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SUMMARY

We propose a new parameter for measuring the influence of a random effect in a mixed
linear model. This is the probability of preponderance of the random effect under study over
the other random effects. In a one-way random effects model, this is simply the probability
the group random effect is larger in absolute size than the individual random effect (or
error). We discuss the meaning of the parameter and relate it to the more familiar intraclass
correlation coefficient. The new parameter is invariant under a broad set of transformations
of the error distributions, and thus is not tied to a particular parametric family. This is
in contrast to the intraclass correlation, which has it’s origins in normally distributed
random effects. Furthermore, the new parameter directly measures the random effect’s
impact on the observations whereas the intraclass correlation relies on the variances (second
moments) of the random effects. We suggest parametric and nonparametric estimators of
the parameter, and demonstrate the applicability of the results using real data. We also
indicate how to extend the ideas presented in this paper to models having more than two
sources of variation.

Some key words: Bootstrap confidence intervals; Nature versus nurture; One-way random effects
model; U-statistic: Variance components

1. INTRODUCTION

Using variance to measure variation and conducting inferences based on normality assump-
tions are prevalent throughout the random and mixed effects model literature. Fisher
(1918), defined variance as the square of the standard deviation, and proposed using pro-
portions of total variance to describe the contribution of a particular effect. Later, (Fisher
1925) he pointed out that this ratio is the intraclass correlation, “...the correlation merely



measures the relative importance of two groups of factors causing variation”. Fisher (1918)
specifically stated that variance is to be used to measure variation as the data are usually
to be taken to be normally distributed. This point is a primary motivation for the present
paper. If the random effects are normally distributed then variance is clearly the correct
measure of variation. However, if the random effects follow, for example, a Laplace (double
exponential) distribution then one might argue that absolute deviations are more appropri-
ate. The fact that variance may not be the best measure of variation is also a motivation
behind the work of Cox and Hall (2002), who examine additive random effects and consider
estimating cumulants of the distributions of the random effects. In practice, one might not
be sure of the correct error distribution, and so desire a parameter which has a consistent
interpretation across a reasonably large family of errors. To meet this goal, we introduce a
new parameter, which we term the probability of preponderancy, and denote it by 6.

The probability of preponderancy is the probability that the random effect under study
is larger in absolute size than the other random effects in the model. Consider the one-way
random effects model where the observation on the 5% individual in the " group, denoted
by Y;j, is

}/i' = M+Ai+€ij7 (1)

p is the overall population mean, A; is the group random effect, and ¢;; is the random error.
The parameter under study is

0 = P(14i] > |ey))- (2)

The new parameter has an important role to play when measuring the influence of
random effects on the observations. By definition, € is the proportion of individuals for
which the random effect outweighs the error. In essence, 6 quantifies how important the
random effect is to the observations without using variance components. In Section 3
we show that the preponderance probability is invariant under transformations between
symmetric error distributions, and thus is not tied to a particular parametric family. The
intraclass correlation coefficient is not invariant under the same transformations.

The remainder of the paper is organized as follows. Section 2 briefly reviews the history
of variance components and the intraclass correlation coefficient and also robustness of
common estimators to nonnormality. Section 3 introduces the preponderance probability
6, explores basic properties and considers its relationship to p. Section 4 discusses classical
inference about 6 under normality assumptions. In Section 5 we introduce a nonparametric
estimator based on a U-statistic. We recommend using bootstrap methods to construct
confidence intervals based on a nonparametric estimator, and discuss this in the section.
Examples are given in Section 6 which illustrate the usefulness of the parameter. There are
some concluding comments in Section 7 and a brief discussion that extends the method to
models with more than two sources of variation.

2. BACKGROUND

According to Scheffé (1956) and Searle, Casella, and McCulloch (1992), the first ex-
plicit use of the one-way random effects model was made by Airy (1861). Shortly after,
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Chauvenet (1863a, 1863b) employed a one-way random effects model to study how many
repeated observations of the right ascension of a star are required to obtain accurate dis-
tance estimates. Fisher (1918, 1925) used a two variance component model in quantitative
genetics by considering additive genetic effects as one random effect and lumping together
non-additive genetic effects with environmental effects to form a second random effect. See
Bennett (1983) for details.

