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Abstract: Three nonparametric curve estimators with information from different sources proposed by
Gerard and Schucany (1995) are investigated for finite sample performance. Local bandwidth
selection using an automatic procedure is adapted to local linear estimation with two independent
datasets. Consistency results are provided. The previous asymptotic results are supported in two
simulation trials with data-based local bandwidth selection.
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1.Introduction

Suppose that we have data on a response variable (y;) and an explanatory variable (x;).
Consider estimating some unknown smooth relationship between them, often denoted by

yi =m(x;)+€;, i=1,..,n.

Details of this model will be given in the next section. A tremendous amount has been
written regarding estimation of m(x) using nonparametric regression, particularly kernel
regression estimators and locally weighted polynomial regression estimators. For good
discussions of nonparametric regression estimators using these methods see Eubank (1988),
Miiller (1988), or Hardle (1990). For a recent comparison of some aspects of these two see
Hastie and Loader (1993). There is a rich literature on this general problem. Relatively little
has been published on data sets from independent sources.

Only a few journal articles can be found on the subject of combining independent
nonparametric regression estimators. Hérdle and Marron (1990) approach such a problem
from a semiparametric perspective. Hart and Wehrly (1986) do not assume independence of
the observations within a group and do not take full advantage of independence if it is
present. Gerard and Schucany (1995) investigate the asymptotic properties of three
estimators. These estimators linearly combine data from two sources, possibly with different
variances, to form a nonparametric curve estimator . These may combine either kernel
regression estimators or locally weighted linear regression estimators. The biases of these
estimators depend upon the amount of smoothing, which is controlled by window width or
bandwidth. Minimizing the usual optimality criterion of asymptotic mean squared error
(AMSE) requires a balancing of bias? and variance. Both of these depend on the bandwidth.

The first of these estimators,#y (¢), follows the naive approach of disregarding the
fact that the data come from two sources and proceeding for example with locally weighted



linear regression, as though one large dataset were available. That such an approach will be
employed becomes increasingly likely as nonparametric curve estimators find their way into
widely used computer packages. This naive estimator is equivalent, in terms of AMSE, to a
linear combination of two nonparametric regression estimators, each employing a common
bandwidth. The variances are not involved in the weights so it is not possible for this
estimator to reduce the influence of a more variable data set. Thus it performs poorly when
one group has a much larger variance.

The second of these estimators, (), is also a linear combination of estimators
from each group. However, the two asymptotically optimal bandwidths for the two
individual estimators are used. The weights are then obtained by minimizing the associated
AMSE of that combination.

The third estimator, #i5 (), results from solving the more general problem of
minimizing the AMSE of a linear combination of nonparametric regression estimators
simultaneously with respect to the weighting factors and the two bandwidths. Equal
bandwidths and a weighting factor proportional to the inverse of the variance divided by the
product of sample size and design density yield a local minimum AMSE.

The AMSE of 7 () is never greater than that of 1y, (¢). Equality occurs when the
ratio of the respective variance divided by the product of sample size and design density is
unity. In particular, this includes the special balanced case of equal variances and an equal
number of design points from the same design density for each group. Comparison of
mg (t) with mg(t) is facilitated by the fact that the ratio of their respective AMSE's is a
function of the ratio specified above. Detailed comparisons of the three AMSE's can be
found in Gerard and Schucany (1995).

Before any of these estimators can be used in practice, a bandwidth must be chosen.
Global bandwidths, (the same bandwidth at each estimation point), are typically chosen using
some variant of cross validation or plug-in estimation (Hall ez. al. , 1991;

Gasser et. al. ,1991). Curve estimation with local bandwidths, (different bandwidths at each
point), has been shown (Miiller and Stadtmiiller, 1987) to be superior in terms of AMSE to
estimation with global bandwidths. Brockman et. al. (1993) investigate an iterative plug-in
bandwidth method that requires a fixed number of iterations. Schucany (1995) proposes a
plug-in method that employs derivative estimates obtained from least squares smoothing of
bias estimates at a fixed grid of bandwidths. This method for kernels is adapted in Section 3
for locally weighted linear regression estimation. A further adaptation is proposed for
boundary cases. Local bandwidth selection procedures are developed using this methodology
for the three estimators combining local linear fits. The results of two simulation studies
using these estimators are summarized in Section 4. They are consistent with the asymptotic
results of Gerard and Schucany (1995).

