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Let g(x) be the ratio of the ordinate and the probability integral
for the Rayleigh distribution. That is, g(x) = f(x)/F(x) , where
f(x) = (2x/k)exp{—x2/k} , x>0,k >0, and F(x) = f? f(t)dt . Tiku's
local approximation g(x) = a + Bx/Yk is used to simplify the maximum
likelihood equation for estimating k from a doubly censored sample from
this population. The solution to the simplified maximum likelihood
equation is the estimator for k , which is called kc « It is much easier
to compute than the maximum likelihood estimator, since no iterative
procedure is required.

After the solution for kc is given, equations are developed for
its bias and variance. Numerical comparisons are made among kc and other

estimators for k .
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CHAPTER I
INTRODUCTION

In conducting experiments of varying natures, the experimenter is
often confronted with censored data, data lacking one or more observations
at the extremes. Censoring may be the result‘of several naturally-occurring
or experiment-imposed conditions. For example, suppose the experimenter
does not know the exact magnitude of some of the readings, except that
they lie at one or both extremes of the sample. Or suppose a measuring
instrument fails at a known point in time in such a way that the observa-
tions following the instrument failure are unreliable. These are naturally
occurring situations which force censoring of the data. Other examples
of censoring are ones when a manufacturer curtails sampling in the case of
destructive testing and when a biologist waits for the death of a certain
number of individuals before he begins making observations. These are
examples in which the censoring is controlled by the experiment. Thus for
many reasons it is often necessary to analyze censored data.

This paper is concerned with estimating the parameter k of the Rayleigh
distribution from censored samples. The Rayleigh distribution, sometimes
called the Rayleigh amplitude distribution, arises as a consequence of
finding the resultant amplitude of several coplanar random amplitude vectors
which are normally distributed, a fact which Siddiqui [6] has pointed out.
However, he prefers to limit his discussion to the power distribution, which
is the square of the amplitude distribution. In the case of censored data,

though, it is easier to work with the amplitude distribution. This problem



might occur in the analysis of acoustic data or other data obtained from
measurements of amplitudes of electromagnetic waves received through a
scattering medium.

The form of the Rayleigh distribution is as follows:

£(x) = ((2x/k) exp{- X°/k} , 0 <x < o
(1.1)
0 : elsewhere
‘for positive values of k . Since the expected value of x
E(X) = [ xf(x)dx
0
(1.2)
= %‘an

and the variance of X

Var(X) = J x2£ (x) dx

U xf(x)d:Jz = k[1 - m/4] (1.3)
0

0

are both functions of k , the importance of estimating k is obvious. The
results given here are similar to those obtained by Tiku [7, 8, 9] for
the normal, exponential,and logistic distributions. His method follows
the line of reasoning given below.

Let g(x) = £(x)/F(x) , where f(x) is the ordinate in (1.1l) and
F(x) is the probability integral of X . Then over a small interval,
a<x<b, g(x) lies very close to the line o + Bx/fE , Wwhere o and B

are constants such that

{g®) - g(a)}/(b - a) and (1.4)

™
i

gfa) - af . (1.5)

Q
f



BEmpirical justification for these statements is given in the Appendix,
along with tables of o and B for various sample sizes. The substitution
of a + Bx//E for g(x) in the likelihood equation results in a solution
which is easy to compute, in that it requires no iteration, and the
estimator kc derived from that solution has the desirable properties of
the maximum likelihood estimator.

Tiku's [7, 8, 9) results have been seen to compare favorably with
the actual maximum likelihood estimate (computed by iteration), the best
linear unbiased estimates (computed by least squares as in Lloyd [3]),
and with estimates computed by the method of moments. In this paper
similar comparisons will be made with population values, the best linear
unbiased estimates, and the moment estimates.

In Chapter II the maximum likelihood equation will be set up and
solved for kC , the desired estimator, by making the substitution
o + Bx//E for g(x) in that equation.

In Chapter III properties of the estimator will be discussed. In-
cluded will be a calculation of the expected value of kc and its variance
as well as a discussion of its efficiency and asymptotic properties.

