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SUMMARY

It has been suggested that line transect methods should be “pooling robust” (Buckland et al, 1993;Burnham
et al, 1980) allowing for transect data from different transects or locations to be pooled for estimation of population
density. This is particularly important in situations where data from individual transects are sparse and pooling is
done out of necessity. In this study we investigate a method for combining estimates from individual transects when
each transect has sufficient data to support estimation with the kernel method. It is based on a minimizer of the
asymptotic mean squared error of a convex linear combination of the individual population density estimators. It is
shown that the asymptotic mean squared error of the simple pooled estimator is always at least as large as the
optimally combined estimator. We provide an application that combines two estimates for a real population of
mussels. Using a variety of simulations, we demonstrate the better finite sample efficiency for combining

unbalanced cases. When the detection functions are identical, we find it better to pool.
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1. Introduction

Line transect sampling methods are commonly used by biologists to estimate population
density. In line transect sampling, distances from selected transect lines are used to construct an
estimate of population density which involves estimating the probability density of sighting
distances on the transect line (distance = 0). Recent work has focused on employing kernel
methods to estimate the probability density (Mack and Quang, 1998; Chen, 1996). This method
does not require a parametric form of the probability density to be specified, but does require
specification of the amount of smoothing to be done through a smoothing parameter or
bandwidth.

It has been suggested by some authors (Buckland et al, 1993; Burnham et al, 1980) that line
transect estimators be “pooling robust.” That is, the estimators should yield consistent estimates
of population density when distances from different transects or groups of transects are pooled
and treated as one dataset. This quality is especially pertinent in those situations where
individual transects or naturally grouped transects do not yield sufficient sightings to provide
adequate individual estimates of population density. Hence the data are pooled out of necessity.
In situations where individual transects, or groups of transects, have adequate data to form
individual estimates of population density, more efficient estimates may be formed by combining
these estimators in some way other than simple pooling.

In this paper we investigate an alternative method of combining kernel based population
density estimates from different sources under the assumption that the underlying true population
density is constant. The estimator is based on the minimizer of the asymptotic mean square error
of a linear combination of the individual population density estimates and is similar in nature to
the estimators studied in Gerard and Schucany (1996,1997) for combining nonparametric
regression estimates. Different transect line lengths can be accommodated as can different

detection functions, so long as the probability of detection on the transect line is 1.0. Differences
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in detection functions could be caused by a variety of factors including differences in observers
or weather conditions.

Consider distance data for a common species of mussels from two transects. The first
transect was 42 meters in length and yielded distances for 53 mussels while the second was 52
meters in length and yielded 233 sighting distances. The data for each transect are displayed
along the horizontal axis in Figure 1a and 1b, respectively, with the corresponding kernel density
estimate of sighting distances. Each kernel estimate uses a quadratic weight function and global
bandwidths of 25 and 15 meters, respectively. The goal is to combine the individual estimators
based on these kernel estimators of probability density to form a single estimate of population
density.

[ Figure 1 here]

In Section 2 we will review kernel estimation of population density and describe the two
estimators to be compared. We then evaluate the asymptotic relative efficiency of the optimally
combined estimator to the pooled estimator by comparing there asymptotic mean squared errors.
In Section 3, these two estimators are compared using Monte Carlo simulation techniques. We
will revisit the example introduced in the previous paragraph in Section 4 and then provide some
discussion in Section 5. Proof of a theorem concerning the dominance of the optimally
combined estimator over the simple pooled estimator is provided in a technical appendix.

2. Kernel Estimation of Population Density

The typical estimate of population density is
D =nf(0)/(2L), (2.1)

where 7 is the number of objects detected, L is the length of the transect line, and f’ (0) isan

estimate of the probability density of sighting distances on the line. For kernel estimates,
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Figure 1. Estimated Kernel Densities of Sighting Distances of Mussel Line
Transect Sightings using global bandwidths of a) 25 meters and b) 15 meters and
the quadratic weight function.



n
f(0)=n"1>" K} (x;), where A is a bandwidth that governs the amount of smoothness in the
i=1

estimators, x; is the i distance from the object to the transect line, and K ; ()= K *(u /h)isa

kernel function adapted for estimation at the edge of the estimation space ( K *() =2K (-)), where

K () is a kernel function as defined in Silverman (1986) or Wand and Jones (1995).