2. Methodology

2.1 Background

Nonparametric regression methods such as kernel regression and locally weighted
linear regression have become a reasonable choice for curve estimation without specifying a



functional form. The responses, y;, are assumed to be related to the explanatory variables, x;,
by

y; =m(x;)+¢g;, i=1,...,n, 2.1)

with ¢€; being independent, identically distributed random variables having zero mean and

constant variance 62. The x;are fixed values satisfying x; = F -1 (z/ (n+1)), where F()

is an absolutely continuous cumulative distribution function with corresponding density f{-),

known as the design density. Usually a certain amount of smoothness is assumed for m(-).
Locally weighted polynomial regression estimators (Fan,1992) have gained

popularity to some extent because of their improved performance in boundary regions (near

the edges of their available data) compared to kernel estimators. The "local linear" estimators

are
L z; |2 L z; L z; “ z;
ZK7 ,-ZK7 i—sz' IZKI' iYi
';ZL h i=1 i=1 i=1 i=1 (2.2)
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where z/=x-t. The weight function, X(-), is typically a second order kernel function
supported on [-1,1] and 4 is a bandwidth governing the smoothness of the estimator. Larger
values of 4 produce smoother curves, but the bias in 7(t) is greater as a result.

Performance of these estimators is typically gauged by AMSE. For interior
estimation (h <t < 1-h) the AMSE is (Jones et. al.,1994),

X 1 P 20
AMSE [y (t;h)]=[5k2m”(t)h ] +nhf(t), (2.3)

1 1
where for second-order kernels, £, = J‘uzK (u)du and Q = JK 2_(u)du. The only

-1 -1
assumptions required are that #—o0 and A—0 such that nh—>c0 and some continuity of m"().
Consequently, our findings in this paper for local linear regression with weight function K{(-)
apply immediately for kernel regression with that same kernel.

When data are available from two sources, it may be reasonable to assume that the jtb

observation in the ith group, Yij> is related to the corresponding explanatory variable , x;;,
through the same smooth mean function, i.e.,

yj=m(xz)+e;, i=12,j=1..,n (24)



where the & are independent and identically distributed within the ith group with zero mean
and variance cf. Again, the x;; are fixed variables satisfying x;; = Fi’1 (j [(n; + 1)),

where F(°) is an absolutely continuous cumulative distribution function with corresponding
density f{-). Different designs and different variances provide a reasonably flexible model.
A practical application of this model might involve blood cholesterol as a function of body
fat content. If data are available on two groups of subjects from two laboratories with

equipment that measures the response variable with different precision, then this model is
appropriate.

2.2 Estimators that Combine Nonparametric Regressions

The naive estimator, 1y (¢), performs locally weighted linear regression as though
only one "pooled" dataset were available. If the usual assumptions of n;—0, ny—>c0, and
h—0 such that n;s—c0 and nyh—>o are supplemented with ny/ny —r (0 <r < ), then using
standard integral approximations and Taylor series expansions the expressions for the
asymptotic bias and variance of this estimator, 1 (t), are

Bias[y (1)]= —;—kzm”(t)hz +o(h?)
and

2 2
Var[ﬁzN(t)]=% Glnlfl(t)+02n2f2(2t) +0(_IZ)'
(mAO +nyf5 (1)) !

Details of these derivations may be found in Gerard (1993).
Introducing notation for an equivalent variance, namely

o2 = G%nlfl(t)"'o'%?_lzfz(t)

(mA®O+mfa)

the asymptotically optimal bandwidth, A has the familiar form

/5
O'%VQ

hy =| —NZ
(kym (1))

This estimator is easily seen to be equivalent, in terms of AMSE, to

SE ny f1(¢) “ n fo(1) L
R R Omhe M e a2



where ; (¢;h) is the locally weighted linear regression estimator (2.2) from the #th group.