A numerical example is worked in Chapter IV, and comparisons are
made among kC , the moment estimator, the least squares estimator, and

the population values.



CHAPTER II
DERIVATION OF THE ESTIMATOR kc

Let the random variable X be distributed according to the Rayleigh

distribution with parameter k . Let x1 , X

g v T e X be a random
sample from the Rayleigh population with the smallest r, = q;n and the
largest r, = g,n observations being censored, where q; and q, are fixed.

The remaining sample values, arranged in order of magnitude, are

Y Y LR Y Y .
+l r + ’ 14 14
rl r1 2

The joint density of these order statistics is well known (see, for example

Saw [5]) to be

n! n-ri-ro| Y2 T2 2
e _-T——Tiz/xg) i 23 exp{— Z Zi}
1 2 T1'%2 i=r +1 i=r +1
(2.1)
1 - T2
x {rz_ M1 -r@__ )}
1 2
Yy
where Zi =% and F is the probability integral of X . Then
L= 1log £
nt n-r, n-r,
= 1og(——TL—T + (n - r, - rz)log(z/fE) + z log(Zi) - Z z; (2.2)
F1°%2! i=r +1 i=r_+1
1 1
+r log{F(Z )} -r 22 .
1 rl+1 2 n-r,



Now, taking the partial derivative of L with respect to k we obtain the

following:

n-r 2 n-r
9L 2 (1 1 i 1 2 2
= o - ) U2k v ] (;:')( 2" “i:) - ¢ ¥ 1% 4

. . . i
1—r1+1 i 1—rl+l
‘ 5 (2.3)
r. 2
5 5 5 2 n—r2
- |/KzZ 4 exp{- 2, +1} 1-expl=2 D +—x— -
1 1 1
This equation simplifies to
r.z E(Z_ ) z?
r. +r, - n-r 1l r +1 r +1 2 n-r
oL _ 1 2 + 1l Z 2 ZZ _ 1 1 + 2 (2.4)
3k k k . i 2vk F(Z ) k : :
i=r_+1 r.+1
1 1
Setting %% equal to zero in equation (2.4) and solving for k would give
the ordinary maximum likelihood estimator k for k . However, this is a
difficult problem to solve, due to the fact that the term
f(Zrl+l)
g(Zr +1) T F(z ) (2-5)
1 rl+l

is implicit in k,and thus (2.4) cannot be solved exactly except when
censoring is on the right only. The only way to solve it as it stands

is by some iterative procedure, which could be expensive and time consuming.
Instead of this, it is here proposed that g(Zr +l) be replaced by a

linear approximation

(2.6)



Consider now

3L _ oL 1 "Tf2 2
5k 9Kk [(rl Iy “’/k] 105
1=rl+l

r22
l r +l 2 n—r2
<1+BZ+ +'—'—']'('~"".

In this equation o and B are such that

™
i

{g(h2> - g(hl)}/(h2 h.) and

o = g(hl) - hlB

where the interval (hl ' h2) is wide enough to cover Zr 1" This is

1

- r,_, by choosing h, so that

accomplished for large enough n -~ r, 5 1

1
F(hl) =4q; - v; ql(l - ql)
and h2 so that
F(h.) = + L (1 - )
2’ T 9 n 4 9’ -

The reasoning behind this choice of interval endpoints is that it is

logical to think of Zrl+1

population f(2) lies. So, choosing F(hl) and F(hz) in this way helps to

as a point below which lOOql percent of the

assure us that the probability is small that Zr +1 will fall outside
1

the interval. This situation is similar to the problem of setting up

control limits for fraction defective in quality control with a gquality

level of q; -

(2.7)

(2.8)

(2.9)

(2.10)



From (2.9) and (2.10) it is seen that as n becomes larger and larger
F(hl) approaches q from the left at the same rate that F(hz) approaches
q, from the right. Thus the interval (h, h2) shrinks to a single
point,and o and B can be found by evaluating the derivative of g(Z) at

the point h , where h is the solution to
F(h) = q; - (2.11)

Thus we have

d
B = az[g(Zi]
Z=h
and (2.12)
a + Bh = g(h)
giving values to o and B . The degree of accuracy of the linear approxi-

mation depends on the width of the interval. As (hl ‘ hz) becomes smaller
and smaller, the amount of error between g(Z) and o + BZ gets closer and

closer to zero. It is a natural and desirable property of (h h2), then,

1’
that it does decrease in size as n becomes larger.