The intraclass correlation coefficient, first named by Fisher (1925) is generally defined
in the terms of variance components. Usually it is assumed that errors have normal dis-
tributions. Even when this is not an explicit assumption, it can be argued that the use of
variance to measure variation is an implicit assumption of normality, (Fisher, 1918, Cox
and Hall, 2002). For a thorough overview of the intraclass correlation coefficient in the
one-way random effects model, see Donner (1986). Despite the clear dominance in the lit-
erature of the assumptions of normality and using variance to measure variation, there are
some papers where the intraclass correlation coefficient is not based on these assumptions.
Rothery (1979) defines a nonparametric measure of intraclass correlation as a probability
of certain types of concordances among the observations. The estimator is a function of
the ranks of the observations. Shirahata (1982) compares the estimator derived by Roth-
ery (1979) to two additional nonparametric estimators. Commenges and Jacqmin (1994)
provide a definition of the intraclass correlation coefficient which depends on variances but
not normal theory. The statistic used to test the hypothesis of null intraclass correlation
is related to the pairwise correlation coefficient, which predates the ANOVA estimator of
p. See Karlin, Cameron, and Williams (1981) for a general class of weighted pairwise cor-
relation coefficients. Bansal and Bhandary (1994) discuss the properties of M-estimators
of the intraclass correlation cofficient. Miiller and Biittner (1994) note that selecting the
appropriate estimator of p depends on the underlying sampling theory. Vogler, Wette,
McGue, and Rao (1995) compare estimators of p under a variety of sampling conditions.
Cox and Hall (2002) propose a linear model, but do not assume the random effects are
normally distributed.

It is our intention to use an underlying linear model structure, that is, consider scenarios
in which one can identify sources that produce variation in the observations, and where the
sources combine additively. Furthermore, the parameter of interest should not be tied to a
particular parametric family.

3. THE PROBABILITY OF PREPONDERANCY

Although 6 can be defined in more complicated mixed linear models, it is conceptu-
ally beneficial to consider the one-way random effects model and relate the probability
of preponderancy to the intraclass correlation coefficient. Using (1), suppose i = 1,...,a,
j=1,..,b; and >¢ ; b; = n. The a groups in the model are assumed to be randomly
selected from some large population of groups. Furthermore, a random sample of size b;
has been obtained from the 7" group. We will assume that A4; % S(0,02), e; % S(0,02)
(where S denotes a symmetric distribution), and that A; and ¢;; are mutually independent,
with 0 > 0 and 02 > 0. In Section 4 of this paper we will assume the random effects are



normally distributed, but in general this is not the case.

Observations within the same group are correlated (Cov(Y;;,Y;;) = o?) and observa-
tions from different groups are uncorrelated. In addition, Var(Y;;) = Var(4;)+Var(e;) =
0? + 02. The intraclass correlation coefficient is p = 02/(0? + 02) where 0 < p < 1. p may
be interpreted as the proportion of the variation in the Yj;’s attributed to factor A. Note
that p is a function of the variances of the random effects; and is not a direct comparison
of random effects themselves. The preponderance probability, # = P(|A;| > |e;|), has a
direct interpretation in terms of random effects as it compares the influence of A and €
on Y . For example, in genetic applications it can be interpreted as the probability that
additive genetic effects are more important than “other” effects for the phenotype under
investigation.

Consider the simple scenario where A and e are independent and normally distributed
with 02 = 02 = 1. In this case # = 0.5 since the two random effects contribute equally to
the formation of Y. Figure 1 provides a picture of 6, the volume under the bivariate normal
probability density function contrained by the domain |A| > |e|. Of course, if 02 # 032,
then one of the random effects outweighs the other and 6 # 0.5.

The probability of preponderancy is invariant under a set of transformations described
as follows. Suppose A, € are both continuous and symmetrically distributed about 0, with
densities from the same scale family f. We will assume possibly different scale parameters.
Consider a model transformation of the members of f to a different symmetric about 0
scale family g, (an example would be from a normal family to a Laplace family). A simple
way to define such a transformation is to define h : A — h(A) so that h maps quantiles of
A to quantiles of h(A). Examples of such transformations are: the scale transformations
(A — kA ); signed-power transformations (A — sign (A)|AJ¥); and the normal to Laplace
transformation. Note that this transformation must be monotonic increasing on |A|, due
to the preservation of symmetry about 0.

Now for theoretical consistency we will apply the same transformation to €, that is
h : € — h(e). Note that applying the same transformation to A and e is critical. The whole
point of these models is to be able to make comparisons of the relative size or variability
of the random effects. If we were to allow or consider separate transformations for A
and ¢ we would have to allow transformations that dramatically and ”unequally” scaled
them, for example A — 100A paired with € — €/100. Since h is monotonic increasing
on absolute values, this implies P(|h(A)| > |h(€)|) = P(]A| > |e|). That is, 6 is invariant
under simultaneous transformation of A and € by h. Note also that in general the ratio
of second moments of A and € will not be preserved under these transformations, only
the scale transformation will preserve this ratio. Thus in general, p is not invariant under
transformation. So in this sense, # is not tied to any particular parametric form, and
”"means the same”, whether the errors are Laplace, normal or some other symmetric scale
family distribution, in contrast to p.

