CHAPTER III

ESTIMATION OF PARAMETERS (CONTINUED)

Case 2. All 5 Parameters Unknown
In this chapter we consider that all the parameters of the distri-

bution (7) are to be estimated on the basis of n independent observations,

(xl, yl), (xn, yn). The likelihood function, as given by (30) is
5 2
by 23 %2
—1(x1—ul) _llny - L kx +c - =
-1/2 +
L 1 o 2 2
= o] o]
nnnal 1 2
(2m) GIOé iglyi

and the log likelihood function as given by (31) is

n 2 n 2
In L = n ln 271 2lncl—Tlno2
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To find My and 915 note that
o 1ln L 1
———aul = > Z(xi - p,l) (84)
%1
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1
R e A (85)

Simultaneous solution of the two equations

O 1ln L -0 d1ln L -0
3 30>
Hy 1
gives the expected result
~ 1
By = n x
- x (86)
A2 1
G, = — T(x, - x)
1 n i
- n=-1.2 (87)
n X
2 1 -2 . . 2 .
where sx i Z(xi - x) is the unbiased estimator for cl obtained

by adjusting the ML, estimator.

2
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3k 02 Z(xi 1ln Yy kxi cxi + 2 % (89)
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oinl _ _.n 1 gfy vy, — kx, - c + =2 (90)
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)
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%
These lead to the equations
o1 kS, -nc+2 4% = o0
ny; - i 5 0y = (91)
2
2 %
>, lIny, - kXx., -~ c¢cXXx, +— Xx. = O (92)
i i i i 2 i
n 4 2 2 2 2
-2 5 no,, + ¥ 1n Y; + k Zki
+ nc2 - 2k¥x,. 1n - 2c¥ 1n
i Y ¥
2
+ 2kc)}<i = 0 , (93)

We may solve (91) and (92) immediately for k to obtain
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Z(xi - x) 1n Yy

k = . (94)
T(x, = %)
i
which is the same as the ﬁ obtained in Chapter II.
Using this result in (91) we obtain
8’2
1 Nem 2
e = = % 1n Yy - kx + > - (95)
which is just (33) with o2 replaced by 33.
Substituting this equation in (93) and solving for og we obtain
/\2 1 2 - A -—
a, n k Z(x x) 2k 'Z.(Xi x) 1n '
2 1 2
+ {Z 1n Yy, o (X 1n yi) (96)
1 2 1 2 n2 -~ 2
= - T 1n ' = (Z 1n yi) -k Z(Xi - Xx) . (97)

This result may be used in (95) to obtain the ML estimate for c.

. . . . = 2
Let us now examine our estimators for bias. Certainly x and s are
X

. . 2
unbiased estimators of by and ¢, respectively.

1

Now consider

E (k)

]

E(E (k|x)
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E (k)

Il

=k . (98)

~2 .
In order to find E(cz), first note that

2
)
Var(ﬁLz) = _—
Z(x., = X)
i
so that
O_2
E[ﬁzl_z_(] = ——-———2-—:——5 + k2
Z(xi - x)

and we know from (13) that

E(% 1n2 y - —i—(Z 1n yi)i) = (n - 1)(k20i + 62) .

Referring to (96)

E[ﬁzzm. - >'<)2] - Bl - 0° E(1?2|x)]
i i =
r_ -
= E 0'2 + kZZ(X. - X)Z]
2 i
L
2 2 2
= 0, + k (n - 1)01 . (99)
Thus
~2 1 2
E(cz) = [(n - 2)02] . (100)

We may easily adjust 8; for bias
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n

2 1 2
n_z[}:ln yi— o (Zlnyi)

- % D, - }?)2] : (101)

A2

Let us redefine our estimator of ¢ in terms of ¢

2
32
N 1 = 2
c = o Z 1ln yi kx + 5
02 02
A 1 2 2
E(c) = n Zku,l + c > kp,l +

We will now examine the covariance matrix for the estimators.

It is well known that

i oF
var (x) = (103)
n
2 Zc’i
var (Sx ) = m . (104)

We may use a similar argument to that which was used for (42) to

show

N

var (k) = — . (105)
(n-3)cr:L
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We know that

Var (82) Var(E(8§|X)> + E(Var (Szlz)) .

Using facts obtained in the derivation of (49) and (99)

il

2 2

22 1 2 )
E(G2L§')=n—2 Z(}‘z+<kxi+c—7))

M
O
NN
+
o
NS
™
"
[
1
L
~_

2

2
1 2 - - o
= -3 (n'2)02+2[(kxi-kx)+(kx+c——2-2->]

02 2
- L Z(é{x.-k;c)+<k;<+c-—2))
n i
- kz)"_,(xi - X)
N 2
= 0'2 . (106)
Thus

Var (E(&jj_;s)) = 0, (107)
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A2 l 2
Var(gzlﬁ) = 5 War(Z 1n yilz_)

(n - 2)

1 2 -2 2 ~2
+ 5~ Var QZ‘ in yi) |_)_() + (‘Z(x:.L - x) ) var (k| X)
n

2 2 2
- = Cov(‘Z, In"y;, (Z1ny,) l)i)

-2 T(x, - %) Cov(E 1n® y,, K2|X)

1 1 -

286, - %) y
+————cov{(Z1ny)", k |_x_). (108)

From the derivation of (49) we know that

24, 2
2 4 2 Oy
_ -2 109)
Var (X 1n YiEQ 2no2 + 402 26;%-+ c 2) (
and
02 i
2 2 4 2 2
- -2 110
Var ((Z In Y,) Iﬁ) 2n"0, + 4no, Z(kxi +c -3 ) . (110)
- 2
A2 Z‘.(xi - x) 1n Yi
var (k* |X) = Var ’ X
— - 2 ——
T(x; = x)