Returning to equation (2.7), we see that a solution kC for k can
be obtained by setting

oL

% = °

and solving for k . After substitution of Yi = /k Zi , equation (2.7)

takes the form

r.Y
1 r, lr+1 2n-r2
[(r +r2—n)/k]+i-2- Z T+—-—k~z——_o (2.13)

1—r +l
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when it is equated to zero. Multiplication by 2k2 to eliminate the fractions

yields

T2 2 2
-m) +2 7wl - gy ) ka+ Yoy )+ o2rys
1=r1+l 1 1 2

2k(r1 + r, =0 . (2.14)

Next, isolating the square root on one side of the equation, squaring and

collecting terms gives

k%% + k(268 - %) + B2 =0 , (2.15)
where
G = 2(rl + r2 - n) - rerl+la
n-r
B=2 )2 v? 4 o2ry (2.16)
. i 2 n-r
i=r_+1 2
1
2
D rer1+lB .

The estimator kc is then the positive root of equation (2.15):

k, = {(D2 - 2GB) + ‘/(2GB - p%? - 4G2B2} (26%) . (2.17)

For the sake of completeness, and to give a somewhat mathematical
justification for the solution in (2.17}), an analysis of the discriminant
in (2.15) is given. From the definitions given in (2.16), we see that G

is always negative, since

(rl + r2) <n , Yi >0 for every i , and a > 0 (2.18)




due to the nature of the relationship of o to g(z) . Similar reasoning

2 o
shows that B and D are always positive. Therefore,

(26B - p4)? - 4c%8? = 4¢%8? - 4cp? + p* - 4c%B?
(2.19)
= D4 - 4GBD2
will be positive if
p* > agED?® . (2. 20)

But, since D2 > 0 , then dividing by D2 gives us D2 > 4GB , which we know
to be true, since B is positive and G is negative.

Thus the solution kC will always be a real-valued solution. This
is a necessary requirement to be fulfilled,since the parameter k will

always be a real-valued parameter for the Rayleigh population.



CHAPTER III
PROPERTIES OF THE ESTIMATOR

In the previous chapter an estimator was derived which is closely
related to a maximum likelihood estimator, at least in the method by which
it is derived. The difference is of course the fact that an approximation
was made in the course of actually finding the estimator. It is a natural
question, then, to ask how "good" is the estimator kc ? The usual answers
to this question come in the form of expected value, bias, variance and
asymptotic properties of kc , and in comparisons between kc and other
estimators for k . This chapter will be devoted to these discussions, and
attempts will be made to answer the above question.

Calculation of the expected value of kc would be very difficult to
accomplish, particularly if we consider equation (2.17), which is the
actual value of kc . Instead it is easier to discuss the approximate
conditional bias in the asymptotic case. Following Tiku [7], p. 160, who

cites Kendall and Stuart (2], p. 44, this approximate bias becomes

(o, 2
By = E(ak)/R k) (3.1)
where

2 _ 321

r? (k) = -E(-é-k—z) (3.2)

for large values of n - r, ~ r Using equation (2.7), the value of

1 2"

B1 can be calculated from the following equation:

10
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n-r

oL _ _ 1 2 2
s(&)= () + ) - w0+ L7 mE)
1
(3.3)
— 2
- ‘rla/z"’"E‘zrlu’ - (rls/z/i‘m(zrlﬂ) + (r2/k)E(Zn-r2) .

This calculation, then, requires expected values of order statistics from
the Rayleigh distribution, which we proceed to find.

The distribution of the itP order statistic from a random sample of
size n from this population, a well-known result (see for example Sarhan

and Greenberg [4]),1is

_ n! i-1 n-i
¥Z) = oo o T FE) T T - e e
(3.4)
2 2 2
ni ~z2i-1; -2 in-i -2}
S G- Drlm - D1 {1 - e 1} {e 1} 2Zie .
Now
E(Z,) =J Z.¥(z,)dz,
1 0 1 1 1
(3.5)
oo 2 2
_ nl Cfq _ —2iq1i-1 2 -(n-i+1)Zj
—(i—l)!(n—i)lf{l e T 2z5e tazg .