In most instances, distance data is available from more than one transect or group of
transects. Hence, the simple pooled estimator, D p » In the case where two transects are available

is

D=3 5 K lxy) %Z(Ll + L)}, 2.2)

where n; 1s the number of sightings for the " transect, i=1,2; x;; 1s the distance for the ™ sighting
in the i™ group, j=1 .. n;; and L; is the transect length for the i transect. Hence if we let D; be
the i transect estimate as in (2.1), then ﬁp = pLﬁl +01-p; )ﬁz ,where p; =L, /(L + L, ).

Note that the pooled estimator is a linear combination of the individual density estimates for each
transect. The weighting factor involves only the length of the transect, with the longer transect
receiving more weight. If the detection function differs for the two transects, this estimator is not

able to weight the individual estimator to account for this difference.
Evaluation of D p and the estimator to be proposed is facilitated if it is noted that the

numerator of (2.1) is equivalent in form to an estimator of a varying Poisson intensity, A,
evaluated on the transect line (Diggle and Marron, 1985). As noted in Cowling, Hall, and
Phillips (1996), consistent estimation of A by A= nf (0) employing kernel methods requires that

A increases. Hence asymptotic arguments typically make use of the assumption that A = pr, say,



where p is a constant function and » — o. Hence in our application it is reasonable to assume

that A=2Lp with p being the true underlying density to be estimated with D.
It is straightforward to show using the results of Cowling, Hall, and Phillips (1996) that the

asymptotic mean squared error is

AMSE[D , |= (1/aW32h* {p s + (- oy )3} + 10" [2(0y + Ly Yo}, 23)
oo oo
where k; = [u?K " (u)du and Q" = [K"?(u)du . The first term in (2.3) is the squared bias and
0 0

the second is the variance. Although the underlying density, u, is assumed to be the same for
each transect line, differing detection functions result in different second derivatives, u;. The

solution to the derivative of (2.3) with respect to 4 yields an asymptotically optimal bandwidth
and substitution into (2.3) results in the minimum AMSE for D po which will be used in
Asymptotic Relative Efficiency (ARE) evaluations done subsequently.

Suppose we now consider a general convex linear combination D, = c¢D; +(1-¢)D,

(0<c<1). The asymptotic AMSE is

ASE(D, )= (/a)elugntis )+ (- cNshdis | +c2u0” fLy)+ (- o) 10" [2Lyhy).
(2.4)

Define s, = |45/ uf i and hy, =4/ u5 /1 h, and assume that the second derivatives have the

1/2 / 1/2 /

L4

s Y2 The AMSE in (2.4)

same sign. Hence, p. = u|u) 4 Y2 and hye =hy M

can be expressed as

AMSE(D, )= (/a)eluih?is )+ (- cNuzhlos | + 200" feLity) + (1) 1,0" f2Lyhy).

2.5)



This is the same general form of Theorem 1 in Gerard and Schucany (1996). Hence, the values

of ¢, hy, and A, that minimize (2.5) are

&= (e /L) /Ly + pe/Lo) = (l#ﬁ |1/2 /Lz )/(l#i'll/z /Ll + |15 V2 /Lz) (2.6)
and
. . . /s
hy =hy = I:(lﬂi' 2 / 2L )(|ﬂ5|1/2 / 2L2)ﬂQ / {( Hi V2 / 2L + |3 V2 / 2L, ]|/1i'|1/2 (kzﬂi' )ZH :
2.7)
This leads to &y = hy.k, , where
kq = |1 1/2/!15. vz (2.8)

Using these values yields ﬁg. It should be noted that if 4] = y5 , then this estimator is
asymptotically equivalent to D p - However, if the second derivatives differ, ﬁg weights the

individual density estimates accordingly. For example for equal transect lengths, if 15 is large

compared to x4 the population density estimate for the first transect is weighted more heavily.
Hence, this estimator attempts to simultaneously correct for differences in transect length and
detection function. It should also be noted that the bandwidths used in (2.7) yield density
estimates for the two transects with equal bias. Proof that this solution results in a local

minimum for (2.5) follows from Theorem 1 of Gerard and Schucany (1996).