As can be seen from the expression for ' (t;h), this estimator essentially weights the

individual estimators by the amount of data available to each and does not involve the
2
oy

A seemingly more reasonablé method of estimation entails linearly combining
estimators from each group, each of which employs the asymptotically optimal bandwidth for
that respective group. The combination is selected that minimizes the AMSE of the resulting
estimator. That is, consider the class of estimators

variances ¢

mo (t;¢) = cimy (t;hopty) + (1= ), (t;hopty ),

where hopt; is the asymptotically optimal bandwidth for the ith group, derived separately
from (2.3),

cfQ 1/5

hopt; =
(kym"(6))* i £ (1)

,i=1.2. 2.5)

It follows that the value of ¢ that minimizes AMSE [ﬁzo (¢ c)] is easily obtained by
differentiation to be '

s 2 o2
co = 455 k 575> Where k = L / 2__, (2.6)
k45 ~2k%5 +5 mf1()] nmpfr ()

This is the ratio that was mentioned in the introduction. Use of this value of ¢ yields
l‘?’lo (f)=7h0 (t;¢c0).

This second estimator was derived by minimizing the AMSE of a linear combination
with each of the bandwidths fixed at their asymptotically optimal values. If, instead, the
bandwidths as well as the weighting factor are allowed to vary, then a more general
minimization problem arises. Gerard and Schucany (1995) showed that using

2
2

m fr(t)

2 2
04 G,

+
nmfi(t) myfr()

(o)

C =C0pt = (2.7)

and
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of o
hl =h2 =hE — : nlfl (t) 7212f2 (t) , (28)
L2 Nkym (1)
mf1(t) mfr ()
the estimator
o3 o}
f;‘lE(l‘)= 2n2f2(t) 5 ’;ll(f;hE)““ znlfl(t) ; I;’lz(l‘;hE),
°r % °r %
nf1(t) nyfo(t) nfi(t) nyfr()

yields a local minimum mean squared error among estimates of the form
r?z(t;c,hl ,h2) = Cl’;ll (f;hl ) + (1 - C)f;’lz (f;hz ) .

Additionally, m (¢) results in a global minimum asymptotic AMSE among estimators of
this form with the bandwidths constrained to be equal.

Asymptotic relative efficiency (ARE) comparisons of these estimators, made through
ratios of minimum AMSE's, are facilitated by the fact that those ratios depend only on £.
Only one estimator is uniformly better than another. The "naive" is virtually dominated by
the "equal bandwidth" approach, i.e. the minimized AMSE of 1y (¢) is as least as large as
that of M, (¢) for every k. See Gerard and Schucany (1995) for ARE's that favor mg to mip
as long as 1/161.08 <k<161.08.

In this paper we show that finite sample practical implementations have relative
efficiencies that agree with large sample theory.
3. Bandwidth Selection
3.1 Adaptive Bandwidth (AB) Method for Local Linear Regression

Consider the model described in (2.1). For interior estimation, the asymptotic mean
squared error of a locally weighted linear regression estimator (2.3) is

) 1 5 2 GZQ
AMSE [mLL(l‘;h)]=|:-2-k2m"(t)h } +n t)h

1o 04 o0
=l O a2 3.1)



02A

= Bh* +—,
nh ‘
where B = i[kzm”(z‘)]2 A= %, and k, and Q are as in (2.3). The optimal bandwidth is
/5 -
P o4 /
P 4nB |

Since 4 contains known quantities, only estimates of o2 and B are required to estimate 4 opt:

Numerous /7 -consistent estimators of 62 exist; see for example Gasser, Sroka, and Jennen-
Steinmetz (1986). Schucany (1995) proposed an estimator for B motivated by the form of the
desired asymptotic bias,

bias? [y (t;h)] = Bh* +o(h*). (3.2)

If the bias were known for a number of bandwidths, hl,....,hq, then the relationship
between the squared bias and the bandwidth could be written as the regression model