Expanding the first term of the integrand function by the binomial theorem,

we get

2

2. i-1 .
[1 - e"zi]l'l = ] (1'.1> (-1)3e % | (3.6)

j=0 \J

Substituting this expression into (3.5) and interchanging the corder of

integration and summation, we obtain



E(Zi) =

Grobner

so that

E(Z.)
1

Also

E(z2)
1

after manipulation similar to that used in deriving (3.8).

again to Grdbner and Hofreiter [l], we find the value of this integral

i-1

© 2
. . . e .
n! 2 (%.i>(_1)j f Zzie (n-i+1+j) 23 dzi .

i - 1)!(n - i)! .
(i )i (n - i) 520 \3 0

and Hofreiter [1] give the value of the integral as

Wrl/2m - i + 1+ 5172,

n! i'z'l (i-l) <1 /n :l
(l-l)!(n'l)!j=0 J 2(n-i+1+j)3/2

J 72y (2. )4z,
0 1 1 1

2

i-1 4, . . .
: nt . z 171 (_l)j zz?e--(n-1.+l+3)zzL az.
(i - 1)!'{n - i)! j=0 3j 0 i i

and use it in (3.9) to obtain

i-1
2, _ n! i=1) , .3 1
E(Zi) (i—l)!(n—i)!jg()(j)(l) (n-1i+1+ 3)2
' : 2 321
Next we must calculate R (k) = ~E k2 )
2
2 (MT 0 T h) o MEy o o LA
= - -= )% zi+—=—2 + z -
k2 k k2 |, i 2k “r.+1 T 2k/k ‘r +1
i=r_ +1 1l 1l

’

2
r.Z
1l n~-r

2

k2

12

(3.7)

(3.8)

(3.9)

Referring once

(3.10)

.(3.11)
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Then, taking expected values and multiplying by minus one,

AT A T 1 T2 2, 4n1° L
'E<pk2>' ( K2 “wz LT E@D + o E@E ) 4 gE B )
1=rl+l 1 1
2rl 5 (3.12)
- —EE'E(Zn—rZ) ‘

Evaluation of the expected values by the use of (3.9) and (3.10) gives the
terms necessary to calculate R2(k) from (3.12). Then the bias Bl can be
calculated from (3.1) as a function of k .
Kendall and Stuart [2] also give an expression for the asymptotic
variance of kc in terms of the likelihood equation, namely,
-1 -1
2L

= § - [ = 2
var(k ) = E<3k2> R (k) (3.13)

which can be evaluated from (3.12). This variance and bias, then, can be
used to compare the relative efficiency of kC to other estimators whose
variances and biases can be calculated.

Tiku [7] justifies the use of these asymptotic properties for his
estimators because of their similarity to maximum likelihood estimators,
and because the approximation used to find these estimators becomes more
and more accurate as the sample size increases. In the case of the
normal distribution, Tiku shows that the efficiencies of his estimators
are as good as the usual maximum likelihood estimators and the best linear
unbiased estimators. Thus an estimator calculated in this way does have
desirable properties, perhaps the most important one being the ease with
which it may be calculated. This is certainly true in the case of the
Rayleigh distribution, since the actual calculation requires no iterative
procedure nor any expected values of order statistics, both of which are

computationally tedious procedures.



CHAPTER IV

SAMPLE GENERATION AND NUMERICAL RESULTS

The density (1.1) has the nice property that it can be integrated
into a closed form for the cumulative distribution function F(x) . This
property and the probability integral transformation are used to obtain
a sample of size n from the population (1.1).