Closed-form expressions relating 6 to p can be obtained for specific distributions. If the
random effects are normally distributed, it follows that
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A3/t
= Fi(01/03) (3)
where Fii(.) is the cumulative distribution function of an F-distributed variate having

numerator and denominator degrees of freedom equal to one. By definition, 0 < 0 < 1. In
this case the parameter can be written as

0 = Fii(p/(1-p))

2
= Ztan? P
T 1—0p

= %sin_l\/ﬁ (4)

€. /o2
= P( gl 72 <Jf/0§>

and thus

p = SmQ(ge). (5)
Note that when p = 0, 6§ = 0, when p = 1/2, § = 1/2, and as p approaches one, # approaches
one.

One alternative distribution for the random effects is Laplace (double exponential).
Suppose that A; has a Laplace distribution with mean 0 and variance o%, ¢; is Laplace
with mean 0 and variance o3, and A; and ¢;; are mutually independent. In this scenario it
is known that |4;| and |e;;| have exponential distributions with means equal to oy /+/2 and
02/v/2, respectively. It follows that

0 = P(lAi| > [ei;l)
€ij] /09
i (\Ai\/m <o ”2>
= Fys(01/09) (6)

where F5o(.) is the cumulative distribution function of an F-distributed random variable
having numerator and denominator degrees of freedom equal to two. The parameter can
also be written as

0 = Faa(p?/(1-p)'?)

1/2 -1
P
= 1-(14 ——=
( +(1—p)1/2>

1/2

_ p
(A=)t "
Alternatively,
92
Al e ®
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Another alternative distribution for the random effects is uniform (rectangular). Sup-
pose that A; has a uniform distribution with mean 0 and variance o7, €;; has a uniform
distribution with mean 0 and variance o3, and 4; and €;; are mutually independent. Then

o Wis, ip<
1 =2 if p >

NI o=

or

,= | tHm H0<
— : :
eTcErLE if 6 >

N =N

As in the normal case, 0 < § < 1. Furthermore, when p =0, 0 =0, when p=1/2, 60 =1/2,
and as p approaches one, # approaches one. For other values of p, the relationship between
p and 6 is somewhat different depending on which of these distributional forms we adopt.
Figure 2 displays the values of 6 as a function of 0 < p < 1 for the normal, Laplace, and
uniform distributional assumptions.

One can make some general statements about the relationship between 6 and p, at least
in the case of continuous distributions with finite second moments. Note that p = 0 iff
0? = 0 and 02 > 0. Of course, 0? = 0 iff A = 0 almost everywhere. Since ¢ is continuous
with positive variance, we then have that these conditions are satisfied iff P(|A| > |e|) = 0,
i.e., # = 0. Similar reasoning also establishes that p approaches one iff # approaches one.
It seems reasonable that p > 1/2 iff § > 1/2, but we as yet have no proof of this fact. If
the variables in question are discrete then it is possible for other relationships to occur, for
example, p can be very small, but # be quite large.

It is important to note that # and p measure somewhat different phenomena. 6 relates
to individuals, telling us for what proportion of individuals the group random effect is
“more important” than the individual random effect. p tells us what proportion of the
variance of a trait in a population is due to the group effect. Using variance to measure
variation is a concept tied to normal theory. It follows that using p to measure the relative
contribution of the random effect to the variation in the observations may be misleading, if
the errors are not really normal. For example, one might think that p = 0.01 would imply
that group effects are negligible, but under the assumption of Laplace distributions, in over
9% of individuals, the group effect outweighs the individual effect. Again, p = 0.1 would
usually be taken to be a small group effect, but under Laplace distributions, 8 = 0.25, so
that for 25% of individuals, the group effect dominates. We offer 6 as an alternative to p
and suggest its appropriateness is not dependent on a specific distribution. In the next two
sections we take up the problem of inference from data, first under parametric, and then
under nonparametric assumptions.

4. INFERENCE UNDER NORMAL DISTRIBUTION ASSUMPTIONS

Although the main intent of this paper is to introduce a parameter and associated
estimator that do not assume normality, it is still useful to look at inference about the



parameter when normality does hold. Assume that 4; is N(0,07) and €; is N(0,03), with
the usual independence assumptions. A commonly choosen estimator of p is the restricted
maximum likelihood (REML) estimator, which we denote by p. See Searle, Casella, and
McCulloch (1992, pages 90ff, 159ff, 249ff) for a general description of REML estimators of
variance components. For alternatives to REML for estimating p, see Vogler et al. (1995).
Due to the invariance of maximum likelihood estimators, the REML estimator of 6 is

Y 2 1 [~
= = ; 9
6 —sin \/; (9)