It can be shown that AMSE (]_35 )S AMSE (D P ) (Theorem 1 in Appendix). A contour plot

of the asymptotic relative efficiency (see page 106, Wand and Jones, 1995) of ﬁg relative to

b,, {amse(p,, )] amse(Dz ', as a function of ks in (2.8) and k=Ly/L; is shown in Figure 2.

This plot provides contours of equal values of ARE in increments of .2. It is evident from the



plot that the effect due to differences in transect lengths is not as pronounced as the effect due to
differences in detection functions. For most values of k;, values of k; between .4 and 1 yield
ARE values less than 1.20. Values of k; less than .2 yield ARE values that increase sharply as k&
decreases. Of course in practice the weighting factors and bandwidths involve quantities that are
unknown and must be estimated. Hence, when adequate sample sizes are available for each
individual estimate of population density to be estimated, there is potential for much greater
efficiency when optimally combining rather than pooling. In Section 3 we compare the finite
sample properties of these two estimators using Monte Carlo simulation.

[Figure 2 here]
3. A Monte Carlo Comparison of D pand bg

In order to evaluate the finite sample performance of these two estimators, a simulation study

was conducted. The exponential power function, g(x) = exp{— (bx)a } , and a detection function

based on the t distribution, g(x) = (1 +x? / kT(kH)/z with k=4 | were used. A constant density
of .15 was used in all simulation runs, with the length of the transect line and the number of
objects placed in the study area altered to achieve this density. The effective width of the
transect area was taken to be 10. The distance from the transect line for each object was
determined from a uniform random variable in the interval [0,10]. Objects were considered
observed if the probability of detection, g(x), at the generated distance was greater than a
uniform random variable in the interval [0,1]. Distances for two independent transect lines were
generated, possibly with different detection functions and transect lengths. Five thousand

replications were generated under each set of conditions.
For each replication, both D pand 155 were computed. In order to compute D pas in (2.2),

a single bandwidth needs to be specified. The bandwidth used was a local normal scale rule that
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has been found to be as effective or more so than some sophisticated local plug-in rules (Gerard
and Schucany, 1999). Essentially, the unknown quantities in the asymptotically optimal
bandwidth from (2.3) are estimated by treating the underlying probability distribution of the
sighting distances as the absolute value of a normal variable with mean zero. Hence, we assume

that f'that is estimated in the numerator of (2.1) is that of the absolute value of a normal variable

n
with mean zero. Thus estimation amounts to estimating G’ by &% = Zx,z /n , Where the x; are
i=1

the distances from the transect line, and inserting this estimate into either for f;". To compute

Dg , two bandwidths in (2.7) and a weighting factor in (2.6) must be estimated. Again, a normal
scale rule will be used to estimate the unknown quantities p and g . Estimation of p and ] is

essentially equivalent to estimation of fand f;", respectively. Because we have two sources to
use when estimating [ in (2.7), the normal scale estimates from each source are averaged.
Additionally, it should be noted that use of the normal scale rule assures us that our estimates of
u; will have the same sign, as required for our asymptotic results.

The results of the simulation study are given in Table 1. For situations where the estimators
are asymptotically equivalent, where the detection functions are the same for each transect, D P

performs better. This is likely to be due to the added variability caused by estimation of the

weighting factor in (2.6). In those cases where the detection functions are quite different,

bg tends to perform better.
[ Table 1 here ]
In the next section we will use these two methods to calculate the population density of
mussels.