2 5. 2[a o2 ~N]o nid 4y
b = bias® [y (t3h )]_th to(h), j=l..q,

where the dependent variable is the squared bias, the independent variable is the bandwidth,
and the remainder term represents the model error. Since the bias is not known, it must be
estimated. One consistent estimator employing differences of locally weighted polynomial
estimators is

b; =ty (t:h))-rpg (6h)), j=1.4, (3.3)

where m LO (¢;h) is a locally weighted quadratic regression estimator.
The estimator of B, obtained using least squares, is

q 4n
> hib?
= :
B=1— 3.4

- (3:4)
>
e~ ]

j=1
Asymptotic properties of B and the resulting plug-in estimator of hop, are given in the
following theorem. The theorems require that m" (¢) satisfy a Lipschitz condition of order y.

A function g(-) satisfies a Lipschitz condition of order y over the range [0,1] if for all a,b €
(0,1},



lg(a)-g(d)|< Mla-b]", |M|<w, 0<y<I.
Proofs of this and subsequent theorems are relegated to the Appendix.

Theorem 1

Assume that m" (¢) satisfies a Lipschitz condition of order y and that f'(¢) is finite
forall t € [0,1]. Let l;j in (3.3) be an estimator of bias[thL (t;hj)]. If the grid h; = Cjn_p
with p>0 and ‘le <, j=1,...,q, then

i) p=s= ___ B+O(n—PY)+Op(n—(1—5p)/2)’

and the AB method is consistent in that

oy N5
i) h= [%ig] = Ropy (1 +0, (n—(l—Sp)/Z ) + O(n_yp)),
n

if 62 =02 +0,(n"V?).

In the next section, the AB method is adapted for use in combining information from
different sources with 7 ().

3.2 Estimation of Common Bandwidth, /g

The asymptotically optimal bandwidth of 7 (¢), given in (2.8), also depends on B

by substituting 4 B = (kzm"(t))z, which follows from (3.1) and (3.2). However, in this
situation, there are two sources for the bias estimate since the asymptotic biases of 7y (¢;4)
and 7, (t;h) are equal for the same bandwidth and weight function. To be consistent with
the premise that the mean function is the same for each group as in (2.4), a combined
estimate of bias is used to estimate B. If a grid of trial bandwidths is used to estimate the bias
for each group, then a linear combination of the bias estimates could be used to estimate B as

in the previous section. The optimal linear combination of bias estimates is exactly the same
as for combining 77 and m,.



Theorem 2

Assume that the model (2.4) holds. Let nj—c0, ny—o0, and h—0 such that ny/ny—r
(0<r<ew) and nyh—>c0. Assume also that the conditions of Theorem 1 hold. If ~=0(rnP) and
p>1/(5+2y), then the minimum AMSE value of ¢ for the linear combination

b= cl;1 +(1- c)l;2 is the same ¢, given in (2.7).

Inserting suitable variance estimates to obtain an estimate of this c,,, yields a
combined estimate of bias, b.. These for a grid of bandwidths can then be used to estimate B

as before in (3.4). The next theorem gives some asymptotic properties of B and the resulting
plug-in estimator of /.

Theorem 3

Assume that the conditions of Theorem 3 hold. Define I;cj as the estimated optimal
combination,

62 Gl
x ny fo (1) A n f1(2) ~ .
bej = ~2 22 ~2 by j ) £A ") byj, j=L2,..4.
(0 (¢} (0 (¢
1, % L, %
mfi(t) nfr(1) nfi(t) mpfr(t)
1£62 = 62 + 0, (n7V/2), for i=1,2, then
q A
Y.62h]
=R 1-5p)/2
D Bt B0l )+ 0, [ P7)
>
j
j=1
and
/5
A2
A o4
i) hg —{—f—é—:\ . =hE[1+0p(n1—(1—5p)/2)+0(n1_p7 )],



~2 ~2

6] 65
o ¢ .
1f02E = nlAle( )anzgt) and h is given in (2.8).
+
mfi(t) npfr(t)