The analysis of variance table for the balanced one-way random effects model is given in
Table 1. For balanced data, the REML estimator of p is the same as the ANOVA estimator

Table 1: ANOVA Table

Source df Sum of Squares
Between Groups a—1 Qs = Z Z Y, -Y. )
=1 ]
Within Groups a(b—1) Q=33 (Y -Y)
i=1j=1
a b —
Total ab—1 > (Y- Y..)
i=1j=1

of p bound to the parameter space. In these scenarios an exact confidence interval for 6
is readily available. It is well known that @; (the between group sum of squares) and @
(the within group or error sum of squares) are independently distributed where

Q

L~ a1 (10
and
S~ - (1)
It follows that
(1 +b 2) (?b_—ll))%lz Fla(b—1),a - 1). (12)

Let F,/; and Fi_,/2 be the o/2 and 1 — /2 percentiles of the F' distribution having
numerator and denominator degrees of freedom equal to a(b — 1) and a — 1, respectively.
A 100(1-a)% equal-tailed confidence interval for 6 is obtained by recognizing that

2 _
l1—-a=P (Fa/g < <1+b > ((b—l))%2 < Fla/g)
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since Fy1(.) is a monotone increasing function. Simplifying, a 100(1-a)% equal-tailed con-
fidence interval for 6 is

2 _ 1 (l(b - 1)Q2 2 1 1 G,(b — 1)Q2
Ztan | = Fyjpm—222 1), 2¢ N Fgpr—22 1) ] . 14
(”an ¢b< T N A A Vo3 .
The asymptotic properties of the REML estimator of 6 follow from the asymptotic
properties of p. Burch and Harris (2001) show that

p KT N(p.V(p)) (15)

where V(p) is the variance of the asymptotic distribution of p. While asymptotic nor-
mality does not depend on underlying distributional assumptions, the form of V(p) does.
Assuming normality, Var(p) is given by

2n—1)(1 - p)? (1+pb - 1)’
(n—a)(a—1) b2 '

V(p) (16)

This formula was first derived by Fisher (1925). Using a Taylor expansion approach, it is
well known that if a function g(.) is differentiable at p and V' (p) goes to zero as the sample
size increases, then

g “L" N(g(p), (d'(0)°V (D)) (17)

In our case, g(p) = 2/msin"',/p and the asymptotic distribution 0 can we expressed of
terms of p as

R " 1= p)(1+pb—1)
o N (isml\/ﬁ’ 7r2(n2(— a)(jt)— 1) | p)( b—zﬂp( )) ) 18)
and in terms of f as
~  asymp 2(n —1) (1 + sz’nQ(gQ)(b - 1))2
oo~ N (0’ m2(n—a)(a—1) b?tan?(30) ) ' (19)

5. NONPARAMETRIC INFERENCE

For maximum utility, inference about # should be robust to choice of the parametric
family. One way to achieve this is to use nonparametric methods. In this section it is
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assumed that A4; % 5(0,02), €ij “5(0,02), and that 4; and €;; are mutually independent.

Along with a nonparametric point estimator, we construct a nonparametric confidence
interval for 6 using a bootstrap sampling procedure for hierarchical data.

We begin by recognizing that if A and e were directly observed, each of the a levels of
A could be compared with each of the ab values of € to form a U-statistic. Specifically,

N 1 a a b
6= %ZZZI(MM > |eijl)

k=14i=1j=1

where I(.) is an indicator function that takes the value one if the condition is true and zero
if not. Clearly, 6 can never be calculated as it depends on the actual values of the random
effects. Nevertheless, it is instructive to explore the properties of 6.

THEOREM 1; The quantity 6 is consistent for 0 and has an asymptotic normal distri-
bution.

Proof:

The quantity  is a U-statistic. It can be written as

~ 1
0= % Z ¢(Al) 6jk))
1,5,k
where ¢ is 1 if [A] > e[, and 0 otherwise.
Clearly 6 is unbiased for E(¢), which is § = P(|A| > |¢[). Using standard theory of
U-statistics (see for example, Lehmann (1999, sec 6.1), one can show that

VAR(@) _ (ab—1)o%, + (a — 1)o3, +0%1.

a2b
Where
oty = var(¢) =6(1 —0),

2 _ 2
o1 = cov(Pijk, Gitm) = $1 — 07,
¢1 = P(|A] > maz(|e1], |e2])),

and
‘731 = COU(¢ijk; ¢lj1c) = ¢y — 927

with

¢2 = P(le[ < min(|As],|Az])).

As a — oo, it is easy to show that

Var(v/af) = o2, + o3, /b.