1 - 2
——3 Var (z(xi - x) 1n Yi) x) .
[Z(x; = x) ]

x) 1n Yi with given X has a normal distribution with

Now, Z(xi

mean



c
- - 2
E Z(Xi - xX) 1ln Yi|§ Z(xi - x)(kxi +c - 2)

=k T(x, - x)2
1

and variance

Var (T(x; - x) 1n Y |X o, Z(x; - x)
Therefore, for a given X

1

2
[Z’(x. - x) 1ln Y.] has a noncentral chi square
2 i i
g, Z(Xi - x)

distribution with one degree of freedom and noncentrality parameter

2
20‘2
and
_ 2
ltZ(x - x) 1ln Yi] 4k T(x, - x)
1 1
Var Ix] = 2+
2 =( - )2 2
Op 8% 7 X )

Thus



20 4 4k20'2
a2 2 2
vVar (k lf) = ~ 5 2 + — .
[‘Z(Xi - x) 1] ‘Z(xi - X)

To find the covariance terms of (108) we shall first find

2 2 . . 2
Cov <Z Zi , (2 aiZi) ) for Zi distributed NID (ui, c ).

Please note that where multiple sums are indicated in the

51

(111)

following arguments the notation i#j#l{ with reference to indices is

understood to mean that i, j, and {4 are all three different. The

notation iZj#{#m is likewise interpreted to mean that i, j, 4, and m

are all different.
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2 2
Cov (Z Zi , (T aiZi) )

=EGZ?(ZaJJ?-—M22?WGZalJ?
i i%i i i"i

2 4 2 2
= Ya, (u, + 6u., o + 304)
1 1 1

+

2 2 2 2 2
vZTa, (c +u, (o +mu,)
P § i j
i#3

2
+2 T3 aia.(ui3 + 30 ui)u.
i#g * J

+ T Tz a.a.uiu.(o2 + qhz)
ifj#£L

2 2 2 2 2 2
(ng + 2u, J)(a, u. +g Ta, +XxZa.a.u,u,)
i i 1 i 145 i ji3j

2 2 2 4q 2
=4 T a, u, + 2¢ I a,
i i i

2
+4c T T aia.uiu.
igj T

= 4c2[2 a.u,]2 + 204 b a.2 . (112)
i’i i
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Applying (112) to (108) we see that
2 2
Cov (Z In Y., (Z1nY,) ]X)
i i -

212

o]
2 2 4
= 402 Z(kxi + c 2) + 2@02 . (113)

2 ~2
Cov (T 1n” Y., k 1)

S(x, - x) 1n v.]°
2 i i
Cov |[Z In Y, , t

= Z X
Z(xi - X)
2 2
- 02
5 Z(Xi - x)(kx:.L +¢c - —2-)
= 49, -2
T(x, = X)
i
203
+ — - . (114)
Z(xi - x)

. . 2
We now need to find an expression for Cov (T aiZi) , (T bizi)2)

. . . 2
where, as above, Zi is distributed NID (ui, o)

2 2
Cov ((Z aiZi) , (T biZi) )
=EB2aJJ%zb¢Jﬂ
1l 1 1l 1

2 2
- E [(Z aizi):lE [(Z bizi) ]
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3
T a bi (ui +6uio- + 307)

2. 2 2 2 2 2
+ Tz a; bj (ui + o )(uj + 0 )
i#j

2 2 2 2
+ 2% Za.,a.b.b.(u., +oc)u. + o)
i;éjl]ljl j

2 3 2
+ 2 a, bib.(ui + 3uic Ju,
i#3 ] ]

2 3 2
+ 2% 3 aia.b:.L (u.l + 3u.lc Ju,
iz J

2 2 2
+ZZZa.a.b{/ uiu.(o +u{,)
i#3#d J

+ 47 T T a.a.b.b&(ui2 + g2)u.uL
i43#4 J

+ TS a.2b.b{(ui2 + oz)u,u£
i#3#4 ]

+ TSy a.a.b{bmuiuju,ﬁum

i#j#4#m
4q 2 2 2 2 2 2
g, ZaiZbi "chai (Zbiui
2 2 2 2
+ T Xb,b.u,u,) ~c b, (fa. u,
. 13 i3 i i i

it

+ T Ta.a.uu,) - (Ta,u)(Zb.u,)’
R Rt B ii ii

i#3
4 2 2 2. 2
206 (T aibi) + 40 [‘Z a; bi ui2

2 2
+ ¥ % aia.bib.ui + 2z a; bib.uiu,
igg t 2 i )

2
+ Z aia'bi uiu.
g )

+ iZ;!;_Z#E aiajbib/(,uju{,]
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4 2 2
=20 (Za.,b,) +4c T a,b, Ta,u, Tb.u, . (115)
ii ii ii i'i
Reference to (108) shows that in our case a, = 1, i =1, 2, ***, n,
and
2 2
COV((Z z.) , (Zb,2z,) )
i i7i
2
= 20’4(2 b.)
i
2 n n n
+ 4 T bi ru, © biui . (116)
i=1 Ti=1 ti=1
Now,
2 ~
Cov((Z Inv)", kzlz)
5 T(x, - x) 1n Y,
= Cov [(¥ 1n Yi) R - = X .
{x, - %)
i
%, - &
Here, bi =———"3% > 3 bi =0 -
T(x. = x)
i
Therefore
2 ~2
cOv((z Iny)" , K | 5) =0 . (117)