3.3 Boundary Modifications

For interior estimation, AMSE [n‘1 IL (t;h)] is given by (2.3). However, when the

point of estimation falls in the left boundary (0<t<h), Fan (1992) gives

2
AMSE [y (t;h)]:%(Bm"(O))z nt +nZ;(0)' (3.5)

d
Here taking Sp’d = jK(u)updu, (p=0,1,2,3) and d=t/h<1, the new factors are

d 2
_[(Sz,d -uSl,d) K (u)du

12,d (SZ,dSO,d - Sﬁd)z

Strictly speaking, o and B are functions of % due to their dependence on d. However, these
asymptotic expansions are derived assuming that ¢ remains constant as ~—0. To do so the
point of estimation moves toward the endpoint of the estimation space as ~—0 so that it
remains in the boundary region. Analogous expressions hold for the right boundary.

In practice, the point of estimation is constant and o and § must be viewed as
functions of 4 denoted by (%) and B(#). Finding the value for 4 that minimizes (3.4) is not
the simple exercise in differentiation encountered in interior situations. Even if the point of
estimation remains constant, a good approximation for the boundary is

o (h)c?
nhf (1)
4 + a (h) A BO 2
nh ’
where By = %(m" (t))zand Ag=1/f(f). The algorithm for local bandwidth selection is
modified as follows. As before, 45 contains known quantities and Bp is estimated from
smoothed bias estimates from a grid of bandwidths. Starting values of B(#)=k, and

Ago(h)y=QIf(t) are plugged into (2.5) to estimate a bandwidth. If the estimated bandwidth
results in boundary conditions, then there is a search for the bandwidth that "minimizes" the

AMSE [y (1;1)] = %(B(h)m"(t))z B+

= Bg(B(m))* h

10



Ago (k)62

estimated asymptotic mean squared error, B BBZ (h)h4 + . This expression may

have more than one local minimum. When this occurs, the smallest bandwidth producing a
local minimum is chosen. This is consistent with the local philosophy underlying
nonparametric regression estimators. It also may prevent problems caused by the lack of
agreement between actual and asymptotic conditions, especially for large bandwidths. There
is an analogous modification to be made for the bandwidth selection procedure for /.

In the next section, we compare the finite sample performance of our three curve
estimators in two simulation studies. The first study includes all three estimators and the
second concentrates solely on the two more reasonable estimators, 71 (¢) and m (t).

4. Simulation Results
4.1 Pilot Simulation Study

In this section, finite sample properties of my (¢), Mo (t), and g (t) will be
compared by estimating integrated mean squared error with

JM'E*E[n%] = %Zn(r?z(xi) —m(x;))?, @.1)

i=1

where m is either iy, mg, or M. These summaries will be averaged over independent
replicates.

The purpose of this study is to investigate the effect of the ratio, , defined in (2.6) on
the integrated mean squared error of these three estimators. A function with constant second
derivative, m(x)=x(1-x), is used. For each of the two groups, observations were generated at
100 equally spaced design points. Since this reduces to uniform design densities for each

group with equal sample sizes, the value of & is simply the ratio of variances, k£ = 0'% / 0'% .
The values of & studied are 1, 10, 50, 150, and 200. For =1, the standard deviation for each
group equals 25% of the range of the mean function. For the other values of k; group 1 has
the same standard deviation and the standard deviation of group 2 is reduced to give the
desired value of £. An example of a pair of realizations with #=100 is given in Figure 1.
Local bandwidths were used for each of the three estimators. The methods described
in the previous section produced local bandwidths for 71 . For m, individual bandwidths

were estimated for each group from (2.5) using the same B obtained from the combined bias
estimates described in Theorem 3. A general expression for ¢ to be used in 7 (¢) is

15 "(blb2 b7 )

(b =52)* +v+vy

co =

11



where by,v;,b,, and v, are the bias and variances of the locally weighted linear regression

estimators for the two groups. Using /4y, 52, 6'%, and 6%, the general expression for an
estimate of ¢, is

Apyo(h )52 A A Anan oA A ~ \2
——1327(;2—)—2—-(Bsﬁ(h1)ﬁ(h2>hfh§ - Bght (B(hy)) ]
A 272
CO=

Aproi)s;  Apra(h)éy

~ A A A~ An)2
By (BChR2 ~B(Ry)R2) + &
}'12}12 nlhl

where Ap=1/f(?). The resulting estimator is thus
o (1) = Eomn (63y) + (1= E0 )iy (15,

For iy, the data were combined into one group and the AB method employed directly.