Or anotherwords, for large a, we have that Var(6) is approximately
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oty + o /b

a

If in addition b — oo, then the last term vanishes, and we have that Var(6) is about o7, /a.
Thus 6 is consistent. To see that it has an asymptotic normal distribution we apply a
standard result for U-statistics, which again is illustrated in Lehmann (1999). Define

$10(a) = Ee(4(a,€)).
Then clearly E(¢19(A)) = 0. In addition we can define

Po1(e) = Ea(d(4,e)).

Again, ¢g; is unbiased for . Now it is possible to show that

var(¢10(A)) = o7,

and that
var(poi(€)) = 0(2)1.

For completeness, we will illustrate the first of these. Note that

UGT(¢10(A)) = VCLTA(E'€¢(A; 6))’

where the subscript notation means taking expectation with respect to the variable in
question. This latter quantity is then

ELE2p(A,€) — 6°.
Now for this to be equal to

U%O = CO’U(gﬁ(A, 61)7 (b(Av 62))7
we need
EAE3¢(A’ 6) = EA,€1,€2 (¢(A’ 61)¢(A> 62))'
This is true if
Ee2¢(A> 6) = E€1,62 (¢(A’ 61)¢(A’ 62))'

That this is true follows from the fact that the right hand side of the latter can be factored
as

E€1 (¢(A’ 61))E€2 (¢(A’ 62))'
By a similar argument, the other result follows. Now consider the quantity

T, = a6 —6).

We want to show that this quantity has a limiting normal distribution. We already know
its variance. The limit here will be as a — oo. To prove this we require the lemma
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stated in Lehmann (1999, page 378), that T, and 77 have the same limiting distribution if
E(T:—T,)*> — 0 as a — co. Adapting standard results (see Lehmann (1999)), we construct

our T to be
= Va{l/a(}_ ¢10(A:) = 0) +1/ab(}>_ dor(ejx) — 0)}-
i Jrk
Clearly, E(T*) = 0, and careful examination shows that the two sums in 7* are sums of in-
dependent quantities, and by the central limit theorem, have limiting normal distributions.

In fact
var(T)) — o3y + 1/bog,.

This is the same limiting variance as 7,. Since they both have zero expectation, and the
same limiting variance, the squared difference goes to zero if cov(T,,T;) has the same
limiting expression as Var(7,) also. In fact,

cov(To, Ty) = cov(v/a{1/a®b Y diji}, vVa{l/ay_ dro(Ai) + 1/abd_ dor(€jr)})-
Which is
—COU Z¢zykaz¢10 )+ 2—b200” Z¢zykuz¢01 €k))

ijk ijk
Each of these sums can be simplified. For example, the first becomes
Z COU(@jk, P10 (Az'))a
ijk

as all other terms have zero covariance. There are thus a?b terms, each of which is

cov(Pijr, Pro(Ai))-

These terms individually are

Ea(p(A, €)p10(A)) — 6>

which is
EA(E(9(A €)910(4))) — 62,
or
EAQS%O(A) — 6= U%m

from before. A similar result holds for the second set of covariances, and thus the covariance
has the required form, which means that 7, has a limiting normal distrbution with the
specified variance.

Of course, we cannot observe 0, and instead must work with estimated values of A
and e. This introduces considerable complication to the theory. Using simple, or naive
estimators such as

=l
|

Anaive

~naive

i

&
|
S
—~
[N}
—
SN—
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we have
AP = A — A+ & —E,

and )
~ 1 A48 ~ )
enazve — % Z ZZIOAZMW‘ > ‘a’zjawe )

k=1i=1j=1

The presence of the extra terms induces dependence among the ﬁ”“i”e’s, and the dis-
tribution of ﬁ?am depends on the distribution of . These dependences only disappear if
we have b — oo as well as a — oo as outlined above. From a practical viewpoint this
might seem problematic, as b is usually small. However, simulation results outlined later
are encouraging for b > 4.

The estimators of A and e actually employed depend on one’s desire to match the
properties of A and € to those of A and €, respectively. While it is true that A?‘me and
;e play the role of A; and ¢; in that E(Areive) = E(A;) and E(€j™) = E(e), the
variances of Am¢ and ¢ do not equal the variances of A; and ;. In this manner

~naive

comparing the magnitudes of A?“i”e and €7 in Oraive may lead to erroneous results. It is

readily known, however, that

Var (\j o boi (E.—?..)) — Var(4) (22)

a—102%+ bo?
b —
Var ( —(Y;; — Y,)) = Var(e;) (23)

and under normal theory

) - e e

a—103+bo?