Applying equations (109), (110), (111), (113), (114), and (117) to

(108) we find
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4
29 20,
5 = (118)
E(Var(02|x)) S
Using this equation in conjunction with (107) we have
A2 2"24
Var(cz) = oT-3 (119)
Let us now calculate Var(a)
var (¢) = Var(E(el}_(_)) + E(Var(@[@) . (120)
02
N 1 2 - A
E(c|X) = — Z(kxi +C 2) xE (k|x )

1 A2
+ =~ E(0,[%) .

Using the derivations of equations (98) and (99) we see immediately

that

E(GI_}S) = C
and

Var(E(Syg_)) -o0. (121)

Returning to (120) we now wish to find
A2
2 1 a- 92
Var(c|x) = Varf— £ 1In Y, = kx + — l X
n i 2 -

1 =2 A
= —5~ Var(Z 1n Y |X) + X var(k|X)
n
1 a2 2% ~
+ n Var(oélg) N Cov{(Z 1n Yi,klz)



2 2
+ Cov(L ln Y, ozlz)

- 2
- x Cov(k, 32|§) .
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(122)

We know from equations (2), (38), (118), and (50) respectively, that

2
Var (L 1n Y, |X) = no
i'= 2
O_2
Var (ﬁ]g) = 2 _
Z(x, = x)
i
~ 20 4
Var 52 |x) = —2
2'— n-2
Cov(Z 1n Yi’ ﬁlz) = 0,
. A2
We need to find Cov (% 1ln Yi’ GZIX) ;
Cov(Z 1In Y 22|X)
i’ 92’2

1

Cov[Z 1n Yi’

2
Cov(Z 1ln Y,, T 1n" Y,|X)
i i

n-2

1 2
- —— Cov(Z 1n ¥, (Z1nY)"[X)

+ T(x, - ¥ Cov(T 1n ¥, ﬂzjx) .
1 1 -

1 5 [}: 1’ vy, - —— (Z1nv,)? - & 5, - >'<)2]|x
- 1 n 1 1 -

(123)
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In order to calculate these covariances let us suppose as we did

2 .
to derive (112) and (115) that Zi is distributed N’.[D(ui, g ) and find

2
Cov(T a,%2,, ¥ b,Z2, ) = E(Z a.b_Z_3
ii ii iii

+ T T a,b.227°%) -~ E(Ca,Z)E(Sb,22)
a5 13173 i'i i'i

3 2
= Ya.,b,(u, +3u,.g) +zZ a,b.(cy2 + u.2)u
iiti i it i3 3 ;

i
2 2
- Ya,u, b, (u, +0o)
i’i iti

2
=20 Za,b.,u, . (124)
itii

cOv(Z a,z., (% b,Z,)Z) =
11 1 1

2 _ 3
E[Z a,b, z2, + ZEa.b.ZZ.Z2
ii i . i3
i#3

i

+2 %% aibib.zizz. +IZTabbz z_zL]
i3 S Y t 3

2
- E[T aizi]E[(Z' bizi) 1

2 3 2 2 2
=Za.b, (u.” +3u.0g) +¥Ta.b. u.(cx2 + u, )
ii i 1 149 ij i J

2
+2 £zapbb @+,

+ £ ¢a.,b.b,u,u.u
it 5AL iy iLig e

2
~saufsp?w?+0®) +TEbbuu
ii i i igg T 3173

2
= 20 (Z aibi) z biui . (125)
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Applying (124) and (125) to (123) we find
Cov(f ln Y z ln2 Y |X)
i’ it=

2

g
=2022kx.+c-—g . (126)

2 i 2

2
cOv(z In ¥, (Z1nY,) |§)

02
2 2

A2
Cov(L In Y., k" |X)

- 2
Zix, = x) c
202 _ Z(kx. + c - -—2-)
2 -2 i 2
Z(x:.L - x)

=0 . (127)

Equation (127) is what we might have expected since

Cov(Z 1ln Yi’ k) = O.

A2
Cov(Z 1n Y., T, |x)

a. (e}
1 2 2 2 2
—— 202 Z(kxi + c 2) 20'2 ):(kxi + c > )

=0 . (128)

Finally, in order to evaluate (122) we need
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Cov (E, 32 ]})

~ 2
- Z[Cov(k, ¥ In Yi[_}_()

- L Cov (}2, (Z 1In Y.)Z!X)
n 1 -
-2 A~ 2 :
- D(x; - x)°7 Covik, k |§)] . (129)

We may use (124) and (125) to find these covariances.

Cov(]?, T ln2 Yi|§)

2
- o
= 202 ____L______z z(xi - x)(kxi + c - 32-) . (130)

}Z(X:.L - x)
N 2
Cov(k, (£ 1n Yi) ‘_)_(_)

2
_ 9]
= 202 — 1 Z(x, - x) Z(kx. +c - —-2)
2 -2 i i 2
Z(x:.L - x)

=0 . (131)

A A2
cov (k, k|x)

_ _ 2
= 1 53 Cov(E(x. - x) Iny,, (Z(x. - x) 1ln Y.) IX)
- i i i i '=

[‘Z(xi - x) ]

2 2
20 -2 _ o,

= Tx, - x) Z(x, - x)]kx, + ¢ - —-—)
i i i 2

[Dex; - 723
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2
20

c
2 = -2 132
= Zl(xi x)(kxi + c 3 ) . ( )

(Ex, - 2212

Thus, referring to (129) we find

A QZ
Cov (k, o, [5_) =

2
o
2 - 2
202 Z(xi-—x)(kxi+c 2)
n-2 2{x 2

- %)
1

o oo - 2]
Z(Xi-x) kxi+c-7

T(x, - ;<L2
i

=0. (133)
Using equations (128) and (132) in (122) we find
0_2 }_(20_2 O_4
xR 2 2 2
Var (c|X) = = + = * Tm-Z - (134)
Z(xi - x)

- -2
Now, we know that x and Z(xi - x) are independent; thus, recalling

(41) we find, upon applying (134) and (121) to (120)

2 o4
A 2 2 2 _ 2 1
var(©) = —— + o3y t 0, E) El———
T(x. = x)
p s
2 4 2 2
O . %, 2, 9y %
=" 2(m - 2) My n 7 . (135)
(n - 3)crl



We now wish to complete our covariance matrix. We know

- 2
Cov(x, s_ ) = 0.
X

1l

Cov (x, k) E(§ E(ﬁ]za - E(x)E (k)

il

wik = uk

= O .