The grid of fixed bandwidths must be specified for local bandwidth selection. After
some empirical investigation,

h=(j/7)(m +n2)—1/7, J=1...7,

was found to be a reasonable choice, where r; and n, are the sample sizes for the first and
second groups, respectively.

Independently, for each of the values of k, 100 replicates were generated. The
estimates of integrated mean squared error are summarized in Table 1 for six values of .
Significance tests are based on paired differences between values of (4.1) for each replicate.

Table 1. Monte Carlo Estimates of Integrated Mean Square Error
Averages of (4.1) are multiplied by 105 as well as their estimated standard errors in

parentheses

k My o mg

1 13.583(.769) 13.882(.796) 13.556(.757)
10 7.403(.332) 3.185(.140) 3.067(.135)
50 7.015(.293) 0.882(.035) 0.865(.035)
100 7.349(.353) 0.486(.020) 0.489(.021)
150 6.707(.315) 0.340(.013) 0.340(.013)
200 6.951(.380) 0.243(.009) 0.245(.009)

The results tend to support the asymptotic findings of Gerard and Schucany (1995).
For k=1, there is little difference between 1y (¢) and g (t) (p=.6181 for signed-rank test).

12



Each performs better than 1, (¢), but the comparison with m not statistically significant
(p=.1824) while the comparison with 7 is (p=.0304). As k increases, the performance of
my relative to the other two estimators deteriorates (p<.05 in all cases), also in agreement
with the asymptotic results. For k=10 and k=50, mg performed better than # (p=-0001 and
p=.0024, respectively). For k larger than 50, there is no statistically significant differences
between the two estimators. In the next section, a larger simulation trial involving only

o (t) and Mg (t) is discussed.

4.2 Simulation Comparison of Two Contenders

The restriction in the pilot study of equal numbers and equal spacing is relaxed here.
The same mean function is employed, but two different design densities, two samples sizes,
and two different standard deviations are employed. The seven combinations studied are
listed in Table 2, where A is the range of m (max-min=.25). A complete factorial
arrangement of the factors was not undertaken because the number of factor-level
combinations would be prohibitive. Furthermore, due to the symmetry of this problem, a
complete factorial arrangement would exactly duplicate some factor-level combinations,
simply switching group designations.

Table 2. Simulation Study Cases

Group 1 Group 2
Case Sample size () Standard Sample size (1) Standard
deviation (o) deviation (oy)
1 100 25A 100 10 A
2 200 25A 200 10A
3 100 25A 200 10 A
4 100 10 A 100 10 A
5 100 25A 100 25A
6 200 10 A 200 d0A
7 100 25A 200 25A

Note that use of these combinations results in values of & ranging from 1 (Cases 4 and 5) to
12.5 (Case 3) and encompasses situations that reasonably might be seen in practice.

For each case described in Table 2, 100 replicates were generated for each of two
design densities. The two densities are f;(x)=1 and f5(x)=e*/(1-e-1), both supported on the
interval (0,1). Note that f,(x) is a truncated exponential distribution. The same grid of
bandwidths is used as in the pilot study. For each of the 100 replications, #1; and m, were
evaluated and another estimate of integrated mean squared error,

13



50
IMSE[m —162 ((xe;) —m(xe;)),

4.2)

is calculated, where xe=i/51 are arbitrary fixed evaluation points rather than actual design
points. The results of the simulatioir study are summarized in Table 3.