Simulation results indicate that estimating a/(a — 1)bo? /(02 + bo?) jointly using normal
assumptions is better than estimating the individual variance components and then com-
puting an estimate of the scalar. We consider

Acalar \lmax {0, - . : (1 (a=3)Gh ) }(Vi_ ~Y) (25)

N a(b —1)Q:

~scalar b N
e = \/H(Y;j—Y,-_) (26)

where A‘;c‘”‘”’ is an estimator A and €§**" is an estimator e. The corresponding estimator
of 0 is denoted by . Note that the computations of E(Aser) and Var(Ascalor)
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involve two correlated quantities (the argument of the square root and Y — 7__) as well as
truncation and thus will not identically match E(A;) and Var(4;).

We also consider an estimator of A based on jackknife versions of ); and ()». That is,
determine Qy(_;) and Qy(_;), where (—1) denotes that Q; and (), are computed by excluding
the observations in the %" group. It follows that

ar L _ (a' — 4)@1(—1) 3 v _ 02
' (\J a—1 <1 (@a—1)(b— 1)Q2(—z’)> ¥ Y")) 1 (27)

so an alternative estimator of A to consider is

jackinise \Imax{o,%(l_ y 5“1;(;[@;%;(_0)}(72-_—?..). (28)

Since the argument of the square root and Y; — Y are uncorrelated, E(AI***"7¢) = F(4;)
and Var(ﬁg’mkk"if “) should be close to Var(A;). We use @-ackkm e to denote the estimator
of § based on A**"¢ and egeatar,

We now evaluate the practical use of the estimators of . Note that while the A’s are
independent of one another and the €’s are independent of one another in é, such is not the
case for the A’s and €’s in the various forms of 6. It is also clear that estimating A and e
to compute 6 will contribute to the variation in the resulting estimator. To accompany the
point estimators of #, we consider bootstrap confidence intervals of # based on the various
forms of 6.

Efron and Tibshirani (1998) discuss nonparametric bootstrap estimation techniques
when resampling is based on nonhierarchical data. The natural layering or nested feature
of the data in the problems we consider present a complication when compared to the
usual bootstrap resampling methods. Davison and Hinkley (1997, p.100-102) provide an
outline of the resampling procedure for hierarchical data having two stages of sampling.
The strategy recommended by Davison and Hinkley (1997) attempts to match the resam-
pling variations of the statistics to the variational properties of the data. As mentioned
by Davison and Hinkley (1997), we note that the resampling procedure works well when
a > 10. Using model (1), the resampling strategy employed involves obtaining resampled

values of A and €;;, denoted by A; and €;, respectively, as follows:

ij)

1. Compute Y, , where K, ..., K, are randomly sampled with replacement from {1, ..., a}.
2. Compute Y, —Y , where Y =Y, Y, /a.

3. Compute Y75, — Y, where I, ..., I, are randomly sampled with replacement from
{1,...,a} and Ji, ..., J, are randomly sampled with replacement from {1,...,b} .

4. Compute ﬁz = f(Yk,. —Y.) and &; = g(Y1,5; — Y1,.), where the functions f and g
depend on the naive, estimated scalar, or jackknife forms of the estimators (and thus @7,

Q3 Qi iy Qa)-

~ The bootstrap estimator of 6, denoted by 8*, is computed using the appropriate forms of
Aj and €;. The algorithm listed above can be repeated to obtain 67, ..., 0, where B is the
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number of bootstrap replications. Bootstrap confidence intervals for # are then constructed
from the empirical distribution of 8*. The bootstrap confidence interval procedure we use
are bias-corrected (BC) but are not accelerated. The performance of the bias-corrected
and accelerated (BC,) bootstrap confidence interval depends on the estimated acceleration
constant. In nonparametric problems such as ours, an accurate estimator of the acceleration
constant is not easily obtained and resulting BC, intervals may perform poorly. See Shao
and Tu (1995) for additional details.

A simulation study was conducted to evaluate the performance of the nonparametric BC
bootstrap confidence intervals using the naive, scalar, and jackknife forms of the estimators.
Performance was judged by the simulated coverage probability of 90% confidence intervals.
For various combinations of a and b using B = 2000, 10000 nonparametric BC' bootstrap
intervals were built from normal, Laplace, and uniform distributed data for § = 0.1, 0.5,
and 0.9. Simulation coverage probabilities (CP) and expected lengths (EL) of the intervals
are displayed in Tables 2 and 3. When # = 0.1, the simulated coverage probabilities using
the naive and scalar versions of the estimator fall far short of the nomimal 0.90 level. In
general, the coverage probabilities associated with the jackknife estimator are more apt to
be close to the nominal level. We recommend using €;4cxknife Over the estimators considered
for studies where a > 10, b > 4.