Using the derivation of (100) we find

A2 - A2 = A
E(x E(cz|§)) - E(x)E(O'i)

Q
I

Cov(;,

B 2 2
e S

Using the derivation of (102) we find

- QA
Cov(x, c)

E(§ E(e|§)) - E(X)E(C)

= ulc - p,lc
= 0
cov(s 2, ®) = E(s 2 E(ﬁ|x)) - E(s 2 E(R)
X X - X

2 2
= k -
ol clk

By similar arguments it can be seen that

62

(136)

(137)

(138)

(139)
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Cov(s_ ,
X

2
Cov(s_ ,
X

63

We may use equation (133) to show

Cov (k, c)

Now,

E(ﬁ 2 1ln
so that

Cov(ﬁ, bN

32) - 0 (140)
2 - o. (141)
A2 ~ 2
) = E(E(ﬁczlg)) - E(KE(0,)
2 2
= k02 - kcz
= 0 . (142)
a2
A N 0-2
= Cov(k, — £ 1ln ¥, - kx + )
1 2

2

1

1 o~ ~ N A N
- Cov(k, T 1n Yi) - Cov{k, kx) + = Cov(k, oz) .

from (50) we know

2
%2
Y. |X) = k Tfkx, + ¢ - ==
i'l— 1 2
Invy,) = E(E(}’E Z 1n Y.IX)) - ER)E(Z 1n ¥,)
1 1= 1

2 2
0'2 0'2
k Z(kul +c - 7?) - k E(kul +c - 7;)

(143)



We may use the derivation of (55) to obtain

Cov(ﬁ, kx)

1]

E(;cE & ]5)) - Bk E R

2
o]
Z(xi - x)

2
B il
- 2
(n 3)01
Therefore
czu
covik, &) = ———?-—1—5 .
(n = 3)0l

Now, to complete our covariance matrix we need

éz
2 A ~2 1 - 2
Cov(cz, c) = Cov(cz, n 1n Yi - kx + >

1 2 R A=
= —;—Cov(oz, % 1n Yi) - Cov(cz, kx)
1 A
+ = Var(cg) .

2

We may use (128) to show

64

(144)

(145)
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A A 52
Cov(oi, z 1n Yi) = E(E(Gz T 1n Yi|§)) - E(O2)E(Z In Yi)

0'2 N 2
2] A2 2 %,
E Z(kxi + C 2) 02 0'2 Z(kul + c - -'2—)

We may use equations (133) and (136) to show
/Q2 N= - 5\\2 Qz Am
Cov(dz, kx) = E(xE(czﬁ|§J - E(cz)E(kx)

-2 2
E(xczk) - szul

2 2
= szul - szul

Thus, using (119) we see that

A A o}
AV N
Cov(cz, c)

To summarize, the covariance matrix for x, S,

given by

(146)
(147)
~ Q2 A,
k, g, and c is



where .
A

s Il—‘qN

4
95

= 2Mm - 2)

2

%2
+ —
n

02 c
2 1
* (ul ' Il) (n -

66

(n - 3)c; | (149

If we use the methods outlined in Chapter 18 of Kendall and Stuart

we find that the corresponding large—-sample covariance matrix is given by

s

]

2
2
n

N
5 |2n B INQJ;

. (150)
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Let us now investigate the efficiencies of our estimators using the

fact that if t is an unbiased estimator of T(Gl, 8 ceey, eK), then

2)
k k
Var (t) 2 £ % %g— 559 ;% (151)
j=1 i=1 ¥i 5 I
where
1 3L 1 3L
I.. =Elx—F—>==—
1] (L BGi L aej)
In our case 9., = 8., = 2 =k - o2 = d th 1 t
r case 8, = Wy 8, = 0p, 93 = k, 94 = 0y, 95 = ¢, an e elements
of Ilﬁ are given by (150).

Using (151) we see immediately that

2
c
A 1
2 —
var (u,l) o
20
A2
var (o.) =2 1
1 n
2
A O-2
var (k) = —-5
ncl
a2 202
A > 2
Var (02) z —
c4 02 02“?
Var (8) > 2 + 2 + 2 1 .
2n n 2
ncl

Thus, we may compute the efficiencies of our estimators relative to

these minimum variance bounds.
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Eff (x) =

= 1. (152)

1l

2
Eff (s )
X

_ —n-1 (153)

eff (k)

= ——— . (154)

A2
Eff (02)

_ — . (155)
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4 2 2 2
o, o, Ty
+ + >
~ 2n n ncl
Eff (o) = 4 2 2 2
%2 92 2 %9 2
+ + "Ll + >
2(n = 2) n n’(n-3)ol
2 2
1+ %2 + !
2 of
_ > . (156)
1 n 5 n by
1 + u2 + 2
n-3 2(n - 2) n-3 o,
2
) K
Suppose in (156) we let u = o, and v = 5 s then, if E§ is efficiency,
(o)
. 1
we may write
n(Eg - 1) + 2 n(Eg - 1) +3
u + v
2(n - 2) n -3
(n - 3)(1 - ER) - EA
- < c_ . (157)

n-3

It is now guite easy for a given value of n to draw contours of

A
constant efficiency for ¢. Furthermore since u and v both must be positive

it is easy to find bounds for Eg for a given n.
Note that for a contour to exist for some Eg, the terms containing n

and E§ in (157) must all have the same algebraic sign. This implies
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that