Table 3. Simulation Study Summary Statistics
Averages of (4.2) are multiplied by 103 as well as their estimated standard errors in

parentheses
Case Design Density mo mg
1 fi 3.98(.200) 3.85(.192)
1 b 4.24(213) 4.11(.201)
2 £ 2.22(.104) 2.17(.100)
2 2 2.71(.146) 2.66(.141)
3 £ 2.48(.129) 2.40(.122)
3 J2 2.46(.122) 2.40(.121)
4 A 2.91(.133) 2.78(.121)
4 b 2.96(.150) 2.82(.137)
5 f 12.8(.761) 12.4(.710)
5 % 15.2(.922) 14.7(.890)
6 A 1.47(.071) 1.42(.066)
6 5 1.65(.092) 1.59(.085)
7 A 9.72(.506) 9.32(.473)
7 H 9.16(.508) 8.79(.474)

This simulation study supports the claim that for most situations seen in practice, mig
is preferred over . In each of the fourteen comparisons made, the IMSE for mp is

significantly smaller than that of 1 (p<.05 for the Wilcoxon signed-rank test). It also

appears that for this function, the uniform design density may be preferred over the truncated
exponential since it yielded lower JMSE values in ten of the fourteen comparisons.
Additional simulations with m(x) being a combination of exponentials were also in generally

good agreement with the theory.

5. Conclusions

14



The properties of the three estimators studied by Gerard and Schucany (1995) were
investigated in finite samples through two simulation studies. Local bandwidth selection
using a method suggested by Schucany (1995) was modified to estimate the smoothing
parameters for these simulation studies. Consistency of the new bandwidth estimation
procedure holds under usable conditions. The results of both simulation studies support the
asymptotic results that 71, is very inefficient in cases with different variances, 7 is to be
considered only in cases with vastly different variances, and i, is preferred in most cases
that would be encountered in practice. It should be reasonably straightforward to extend the
methodology to several groups.

6. Appendix

In this section, details are given concerning proofs of the theorems cited in the body
of the paper. The following three lemmas are stated without proof. The first lemma concerns
the approximation of summations by integrals. A similar result is given in Conte and DeBoor
(1980). The last two lemmas demonstrate the asymptotic equivalence of second and fourth
order kernel estimators with locally weighted linear and quadratic regression estimators,
respectively. Similar results may be found in Daniel (1992) and Miiller (1988).

Lemma

Let F(-) be a cumulative distribution function with absolutely continuous density
function, f(x) = F'(x), strictly positive on [0,1]. If xp=0, x; = Fl (i/(n +1)) fori=l, ....,n,
and x,+,=1, and K(-) is a kernel function supported on [-1,1] with finite first derivative, then

n ;s 4 — l . —

L x.jK(x’h t) = J.%fo(}—h—i)f(x)dx + O(n-l), for j=0,1... , as n—o.
= 0

Lemma 2

Let wy; be the weights corresponding to a locally weighted linear regression estimator
att, myy (t;h). If the conditions of Lemma 1 hold, then

R n : n 1 z

IGOEDRTIEDY K(—')(l +o(1))yi>
i1 iz Onh

where z;/=xt.

cmima

Let wy; be the weights corresponding to a locally weighted quadratic regression
estimator at £. If the conditions of Lemma 1 hold, then

15



Zj Zj 2
A . - K(z)("‘* "‘2[7] ]
mpg (t;h) = Z:lwqiyi = ;nhf(t) PRy

(I+o(M)y;,

-

1
where z=xt, and k; = J.ui K(u)du, for i=2,4.
0

Proo eorem 1

n
i) Write b = Z(Wli - Wy ) Yi , where wy; and w,; are the weights for the locally
i=1
weighted linear and quadratic regression estimators respectively. Expanding m(x;) in each
term with a Taylor series yields

b= Z(Wli = Wgi )(m(xi)+ £;)