4. Application to estimation of mussel population density



Table 1
Summary of Simulation Averages for Optimal and Pooled Estimators Based on 5000

Replications
Transect 1 Transect 2 MSE x 10*

1 A . 2
g L n g L n Dc Dp RE
1 133 71 1 133 71 3.84 3.66 .94
1 133 71 1 67 35 4.76 4.53 .94
1 133 71 2 67 35 4.61 437 .94
2 67 36 2 67 36 6.08 5.84 .95
] 133 71 3 133 53 5.53 4.77 .83
4 133 35 1 133 71 497 5.81 1.22
4 133 35 4 67 18 9.06 8.29 .89
5 133 142 4 133 36 3.00 18.8 9.91
5 100 106 1 100 53 3.20 4.67 1.60
3 133 53 5 100 106 435 7.87 2.10

'detection function, g =1 (Power(b=.5,a=2)), 2 (Power(b=.5,a=2.5)),
3 (t 4df), 4 (Power(b=1,a=1), 5 (Power(b=.25,a=2)).

? Estimated Relative Efficiency, RE = {MSE (b D )/ MSE (155 )}5/4



Consider the data from two transects displayed in Figure 1. Using a normal scale rule as
described in Section 3 for bandwidth selection, D p yields an estimate of population density of

.000352/cm?. Individual density estimates using the bandwidths as in (2.7) estimated
analogously as in Section 3 were .000167/cm” using a bandwidth of 25 meters for the first

transect and .000486 using a bandwidth of 15 meters for the second transect. Optimally

combining them yields 155 =.000300/cm’. The pooled estimator weighs the individual
estimators in a very similar fashion because the transect lengths are nearly the same (42 meters
and 52 meters, respectively). The optimally combined estimator weighs the second individual
estimator more heavily because there is less curvature in the probability density of sighting
distances on the line and therefore a smaller second derivative.
5. Discussion

In this paper we have presented an alternative estimator to the usual simple pooled estimator
that can be used in situations where sufficient sightings are available for each transect to
reasonable compute individual estimates of population density. It adapts to differences in
transect length as well as differences in detection functions for the two transects. Simulation
studies show that in situations where asymptotic results would suggest that the pooled estimator
and the optimally combined estimator should perform similarly, the simple pooled estimator
typically performs better. This is probably due to increased variability stemming from
estimation of second derivatives required in the weighting factor and bandwidths. In those
situations where the detection functions are quite different, gains from using the optimally
combined estimator are evident. Extension to situations with more than two transect lines should
be relatively straightforward.

In addition to the application of our proposed estimator to estimation of population density

from two transects when the underlying population density is assumed to be the same for each



transect, it also has potential use in hypothesis testing. Mack and Quang (1998) showed that
estimates of population density using the kernel method are asymptotically normal. It may be of
interest to use kernel based estimates of population density to test whether population density
differs for two locations in a study area, for example. It may not be reasonable to assume that
the detection function is the same for each area. An estimate of the variance of the difference
between independent kernel estimates of population density under the null hypothesis of equal
density requires that one compute an estimate of density under that assumption. Our proposed
estimator does just that. It has the added benefit of providing bandwidths that yield individual
estimates of equal bias. Equal bias simplifies testing because the numerator of the test statistic
involves forming a difference between the estimated population densities for the two locations,
which essentially cancels the bias terms.
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Appendix

Theorem 1
If the signs of 4 and g} are the same, then AMSE (15 » )2 AMSE (153) , with equality when k; =

1.

Proof:

}2/5

We can express AMSE(D , )= aMSE(D, N2k, +1)/ (e, +10° ], where kyis as in (2.8 and

k; = L,/L, . Similarly, the asymptotic mean squared error of 155 can be expressed
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as AMSE(Dz )= AMSE(D; Yy /(ky, + kg )f*/® . Form the ratio AMSE(D , )/ AMSE(D; )=
[(k(%kL + lkkd +k; )2/{(kL + 1)3 kj }]2/5 . This reduces to

2/5
{(kjki +k3+2kFkD v kGky +kE +2k kg )/(kjki +k +3kpkS +3k kS )}/ . Note that the
first two terms are the same in both numerator and denominator. Additionally,
22k +k} >3k2k% , with equali =1 or k;=0. Finally, k%k; + 2k, ky =3k k2
Lky +k[ 23kpk; , with equality when k=1 or k,=0. Finally, k k; +2k kg 23kik; ,

again with equality if k=1, k=0, or k;=0. It follows that the ratio is greater than or equal to

unity ||
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