Finally, we may use the results of Finney (1941) to give minimum variance

unbiased estimators for E (Y¥) and Var (Y)

//A\\ L sin '

n 1 2
E (Y) = e Y(E sz ) (159)

where ¢(t) is the series given in Appendix A, and

2 1 2 1 2
sZ = 7o 1 [}3ln yi - ;(Z 1n yi):] (160)

///\\\ 2 T 1ln vy,

(Var ¥) = e" * (Y(Zszz) - Y(ﬁ—f—% szz)) . (161)

Numerical results of application of the methods of this chapter

to generated data are shown in Appendix B.



CHAPTER IV

ESTIMATION OF PARAMETERS IN THE CASE

kx + ¢
e

E(Y|X = x) = + o

In this case we assume, as before, that X is normally distributed
2
with mean Hy and variance o, - But now, as x approaches - «, E(Y|X)
approaches o, so it seems reasonable to let
-4 n v - -y
2 YT Ty
2

|X = x) = 1 e 20

(y
2-1 \/211 o,y - a

To find Mo 5 note from the properties of the moment generating

(162)

£

function for the normal distribution that

.2 5
3 e, +12_ 9,
E (Y - o) ’5) = e (163)
so that
2
+ %
M 2
E(Y|X) = e 2 + o (164)
We therefore have
2
L2
Hy T 72 kx + ¢
e + o = € +

and
71
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2
o}

by = kx + ¢ - ?? (165)

The central moments for (162) are the same as those for (2) since
we have merely translated the density function by an amount, o,

The bivariate distribution of X and Y now has the density function

1
2

| o [ o) oo ._))

- o, | o
Bx, v) = 21610, (¥ -~ @) © ! ‘ 2

—-olx < ®

Yy > o (166)

An example of the application of this type of distribution is given
by Yuan (1933) who investigates the heights and weights of 11,382 school
boys between the ages of 5 and 14 years. The data first appeared in a
paper by L, Isserli (1915),., Yuan estimates parameters by the method of
moments whereas this paper will deal with maximum likelihood estimation,

If o is known, the estimation procedure is the same as that of the
previous chapter. If ¢ is not known, the solution of the likelihood
equations is more complicated; we shall use a method similar to one
employed by A, C. Cohen (1951) for the univariate case.

The likelihood function is



1

NI

n
2

Do U(yi - o)

2
2)

(2m) (cl) (o

73

9,

and

2 32
(o)
- _iz_ Z(ln(yi - ) - (kxi+ c - 72))
20‘2

. . = 2
It is easily seen, as before, that x and S,

2
of My and oy respectively. Further

2
dInL 1 _ _ _ 0_2
— = Z‘(ln(yi a) (kx:.L + c > ))xi
ok 02
0'2
d1lnL 1 _ _ _ 2
— = Z(ln(yi 01) (kxi + C > ))
ac a,

' 2 + z{ln(yi - 01) - (kxi+ c - %))
\

(167)

are unbiased estimates

(168)

(169)
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2
a.
d1ln L n __1 _ _ __2
32 202 222(1n(yi a) (kxi+c 2))
% % %

2 2
1 %
+—3 Z(ln(yi - a) - (kxi + c - 7)) (170)
20'2

2
a
d 1ln L 1 1 _ _ _ 2 1
Y - z o + z (ln(yi a/) (kx:.L + c 2))—-——},. _— (171)
0'2 1

Setting (168), (169) and (170) equal to zero we find

k- — (172)
ix., - x)
1
~2
c :lzln(yi-a) —12§+—22— (173)

Using these quantities in (171) and simplifying we obtain



75

2
(Z 1n(yi- a))

=N o

2 A~
T 1n (yi-oz) -

S

Ma) =

2
T iny, - o) (x - §>)

1 1
- - - ;‘Z ln(Yi - o)) Z - o
Z(x. - X) i
i
ln(yi - o) T 1n(yi - ol)(xi - x) X, - X
T = - 2 z v, -«
Yi o E(Xi - X) i
=0 (175)

One may first solve (175) numerically, then use & to find k, ¢, and

~2
0'2.

A FORTRAN program for finding these parameters has been prepared by
W. R. Schucany of the Southern Methodist University Statistical Laboratory
and is included in Appendix C. This program was used to analyze the
data on heights and weights of school boys mentioned above. A comparison
of these results with those of Yuan is given in Appendix B.

Although it is not possible to calculate the expected values and

A A A2 ~

variances of k, c, Oy and ¢, we may note that the large sample properties
of maximum likelihood estimators imply consistency and allow us to find
the covariance matrix for the estimators of the six unknown parameters.