First we note that

2
X,
i
* Tk
u, = F(Xi) = j f(r)dr =1 - e (4.1)
0
is uniformly distributed between zero and one. Then a sample Uy oeu,

*re o, u may be generated from the uniform distribution, such a sample
being fairly easy to obtain by any of a number of methods, either from

tables or by a simple computer program. From (4.1) we obtain

2
X,
-
e k =1 - u,
1
ror
2
*i
=" log(l - ui) .
Hence
x, = vk[- log(l - u,)] (4.2)

14
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will be distributed according to the Rayleigh distribution with parameter
k . Using this procedure, we have the following values for our sample,
size n = 20 , of which qn = (.2) (20) = 4 values have been censored from
the left, and q,n = (.1) (20) = 2 values have been censored from the right.

The values, in order of magnitude, are:

.69905, .78341, .79853, .91500, .95984, .97785, 1.00619,

1.13569, 1.17262, 1.20904, 1.27873, 1.37311, 1.41461, 1.58910,

using a population value k = 2.007 to generate the sample.

Now, using (2.9) and (2.10), we get the following values for interval

endpoints:

hl = .34229 , h2 = .58455

and, using (2.8) we get the following values of o and B :

™
it

-10.88613

9.23360 .

Q
I

Now, substituting all these values into (2.17) yields
k =1.703 .
c

The following table gives values of k for kc ; the method of moments,

least squares, and the population value.

Population Value 2.007
Moment Estimate 1.529
Least Squares Estimate 2,410

Approximate Maximum Likelihood (kc) 1.703
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These values show that kc is as close to the actual value of k as any of
the other estimates. While the maximum likelihood estimate has not been
included in this discussion, it is clear that kc is still a close estimate
to k . Another advantage to kC is that it can be used as a good starting
peint in an actual iterative solution of the maximum likelihood equation,
if such a solution is desired. Beginning the iteration with kc would give
faster convergence than if a "guess" were made. For these reasons it is
believed that kc is a valuable tool to be used in working with the Rayleigh

distribution.



APPENDIX

AN EMPIRICAL STUDY OF THE LINEAR APPROXIMATION o + B2

In Chapter I it was stated that the function

_ £(z)
9(2) = vz
lies very close to the line
o + Bz

for Z in a small interval (a,b) . In this discussion we give values of Z
for which the approximation is close to the actual function values, and
we evaluate the error between the actual value g(Z) and the approximation
a + RZ .

The following graph shows g(Z) and several of the straight lines
used to approximate it. The absolute values of the maximum errors are
also given in the description of each curve, which accompanies the plot
itself.

The graph of g(Z) and the straight lines show that for values of Z
less than .5, the approximation is not good. This is further verified by
evaluation of the derivative of g(Z) at some of these points. When 2 is
less than .5, the derivative changes rapidly for small changes in Z .

For example, the derivative at Z = .3 is approximately -19 . At 2 = .4
it is approximately -9 , and at 2 = .5 it is -6 . For larger and larger
values of Z , the derivative becomes more nearly constant, and the linear
approximation, then, becomes better and better.

17
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Following the graph is a table of values of o and 8 for various
sample sizes and different amounts of censoring. Eguations (2.8) through
(2.12) were used in the computations of o and 8 which are provided for

use in computing kc for various combinations of sample sizes and censoring.
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FIGURE 1.
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.0

A graph comparing g(Z) and several of the straight

(1)

(2)

(3)

(4)

(5)

lines used to approximate it.

-g2 2
g(z) = (22 )/ - 727y .
o + BZ used in computing sample values in Chapter IV.

o + BZ for Ze(0.01, 0.5). 1In this interval the
approximation is obviously not good and should
not be used.

o + B2 for Zze(0.5, 1.0). The maximum error in this
interval = |g(2) - o - BZ| = 0.364. Thus, the approx-
imation can be used here with reasonably good results.

a + BZ for Z2e(1.0, 2.0). Here the maximum error =
0.270, so the approximation improves with increasing Z.



TABLE 1.

Values of o and B for Various Sample

Sizes and Proportions of Censoring.