The usefulness of the bootstrap method to estimate € is illustrated by a comparison
of the confidence intervals associated with §jackkmfe to the confidence intervals based on
the asymptotic properties of f. From (19), an approximate 90% confidence interval for 0
(assuming normality) is

2(n —1) 1+ sin?(%0)(b— 1)
(n—a)(a—1) wbtan(gé) ’ (29)

9 + 1.6454

For small values of 6, 7 may be small or zero and the expected length of confidence intervals
using asymptotic results can be very large no matter what sample size is considered. Fur-
thermore, for intermediate to large values of 0, (29) may not produce acceptable results.
Consider scenarios where a = 10,20 and b = 4,5,10 for Laplace distributed data. For
6 = 0.9, the simulated coverage probabilities using (29) range from 0.74 to 0.76; far short
of the nominal 0.90 level. Using gjackkm-fe and its accompanying BC' bootstrap confidence
interval provide reliable results for estimating € based on intermediate sized samples having
a variety distributions.

6. EXAMPLES

Gibbons and Bhaumik (2001) compared the results of copper concentrations as deter-
mined by seven laboratories. Water samples, prepared by an independent source, were
analyzed by the laboratories in a blind interlaboratory study. For brevity reasons, we
consider that part of the dataset consisting of five replications per laboratory based on a
copper concentration of zero ug/L. The copper concentrations as measured by the labora-
tories are given in Table 4. Negative values are possible since the copper concentrations
are based on a linear calibration function. Using a one-way random effects model, one
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Table 2: a = 10. Comparison of different estimation methods.

Tabulated value of CP is a %, EL is expected length.

Nominal value 90 %

Distribution
Normal Laplace  Uniform
b 6 Estimator CP EL CP EL CP EL
4 0.1 Naive 49 036 22 0.38 76 0.34
Scalar 69 031 68 033 71 0.29
Jackknife 81 0.34 82 0.38 80 0.31
0.5 Naive 94 0.44 95 0.45 93 045
Scalar 91 0.55 92 0.57 89 0.54
Jackknife 92 056 93 0.59 &89 0.55
0.9 Naive 88 0.24 8 0.33 89 0.35
Scalar 87 0.35 83 0.34 88 0.36
Jackknife 87 0.35 83 0.34 88 0.36
5 0.1 Naive 42 032 12 0.35 76 0.30
Scalar 69 0.29 68 0.32 73 0.28
Jackknife 80 0.32 82 0.36 81 0.29
0.5 Naive 94 042 94 0.43 93 043
Scalar 92 0.50 94 0.53 90 0.49
Jackknife 93 0.51 94 0.55 90 0.51
0.9 Naive 89 0.34 87 0.33 89 0.34
Scalar 88 0.34 86 0.33 89 0.35
Jackknife 88 0.34 86 0.33 89 0.35
10 0.1 Naive 43 023 06 0.26 83 0.21
Scalar 73 024 63 0.25 82 0.22
Jackknife 82 0.25 76 0.28 86 0.23
0.5 Naive 92 037 93 0.39 92 0.38
Scalar 92 0.40 93 0.43 91 0.40
Jackknife 92 0.41 93 0.44 91 041
0.9 Naive 88 0.32 87 0.31 89 0.33
Scalar 88 0.32 87 0.31 89 0.34
Jackknife 88 0.32 87 031 89 0.34
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Table 3: a = 20. Comparison of estimation methods. Nominal value 90 %, tabulated values
are a % for CP, and EP is expected length.

Distribution
Normal Laplace  Uniform
b 6 Estimator CP EL CP EL CP EL

4 0.1 Naive 10 024 1 0.26 36 0.22
Scalar 69 022 62 022 73 0.21
Jackknife 79 024 76 0.26 78 0.22

0.5 Naive 93 030 94 0.31 92 0.31
Scalar 84 0.39 87 0.43 81 0.37
Jackknife 84 040 &7 0.44 81 0.38

0.9 Naive 8 0.21 80 0.21 87 0.21
Scalar 8 022 77 0.22 88 0.22
Jackknife 85 0.22 77 0.22 88 0.22

5 0.1 Naive 12 022 1 024 52 0.21
Scalar 70 021 63 0.22 76 0.20
Jackknife 79 0.23 76 0.25 81 0.21

0.5 Naive 93 029 94 0.29 93 0.30
Scalar 89 0.34 91 0.37 85 0.34
Jackknife 89 0.34 91 0.38 85 0.35

0.9 Naive 87 0.21 81 0.21 88 0.21
Scalar & 022 79 022 89 0.22
Jackknife 87 0.22 79 0.22 89 0.22

10 0.1 Naive 13 016 1 018 73 0.14
Scalar 77 0.18 62 0.18 85 0.17
Jackknife 84 0.19 75 0.20 85 0.17