It may be that under certain conditions the likelihood equations do not
have a real solution. Futher study is needed to define these conditions.
Although a full derivation of this matrix is not given in this

paper, two interesting expected-value properties for the distribution

whose density function is given by (166) were found in its derivation and

are presented here.
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First, since X is distributed normally with mean by and variance

2
g

1’ integration by parts, used in conjunction with the moment generating

function shows that

v t +—t 2
ExeXt) = e T (6t + w (176)

If Y - o has a lognormal distribution with E(ln(Y - a)) = W, and

2
2 . .
Var(ln(Y - a)) = 02 , a similar argument leads to the conclusion
2
- v +v—’0‘
1n(y - 2 2 2 2
gl =} _ (u, = Vo) (177)

v 2

(Y - o)

These properties, along with others used in Chapters II and III
. . . - 2 ~ ~
enable us to find the large sample covariance matrix for x, S, s k, oz,
~ ~
¢, and q.
The Fisher information matrix is given by (181l) and its inverse the

large sample covariance matrix by (182). Since the covariance matrix, V,

is rather unwieldly, its elements are listed separately. To simplify let

2

2 x° 2

w = 0, c - kul + 5 oy (178)
2 2 2
2.2

2= (1 -305e™ Y ko, +o0, (179)

2

2 2

u = 12 (z - ezw(l + k cl)) (180)

202

where u is the determinant of the information matrix.
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The

11

12

22

23

33

34

35

36

44

45

46

symmetric large sample covariance matrix V

N

13~ 14 15 = ‘16

2nu (z -e ™)

2

[z - 21 + k%62) ]

2 2
o}

[z - ¥ + k D]

has elements
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12 4 2 uz
1 2172 1 1 2|, 2 2 _ 2
Uss = )| (—4_) SR R R LI R Bk

2 2 2
- kcl(u,l - kcl)(o2 + 2)

V. o= e®2

56 = Fpw © 01 TR

02
Y
66  2nu

. co . 2 1
The above covariance matrix is only valid for o, < 3 - For greater

2

values, Cramer's (1966) conditions for asymptotic normality are not met

and other methods of estimation must be employed. This restriction on 02

may not cause practical difficulty in many cases. Recall that the variance

of 1In Y is kzci + U; . Aitchison and Brown (1958) have pointed out that

frequently in practice this variance is in the neighborhood of 0.5 ; thus,

if the variables are not independent and the variance of X is of reasonable

magnitude, one would expect 0§ to be less than one third.



APPENDIX A
THE LOGNORMAL DISTRIBUTION

Suppose that Y = ln X has a normal distribution with mean p, and
. 2 . . .
variance ¢ , then we say that X has a lognormal distribution whose

density function is

1

\27 o x

We may abbreviate this by writing X is A (u, 02) .

_l[lnx—u]z
e2 g x >0

f(x) =

)

The jth moment about the mean is easily found by using the moment

generating function for the normal distribution

© _ _J;[ ln x - ”]2
Ex)) = —E xJLe 2 o ax
\2T © 0 X
2
@ - l[LZ_L]
1
= ejz e 2 © dz

. 1 .22
Jl-b'*'EJO'

Thus,

Ex) = e T T2
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and

2

2
ezu + O g

Var (x) = (e - 1)

Suppose E_ is the quantile of order'p from a lognormal distribution
P
with parameters p and 02, and ﬂp is the quantile of order p from a
standard normal distribution then

+ c
& = S

2 . . .
Thus if X is A{y, o ) the above relation shows that the median is at

The following theorems on the reproductive properties of lognormal
distributions are quoted from Chapter 2 of Aitchison and Brown (1957).
Theorem 1

If X is A (u, 02) and b and ¢ are constants where ¢ > 0 (say
¢ = ) then cx° is A(a + by, b°g2).

Theorem 2

If {xj} is a sequence of independent A-variates where Xj is

A(uj, c?), {bj} a sequence of constants and ¢ = e® a positive constant,

. 2 2 by .
then provided I bju, and L bjcj both converge, the product cHXjJ is

J ) J
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2 2
Afa + Tb.y., S b.g.).
@ My %5

Now consider the random vector X = (Xl, Xy ‘y Xn)'. We will
say that X has a multivariate lognormal distribution if the vector
In X

Y = [In X 1n Xn] has a multivariate normal distribution

1’ 27 <o,

with mean L and covariance matrix V.
Theorem 3
If X is a multivariate lognormal and b is a (column) vector of

constants with transpose b', then the product

c Il X,
j=1

is A(@ +b'y, b'Vb)

The following central limit theorem is also quoted from Aitchison
and Brown.
Theorem 4

If {Xi} is a sequence of independent, positive variates having the

same probability distribution such that
E[1ln Xj] = U

and

Var (1n Xj) = 02

n

both exist, then the product I Xj is asymptotically distributed as
j=1

2

A(np, no ).

In their text, Aitchison and Brown consider several methods for

. . 2 . . . .
the estimation of y, and ¢ and conclude that maximum likelihood estimators
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tend to be more efficient for these parameters. They point out that for
large samples, if computing machinery is not readily available one might
use estimators obtained by the method of gquantiles which, although not
as efficient as ML estimators are easier to compute, and are reasonably
efficient.

If one tries to employ maximum likelihood methods to estimate
E(X) and Var (X) where X is A (p, 02) he finds the equations have no
explicit solution. D. J. Finney (12941l) devised a method to obtain
unbiased, minimum-variance estimators for these quantiles. His method
makes use of the fact that if Y is N(u, 02) then § and si are jointly
sufficient statistics for y and 02.

If (xl, X e, xn) is a sample of n independent observations

2)

from a A(p, 02) population and Y, = in X,

i
and
2 1 -
Sy-n_lz(yi-y)
then
Yy A
al = e Yn( s )
and
b2 = e2y X (52)
1 n vy

are unbiased minimum variance estimators of E(X) and Var (X) respectively

where
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3 2
- - £
Y o) =1 4+ 221y +-(—;—‘————l—)-——-2—,
n n n(n+1) °°
5 3
+ (n - 1) '§°T+

n3(n + 1) (n + 3)

and

n -2
Xn(t) = Yn(Zt) - Yn( - 1 t)

Tables of these functions may be found in Aitchison and Brown.