9, a B n|q a )

.1 12.312 |-19.930 .1 15.601 [-26.518
.2 8.433 ~9.852 .2 9.234 |[-10.886
.3 6.627 -6.430 .3 6.985 -6.764
.4 5.476 ~4.662 .4 5.668 -4,790
.5 4.617 ~3.545 20 .5 4.724 -3.587
.6 3.898 -2.739 .6 3.954 -2.737
.7 3.235 -2.091 .7 3.250 -2.060
.8 2.552 -1.512 .8 2.525 -1.453
.9 1.725 -0.915 .9 1.613 ~-0. 806

n | q a 8

.1 32.204 [-60.908
.2 10.393 [|-12.406
.3 7.418 -7.173
.4 5.883 -4.935
10 .5 4.840 -3.633
.6 4.011 -2.733
7 3.264 -2.023

.8 2.485 ~1.380

-9 1.279 ~0.585

20
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POISSON COUNTS OF A MARKOVIAN RENEWAL PROCESS
by
A. M. Kshirsagar¥*

Southern Methodist University
Dallas, Texas 75222

1. INTRODUCTION

Let F and G be two independent renewal processes commencing simulta-
neously at time t = 0 ., Let F(x) be the distribution function (d.f.) of
the intervals between successive renewals of the F-process and let G(x)
be the corresponding quantify for the G-process. If the renewals of the

G-process occur at times t = T T cee T ees , we define the

l 14 2 ’ [4 r 14

G~counts of the F-process by P (r=1, 2, 3, ¢*c ; k=0, 1, 2, ¢+¢ )

r,k

where Pr is the probability that the number of renewals of the F-process.

'k

in the interval (Tr__l ’ Tr) is k . In particular, if the G-process is a

Poisson process,Pr x are known as the Poisson counts of the F-renewal
r

process. Kingman [3] has derived the generating function of such Poisson
counts. In this paper, this generating function is derived by a different
method viz, that of using the distribution of the number of renewals in an

arbitrary interval of time (t0 , t. + t), where tO'# 0 (see Cox [2], pg. 67).

0

This method is then extended to obtain the Poisson counts of a Markov
Renewal Process, as defined by Pyke [6], [7].

Let T -~ T b 4
r

r"'l= r,T0=O (r=l, 2, *°* )- ThenTr andxr are

-1
independently distributed and the probability density function (p.d.f.)

*This research was sponsored by the Office of Naval Research, Contract
No. N00014-68-A~0515, Project No. NR 042-260.



Pl(Tr—l) of T .y is given by (for r > 2),

{Probability that there are r - 2 renewals
of the G-process in (0, T,_j) }HProbability
of a renewal in (T,._j , T, + dTr_l)}

pl(Tr-l)dTr-—l

’ ‘ (l.l)

4 G
{Gr—Z(Tr-l) - Gr-l(Tr—l)HdTr_l E[N (Tr_l)]}d'rr-]_

it

where Gr(x) is the r-fold convolution of the d.f. G(x) and NG(t) is the
number of renewals of the G-process in the interval (0,t); E stands for
the expectation operator. The distribution function of X, is obviously
G(xr) .

Let Ak(to r t) be the probability that there are k renewals of the

F-process in the interval (to r t. + t) and let the corresponding prob-

0
ability generating function (p.g.f.) be

v .k
B(t,E,t) = kzoa Aty . 1) . (1.2)

When to'= 0 , we denote B(t,£,0) by B(t,£) only. It can be readily seen

that

Prx = S SmAk(Tr_l » X )p,(T__,)dT _,dG(x)) , for r > 2, (1.3)
00

and

k)
|

1,k = S Ak(O,xl)dG(xl) . (1.4)
0 .



The double generating function (with respect to r and k) of the G-counts

of the F-process is, therefore,

o0 [o¢] k
pee,g) = ) ) e‘cp
r=1 k=0 .k
(1.5)
= eS B(x,£)dG(x) + ) o* S S B(x,g,T __,)p, (T _,)dT__,dG(x) .
0 r=2 070

2. POISSON COUNTS OF THE F-~PROCESS

The expression (1.5) for Y(6,f) can be evaluated explicitly, when
the G-process is a Poisson process with parameter A . For this we define

the following Laplace transforms:

00

S e 5*aF (x) = f£(s) ; (2.1)
0

00

S e *™B(x,£)dx = b(s,£) ; (2.2)
0
S e 5¥B(x,E,t ) ax = b(s,E,t) (2.3)
0
S e-sotob(s,g,to)dt0 = b*(s,g,so) . (2.4)
0

