -64.57 (174)
3,4,5,11,12,19 6 1.77 -52.57 (301) -65.11 (325)
2,3,4,5,6,8,11,12,13,19 10 1.75 -52.99 (701) -71.10 (36334)
3,4,5,10,11,12,13,19 8 1.72 -52.10 (115) -67.43 (3114)
5,12,19 3 1.67 -53.81 (2588) -60.78 (1)
3,5,10,12,19 5 1.67 -54.17 (4250) -65.32 (413)
1,2,3,4,5,12,13,15,16,19 10 1.65 -51.39 (19) -69.51 (14521)
1,3,4,5,9,11,12,13,16,18,19 11 1.65 -52.79 (478) -72.30 (64620)
3,4,5,12,15,19 6 1.57 -52.86 (556) -65.41 (450)
1,2,3,4,5,12,13,16,19 9 1.57 -51.69 (37) -68.41 (6714)
2,3,4,5,11,12,13,15,16,19 10 1.57 -51.38 (17) -69.50 (14404)
3,4,5,7,8,10,12,13,19 9 1.55 -53.56 (1730) -70.28 (23084)
1,3,4,5,12,13,15,16,19 9 1.50 -51.08 (7) -67.81 (4238)
3,4,5,11,12,13,16,19 8 1.47 -51.30 (13) -66.63 (1526)
3,4,5,8,12,19 6 1.45 -52.78 (468) -65.32 (415)
3,4,5,8,12,13,19 7 1.42 -51.96 (89) -65.90 (761)
3,4,5,11,12,15,19 7 1.32 -53.03 (742) -66.96 (2065)
3,4,5,9,11,12,19 7 1.30 -52.97 (679) -66.90 (1948)
1,3,4,5,11,12,13,15,16,19 10 1.30 -50.55 (1) -68.67 (8098)
2,3,4,5,12,13,18,19 8 1.27 -52.51 (265) -67.84 (4350)
2,3,4,5,12,19 6 1.25 -52.86 (549) -65.40 (446)
5,12,15,19 4 1.22 -53.84 (2723) -62.20 (7)
3,4,5,7,12,13,19 7 1.22 -51.70 (40) -65.63 (579)
1,3,4,5,11,12,13,17,19 9 1.22 -52.27 (168) -68.99 (10156)
3,4,5,9,11,12,13,15,16,19 10 1.22 -51.57 (28) -69.69 (16167)
4,5,12,19 4 1.20 -53.02 (727) -61.38 (2)
3,4,5,7,11,12,13,19 8 1.20 -51.66 (35) -66.99 (2126)
3,4,5,8,11,12,13,16,17,19 10 1.20 -52.96 (669) -71.08 (35795)
1,4,5,12,19 5 1.17 -53.11 (837) -62.87 (14)
3,5,8,12,19 5 1.17 -53.47 (1519) -64.62 (188)
3,4,5,6,9,12,19 7 1.17 -52.86 (554) -66.80 (1776)

Note: The estimated posterior probabilities π̂(γ|Y) were multipled by 1,000.
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