If, instead of having its lower bound at 0, X is bounded below by
o, and Y = In(X - ¢) is normally distributed with parameters |, and 02 we
obtain the three parameters lognormal distribution whose density function

is given by

f(x) = 1 e X > o

\fiﬁ c(x - o)

2
We may describe this by writing X is A(w, p, o ).

The moments about ¢ are given by

: oy L22
E(|x - a|3) =TI

Since the distribution has been displaced by an amount , but its

shape unchanged, it follows that the mean, median, and mode are, respectively

2
g 2

by o, and et T

u +

e 2 4+, e + o, Xp’ the quantile of order p is given
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by §p + o, where gp is the corresponding guantile of A (u, 02), and the
central moments are unchanged.

None of the reproductive properties listed in Theorems 1, 2, and
3 hold if X is A(w, u, 02).

If o is known, no new estimation problems arise, however if o is
unknown the estimation problem is increased considerably. The maximum
likelihood equations have no explicit solution and one is forced to employ
numerical methods. A. C. Cohen (1951) devised a method of solution and
it is his solution upon which the solution of the likelihood equations in
Chapter IV of this paper are based. Aitchison and Brown devote a full

chapter to this problem and compare different methods of estimation.

2
Suppose ¢ < X < B and X' = is A(u, 0 ). We now have a

X—
B_
four parameter lognormal distribution. It is not further considered in
this paper.

An extensive bibliography for the lognormal distribution is included

in Aitchison and Brown.



APPENDIX B
NUMERICAL RESULTS

1. Ten bivariate normal lognormal random samples of size 100 were

2
generated for variocus values of k, ¢, c§ with Wy = 100 and o, = 225,

The methods of Chapter II and Chapter III were then applied to estimate
the unknown parameters.

2
, and o, were assumed known,

2
In the case of Chapter II where Hys O 5

1
we have, from equations (32), (33), (62), (71), (75), and (76)

Z(xi - x)1ln '

T(x, - x)
i
2
~ 1 a E_
c == Z 1n Yy + 5~ kx
x Z(xi - ul)ln vy
- 2
nO’l
O_2
C=n21nyi+ > —kp,l
2
S =4 Z In Ys + > kz
2
S = 4 Z 1n Y + 3
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where

- 1
z = E(xi ul)

The results of application of these equations to the generated
data are given in Table 1.
In Chapter III it was assumed that all parameters were unknown.

We found from equations (86), (87), (94), (10l1), and (102) that

e -—

My = %
~2 2
o, =
1 -2
T n-1 2(xi - x)

Z(Xi - x)1ln '

Z(x, - x)
1
A2 1 2 1 2 a2 -2]
o, = Th -3 [Eln y; - S(Z1ny,) kK Zix; = x)
§2
~ 1 e 2
c =7 T 1n yl -k + 5

Table 2 shows the results of application of these formulas to the

generated data.
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2
o)

2. In Chapter II it was noted that if k = 0 and ¢ = ; one

would expect X to be a more efficient estimator of k than kK. To see if

an actual difference could be observed, random samples of different sizes

2
. 2 )
were generated with by = 100, oy = 225, k =0, and ¢ = 5 = 4.5. Table

3 presents a comparison of k with X for these samples. It will be noted

that no appreciable difference exists between k and K for these data.



TABLE 3

Comparison of k and k

for Samples of Various Sizes when k = 0 and ¢ =

2

9,

2

n k k
10 .04243 .0489%6
10 - .03509 .06619
10 - .03932 .04407
10 .02007 .02838
10 .01432 .02926
50 .00682 .00812
50 .012172 .00446
50 .02804 .02757
50 .01856 .01907
50 .00066 .00060
100 .01631 .01550
100 - .01755 .0le612
100 .00688 .00291
100 - .03974 .03606
100 - .00647 .00663
500 .01521 .01254
500 .01164 .01147
500 .01733 .01914
500 .00253 .00286
500 .00945 .00971

91
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3. Table 4 gives the results of measurements of heights and
weights of 11,382 school boys between the ages of 5 and 14 years. These
data were presented by Isserlis (1915) and used by Yuan (1933) as a
sample from a bivariate distribution of the type discussed in Chapter IV
with the marginal distribution of heights being normal with mean My and
Gi and the marginal distribution of weights being a three parameter log-
normal distribution, A (o, b 5 og).

Yuan computed the values of the parameters by the method of moments
whereas this paper uses maximum likelihood methods. The FORTRAN program

which was used to solve the likelihood equations appears in Appendix

C.

A comparison of results appears in Table 5.

E(X) = Hy

vVar (X) = 2
ar = 0y

E(ln Y¥) = kx + ¢



Weight = Pounds

TABLE 4

Heights and Weights of School Boys

93

Height
30 33 36 39 42 45 48 51 54 57 60 63 Total
32 35 38 41 44 47 50 53 56 59 62 65

24-28 4 9 2 1 16

29-33 3|42 62 25 3 1 136

34-38 16 | 220] 414 72 6 728

39-43 1] 3 51] el7 697 95 11 1 1476

44-48 1 7% 122 875 603 38 8 1 1655

49-53 4 12 249 088 411 33 5 4 1706

54-58 1 3 1 17 436 905 171 11 4 |3 1552

59-63 1 1 39 630 568 51 6 1 1297

64-68 1 8 161 621 206 3 2 2 1004

69-73 1 35 374 340 24 2 776

74-78 3 106 335 76 5 525

79-83 2 22 120 93 4 1 242

84-88 1 8 32 87 8 2 138

89-93 1 10 36 (18 1 66

94-98 3 23 ° 2 37

99-103 5 |11 3 19

104-108 1 5 1 7
109-113 1 1
114-118 0
119~123 1 i
Total 8 |72 | 350|1193 | 1914 |2178 | 2196 1913 1115(361 |69 {13 |11,382




TABLE 5
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Comparison of Values of Parameters

Obtained by the Method of Moments with Those

Obtained by Maximum Likelihood Estimation

parameter Method of Maximum
Moments Likelihood
“1 47 .4644 47.4644
2
Gl 27.3456 28.7275
o - 11.25 - 4.1034
k .02146 .003712
2
02 .02462 .007376
C 3.1705 2.2970



APPENDIX C

A FORTRAN PROGRAM FOR COMPUTING THE MAXIMUM LIKELIHOOD ESTIMATORS

FOR THE PARAMETERS OF THE DISTRIBUTION OF CHAPTER IV

The main program solves for & by the method of false positions.