Then it has been proved (see Cox [2], pp. 67, 68, 37) that

1 - f(S) . 2.5
1 - gf(s)) ! (2.5)

b(s,t) = S(



N @ - e {£ls) - £(s)}

= ss, - s(sO - s)(1 - Ef(s))(l - f(sofjw :

b*(S.a,so)

When the G-process is a Poisson process,

-Ax

G(x) =1-e
and so (1.5) reduces to
r-2
o o (AT . 8)
_ 2 2 r-'l -ATr_l
P(9,E) = 6Ab(A,E) + r£2 A6 S —T;—:—ETT—-b(A,E,Tr_l)e dTr_1

0

oAb (A,E) + 8°3%b* (A,E,A(L - 6))

o e -afha - e -£0)
1-06 (1- gf(x))(l - £(x(1 - e))) !

on account of (2.5) and (2.6). This agrees with Kingman's [3] equation

(16) on pg. 1220, except for the fact that he takes A = 1 .

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

Incidently, this shows that, if two renewal processes F. and F_ have

1 2

the same Poisson counts, expression (2.10) for F, will be identical with

1

a similar expression for F, for all values of £ and 8 and this will show

2

that the Laplace transforms of F1 and F2 are the same or that the two

renewal processes are identical.

3. POISSON COUNTS OF A CUMULATIVE PROCESS

Suppose that a variable w , whose d.f. is C(w) is associated with

every renewal of the F-process. A cumulative process, then can be



defined as

N )

Z(t) =} w, . (3.1)
i=1

where, as defined earlier, NF(t) is the number of renewals of the F-process
in (o,t). The w, are all identically and independently distributed. Poisson
counts of this cumulative process are obtained by considering the distribution

of
Z_=)w, , r=1,2, (3.2)

where the summation is over the renewals of the F-process that occur in

(T R Tr). If there are k such renewals (and the probability of this

r-1

Pr k) , the Laplace transform of the distribution of Zr , when k is fixed,
4

. k .

is {c(s)} , where c(s) is the Laplace transform of C(w) . Hence the

unconditional Laplace transform of the distribution of Zr is

. v
kZo ()" & r=1,2 (3.3)

The generating function of these Laplace transforms is

[}

) er[c(s)]kpr L = v(e,cls) & (3.4)
r=1 k=0 !

where Y (6,E) is given by (2.10)

4. POISSON COUNTS OF A MARKOVIAN RENEWAL PROCESS

Markov Renewal Processes (M.R.P.) have been defined and studied

extensively by Pyke [6], [7]. We shall use the same notation, as far as



possible, as Pyke has used. A M.R.P. records at each time t , the number
of times a system visits each of m states (m < «), in time t , if the
transitions from state to state are according to a Markov chain and if the
time required for each successive move is a random variable, the d.f. of
which depends on the two states, between which the move is made. Let [pij]
be the transition probability matrix of the Markov chain, and let Fij(x)

be the d.f. of the time taken to make a transition from state i to state

j . We set Qij(x) = pijFij(x) , and define the Laplace-Stieltjes transform
(L. - S.T.) as

00

-sX s . .
qij(s) = Soe S inJ(x) ;i i, 3=1, 2, *** , m . - (4.1)

Let g(s) be the m x m matrix of the qij(s) . We assume the system to be
in state i initially and denote this by Z0 =1 ; Zt denotes the state of

the system at time t . Further, we define the following quantities:

_ number of times the system visits state j in

Nj(t) " the interval (0,t) 3 =1, 2, *** , m . (4.2)
N.(t £) = number of times the system visits state j in (4 3)
jro o’ the interval (to,t0+t) ,toaéo . -
£ = a diagonal matrix with elements El . %, Em . (4.4)
e = a column vector (m x 1), with unit elements. (4.5)
Qo
- nl n2.... nm 3 = ¢ = oo =1
Bi(tlglto) = Z «El 52 £m Prob{Nj(to , t) nj i j=1,2, ,mlz0 i},
nl,oot'nm=0