0.5 Naive 92 0.26 93 0.27 92 0.27
Scalar 92 0.27 94 029 90 0.28
Jackknife 92 0.27 94 0.29 90 0.28

0.9 Naive & 0.21 83 0.21 88 0.21
Scalar &7 0.21 82 0.21 88 0.21

Jackknife 87 0.21 82 0.21 88 0.21
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Table 4: Copper Concentrations (ug/L)

Labl Lab2 Lab3 Lab4 Labb5 Lab6 Lab?7
3.000 2.100 0.800 1.661 0.090 7.226 0.018
2.000 0.300 -0.185 1.996 -2.510 -1.000 -3.000
-1.000 2.000 0.990 0.000 7.270 0.000 0.000
1.000 1.300 0.905 2.993 7.140 10.244 -2.000
-1.000 2.000 0.365 2.042 0.280 -2.177 -2.000

can determine how the variability of the laboratories contributes to the overall variability
of the measurements. If o? represents the variance of the laboratories and o2 represents
the variance of the measurements within laboratories (or error), the intraclass correlation
coefficient is p = ¢2/(0? + 03). For this data, @, = 230.32, Q2 = 60.08, and p = 0.04.
That is, the percentage of variance in copper concentrations associated with the variance
in laboratories is 4%.

Recall that the probability of preponderancy (6) and p measure different things. 6 re-
lates to individual measurements, indicating the proportion of individuals for which the
laboratory effect is “more important” than the error effect. Under normal distribution
assumptions, § = 0.13 and a 95% confidence interval for 6 is (0.00, 0.51). The value of
0.13 should be interpreted as follows; “in 13% of determinations, the laboratory effect is
greater than individual measurement error”. In this application we find that the intraclass
correlation coefficient understates the direct impact laboratories have on the copper con-
centratlon measurements. The nonparametric estimators are Hmwe = 0.43, 93(;@1(" = 0.31,
and gjackkmfe = 0.24.

Consider the example presented by Vangel (1992) in which tensile-strength measure-
ments were made on five consecutive batches of composite material used to make aircraft
components. Five measurements per batch were obtained for a total sample size of 25.
The coded strength measurements for this application are displayed in Table 5. For these

Table 5: Tensile-strength Measurements

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

379 363 401 402 415
357 367 402 387 405
390 382 407 392 396
376 381 402 395 390
376 359 396 394 395

data, QQ; = 1578.40, (s = 4163.36, and p = 0.71. That is, the percentage of variability
in tensile strength associated with the variability in batches is 71%. It may also be of
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interest to determine how the batches directly influence the tensile strength measurements,
a matter not addressed by the intraclass correlation coefficient. The probability the batch
effect outweighs the individual measurement (or error) effect is estimated by f. Under nor-
mal distribution assumptions, # = 0.64 and a 95% confidence interval for  is (0.41, 0.87).
Again the .64 should be interpreted as “in 64 % of measurements, the batch effect is larger
than the measurement error.” (Is it measurement error, or variation within batches?). The
nonparametric estimators are @W-ve = 0.84, §scalar = 0.82, and gjackkm- se = 0.82. We do not
recommend computing the nonparametric BC bootstrap confidence interval for either of
these examples since a < 10.

7. DISCUSSION

We have presented a new parameter, which we call the probability of preponderancy.
In the one-way random effects model, this probability is the proportion of individuals for
whom the group random effect is larger than the individual random effect. In genetic
applications this could be interpreted as the proportion of individuals for whom the genetic
effect dominates environmental effects. This parameter is an appealing complement to
the more familiar intraclass correlation coefficient since its relevancy does not hinge on a
particular distribution. We have presented both parametric and nonparametric estimators.
Bias-corrected bootstrap confidence intervals associated with the nonparametric estimators
may employed when a > 10,b > 4. The estimator incorporating a jackknife approximation
to a scalar exhibits the most consistent coverage probabilities. Actual confidence levels
depend on the underlying distributions.

It is possible to extend the ideas presented in this paper to models having more than
two sources of variation. For example, suppose Y = 4+ A + B 4+ €. Without worrying too
much about indicies, or whether we have crossing or nesting, there are at least two possible
extensions to . The first is

0a = P(|A] > max{|B|, e|}), (30)
the second is
Aa = P(|A] > |B+¢l). (31)

The first attempts to find for what proportion of individuals is A the greatest of the three
effects. The second finds for what proportion of individuals is A greater than all other
effects combined. Similar expressions could be formed for B. Under normal theory, with A
having variance o2, B having variance 02, and € with variance o2, then one can show that

A= Fiy (“7%> . (32)

o3 + o3

The properties of such parameters and their estimators is a subject of current research by
the authors of this paper.
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Figure 1: 6 based on the bivariate normal distribution with 02 = 2 = 1
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Figure 2: Relationship between p and 6
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