~,
[aniy

n
1=

(w,,- - wq,-)(m(t) +m'(t)z; +%m"(§,~)zi2 +8i], min(x;,t) <&; <max(x;,t),
1

n n n n n
where z=xt. Since ) wy = ) wy =1and ) w;z; = ) wyz; = qu,-zi2 =0, we have
i=1 i=1 i=1 i=1 i=1

n n 1 n ) 2
b= Z(Wli __qu)gi +Ezm Ewyz; .
i=1 i=1
By the Lipschitz condition on m"(x),

(&) =m (1) + Ol 1" )
=m"(t)+O(hY),

since min(x,,f)<¢ <max(x,!). Hence by Lemma 1,

16



" n 1 n
b= Z(W[i - qu)Si +§m”(t)Zwl,-zl.2 +0(h2+7)
i=1 i=1
- i(w,,- g Jes + = m (6 2y + () + O(H2*T ),
i=1

-

By the Central Limit Theorefn (Miiller, 1988),
n
-1/2
Z(qu ‘“wqi)ei = Op ((”h) YV )
i=1

and hence
5= Ligmeon + o) o1 ), (o))

Ligme )2 +0(h2*1 )+ 0, ((nn) V2

Therefore
)
q 9 b

P2t Y Lpd

25 2t
podzl =l

q q ’
8 8
Zhj zlhj

J=1 J
where b j is the bias estimate when the jm bandwidth, 4;. Substituting the expression for b;

yields

A

% =3+0(1)+0, ((nhf. )2 )
Substitutijng h=CnP yields
B=B+ O(n_py )+ 0, (n—(l"s’))/2 ).||

i) The ratio of the estimated bandwidth to the asymptotically optimal bandwidth is



ho_|82B
hopt | 6% B
[ 52 +0, (n—l/z) B | Vs
- o2 B?Op(n‘(1‘5p)/2)+0(n'7p)
[0+ 0, r7-5972) o)) ]
=140, (n= (=592} o) |
Proof of Theorem 2

From the proof of Theorem 1,
E(5)= —;—kzm"(t)hz +o(n2*r),
and hence Bias(l;,-) = O(h2+Y )

Evaluation of Var (Z;,) for i=1,2 yields from Lemmas 2 and 3,

n;

Var(l?i)=Var{Z 1 K(-Zg]ama»w

j=1nifi(t)h
K kg k| 22 i
P B

n,f,(t)h kg —k2

(1+0(1)) vy

18



1
[ K2 ) (k2 20y g + 0782 )

1
_ i 2 -1
"R 110 (ko 12)

from Lemma 1 and the continuity of f{x). Thus,
MSE (l;,) = [Bias(l;i )]2 +Var (l;,)
= 0(h4+y ) +Var (Z;, ) + O(n,L-hJ

=Var (l;, ) + O(n%hj

ifh=0(n"P) and p> 5+127

. The optimal value for c is found by differentiation.||

Proof of Theorem 3
i) From the proof of Theorem 1 and ny /n, — r,

[ 1 " 2 2+ _1/2 . .
by =5 ko (1)1 +0(hj Y)+0p((n,-hj) ) i=1,2, j=1,..q.
Thus,

Z;cj = (C +0p (”1_1/2 ))(%kzm”(t)hf. + O(hjz.” ) +0, ((nlhj )_1/2 ))
(1-e0, ) Lt oz +oli )0, (1) )

- -;-kzm”(t)hjz. +o(r2*7)+0, ((nlh PRa )

Following identical steps to those in the proof of Theorem 1 yields

19



B=B+ O(nl'py )+ 0, (nl'(l's")/z )_”

if) Consider the ratio

- 1/
262 _
~2 ~2
(o) (o) ~
1, % |3
h nf1(t) mpfa(1)
hg cfc%
2 2
(e} (e}
1L, % |p
n f1(8) nafo (1)

-1/2

Substituting 6?’ = c? + Op("i ) fori=1,2and B= B+ O(n;py ) +0, (nl—(l—Sp)/z)

yields

= [(1+ 0, ) 1+0, (%) ol )

=140, (7 47P72) on7) |
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Figure 1. Realizations with a) 6;=.25A and b) 5,=.025A, where A =range of m.