oo

Bi(t,g) = Z g;l oo g;m Prob{Nj(t) = nj,ZO =i}, =1, 2, ***, m
Dyesetem =0 (4.7)
bi(s,g,to) = L. - S.T. of Bi(t,g,to) with respect to t
o (4.8)
-st
= S e ° a,B, (t,5,t)dty
0
b*(s,E,s,.) = °°e_sotob (s,tg,t)dt (4.9)
i 4 ’ O i I’ r 0 0 14 .
0
b.(s,£) = \ e Sta B, (t,8) (4.10)
jis/8) = B (B8 :
0
gf(s,g,so) is the column vector of b;(s,g,so); i=1, 2, *¢* , m. (4.11)
b(s,£) is the column vector of bi(s,g); i=1, 2, «*¢ , m. (4.12)
The author has shown elsewhere {4] that
1 1 -1
b*(S,E,SO) = = ¢ +-——-———(I - qls )) (q(s) - gq(s ))(ggjs,g) —.g> (4.13)
so-— s0 - s (0] 0
and
-1
b(s,E) = (1 - q(s)E) (1 - als) g_) . (4.14)

The last result has been proved in [5]; see also [1].

Poisson counts of the M.R.P. can now be defined by

(nl ’ n ’ s ae ’ nm)

) ProbIN, (T _, , T) = nj]z0 =il j=1,2, ¢, m

(4.15)

P,
ir



This is the joint distribution of the number of visits of the M.R.P. to
the various states, in the random interval (Tr—l ’ Tr) defined for the
Poisson process. Proceeding exactly in the same way, as in Sectiomn 2,

the generating function of these counts is

(-} [>-]

- r nl n2 LA ] I]In LA 3
v;0,8) = ] o ! £, gR P, (0 ,n,, , n)
r=1 n ,***,n =0
1 m
_ 22 ¢ ~A(1-8)Tp 1 _-Ax
=6 A S S B, (x,£,T__;)e e ar__,dx
0“0
+ exS Bi(X,E)e—)‘xdx : (4.16)
0
b, (x,§&) : o b, (A,E,T__.)
_ it 2,2 i r-1' ~A(1-8)Tr-]
= (00— + (1% S - e ar
0

2
6b; (A,E) + 8 )\b;(A,E,)\(l - e))

We shall denote the column vector of the m generating functions wi(e,g) '
(i=1, 2, *+ , m) by ¥(6,£) and on account of (4.16) and (4.13), (4.14),

it can be expressed as

e2

1-28

e+o(t-ame) (T -am)e
(4.17)

- o1 - aw) Ham - aw)e - ame) - g e

where u = A(l - 0) .



5. CUMULATIVE PROCESS

Corresponding to each state visited, let there be a random variable,
whose d.f. depends on the state and assume that these variables are inde-
pendently distributed. Let w be the variable and its d.f. be Cj(w) ’
corresponding to the state j , (j =1, 2, *++ , m). Then this w defines

a cumulative process associated with the M.R.P. and is defined by

z(t) = Low (5.1)
all transitions of
the M.R.P. in (0,t)

Poisson counts of this cumulative process can be defined by

Z_=)w , r=1,2, o« (5.2)

where the summation is over all transitions in the random interval (Tr_1 R
Tr) . If the system visits state j , nj times in (Tr_1 R Tr) ,

(j =1, *++ , m) , then conditional on nl r %, nm , the L. - S.T. of Zr

is

m na ,
I {cj(s)} J (5.3)

j=1

where cj(s) is the L. - S.T. of Cj(w), and hence the unconditional L. - S.T. is

o m

ns . s
: z Pir(nl rottY nm) .H {cj(s)} I, if 2, =1 . (5.4)
n sese ,nm=0 J=1

r
1 r=1,2, *** ,m.

The generating function of these L. - S.T.'s is, therefore
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m ®© n
D ) P. (n. , ** , n) I {c ()13 =y, (0,cs)) , (5.5)
=1 nl""'nm=0 ir 1 m j=1 3 1( )

where wi is given by (4.16) and (4.17) and c(s) is the diagonal matrix of
the m elements cj(s) : =1, 2, ** , m .
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