The only subprogram necessary is the FUNCTION F.

The FUNCTION F (ALPHA) evaluates ) (y) of equation (175).

po]
1l

n 2

Z In (y. - o)
. i

i=1

z In(y, - o)
i=1 *

n
_E ln(yi - a/)(xi - x)
i=1

n ln(yi - o)
Z —
i=1 Y, T o
n
1

Z -

i=1 Y3~ ¢

n Xi - }_(

z - o
i=1 Y3

95

If we let



then

It

=l
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1000

11

2

MAXIMUM LIKELIHOOD ESTIMATES

97

FINDS ROOT OF THE DERIVATIVE OF LOG L W.R.T. ALPHA

BY THE METHOD OF FALSE POSITION
COMMON X (150),Y (150),XYN(150) ,XBAR, TOT, S, N,
* A,B,C,D,E,G
XBAR=0.0
TOT=0.0
WRITE (6,11)
FORMAT (10X, 1HX, 11X, 1HY, 11X, 1HN/)
READS (5,1) N,ALFO,DALF
FORMAT (15,2E10.4)

N=NO. OF X,Y PAIRS (MAXIMUM OF 150)

ALFO=INITIAL ESTIMATE OF ALPHA (LESS THAN ALPHA HAT)
DALF=STEP SIZE OF ALPHA IN THE SEARCH FOR AXIS CROSSING

YMIN=1.0E1O

DO 100 I=1,N

READ (5,2) X(I),Y(I),XYN(I)
FORMAT (3E10.2)

X NORMAL, Y SHIFTED LOGNORMAL, XYN=NO. OF PTS.

100

110

10

115
120
140

141

IN THE CLASS INTERVAL
IF (Y (I).LT.YMIN) YMIN=Y (I)
TOT=TOT+XYN (I)
WRITE (6,3) X (I),Y(I),XYN(I)
FORMAT (3F12.1)
XBAR=XBAR+X (I) *XYN (I)
XBAR=XBAR/TOT
$=0.0
DO 110 I=1,N
S=S+XYN(I) * (X (I)=XBAR) **2
WRITE (6,10) XBAR,S
FORMAT (40X, 5SHXBAR=,E17.8, 5X,2HS=,E17.8/)
FO=F (ALFO)
ALF1=ALFO+DALF
Fl=F (ALF1)
WRITE (6,5) ALFO,FO,ALFl,Fl
FORMAT (2E20.8)

SEARCH FOR AXIS CROSSING
IF (F1) 120,400,120
IF (FO/F1) 150,410,140
ALFO=ALF1
FO=F1
ALF1=ALF1+DALF
IF (ALF1.GE.YMIN) GO TO 142
GO TO 144



142 ALF1= (ALFO+ALF1) *0.5
GO TO 141
144 F1=F (ALF1)
WRITE (6,5) ALF1,Fl
GO TO 115
ALPHA HAT BRACKETED, REGULA FALSI
150 ALF= (F1*ALFO~FO*ALFl)/ (F1-FO)
FN=F (ALF)
IF (FN/F1) 155,420,160
155 ALFO=ALF
FO=FN
GO TO 180

160 ALF1=ALF
F1=FN
180 WRITE (6,4) ALF,FN
4 FORMAT (5X, 6HALPHA=,E15.7,5X, 9HF (ALPHA) =,E15.7)
IF (ABS (FN) .GT.1.0E-03) GO TO 150
GO TO 420
400 ALF=ALF1l
GO TO 420
410 ALF=ALFO
420 HATK=C/S
SIG22= (A~B*B/TOT~HATK*HATK*S) /TOT
CHAT=B/TOT-HATK*XBAR+0 .5*51G22
WRITE(6,6) ALF,HATK,SIG22,CHAT
6 FORMAT (1H1,10X,6HALPHA=,E16.8//14X,2HK=,E16.8//,
* 10X,6HSIG22=,E16.8//,14X,2HC=,E16.8)
WRITE (6,7)
7 FORMAT (1H1)
GO TO 1000
END

28
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929

FUNCTION F (ALF)
COMMON X (150),Y (150) ,XYN(150) ,XBAR, TOT, S, N,
* A,B,C,D,E,G

A=0.0
B=0.0
C=0.0
D=0.0
E=0.0
G=0.0

DO 100 I=1,N

YLOG=ALOG (Y (I) -ALF)
A=A+XYN (I) *YLOG*YLOG
B=B+XYN (I) *YLOG
C=C+XYN(I) *YLOG* (X (I)-XBAR)
D=D+YLOG/ (Y (I)~ALF) *XYN(I)
E=E+XYN(I) /(Y (I)~ALF)
G=G+XYN(I) * (X (I)~XBAR)/ (Y (I)~ALF)
F= (A~B*B/TOT-C*C/S) /TOT*E+D-C*G/S=B*E/TOT
RETURN

END
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