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_ ABSTRACT
Optimal estimation of spatial characteristics such as the values of regionalized variables or
the means of random fields is often accomplished using kriging methods. These methods
rely on satisfactory estimation of spatial semivariograms and the fitting of semivariogram
models. One of the many computational challenges to the fitting of semivariogram models
is the detection and accommedation of influential observations. Influential observations
can have a dramatic effect on sample semivariograms because each observation is used
many times in the calculation of the semivariogram values. In this paper methods for
detecting influential observations are discussed. Readily computable diagnostics for
generalized least squares estimators are applied to kriging model fits and are shown to be
highly effective for identifying influential observations. An analysis of regional temperature
anomalies demonstrates that deletion of influential observations may be required in order
to obtain satisfactory semivariogram model fits.
Key words and Phrases: diagnostics; kriging; optimal interpolation; regression; robust
estimation; spatial modeling.
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1. Introduction

The intense contemporary concern over environmental issues is one of the
motivations for the current emphasis on spatial statistical modeling of data collected
regionally and around the globe. Spatial statistical models account for differences in
correlations between observations taken relatively close to one another and tl;‘ose taken
greater distances apart. One important class of spatial modeling techniques is known
variously as kriging, optimal spatial averaging/interpolation, or objective analysis. Kriging
consists of two basic steps: semivariogram or covariance model estimation and minimum
variance linear unbiased prediction (Journel and Huijbregts, 1978; Cressie, 1991). If the
semivariogram model is known or has been satisfactorily mddeled, the various types of
kriging and co-kriging can be performed using generalized least squares estimators of
appropriately specified trend models (Stein and Corsten, 1991). However, a large number
of issues remain to be resolved in the estimation of semivariogram models. Concern in this
paper is with the estimation of semivariogram models when one or more of the
observations may be influential.

Figure 1(a) is a plot of November 1990 sample semivariogram values calculated
from temperature anomalies for European (409N to 60°N latitude, 10°W to 400E
longitude) temperature reporting stations. Each of these stations has at least 15 years of
complete monthly data over the reference period 1951-1980. Anomalies are deviations of
individual monthly station temperatures from the average monthly station temperature
over this reference period (Gunst, Basu, and Brunell, 1993). Anomalies, rather than actual
temperatures, are commonly used to study climate changes in order to reduce local and

regional effects on temperature trends (Hansen and Lebedeff, 1987; Jones, Raper,



Bradley, Diaz, Kelly, and Wigley 1986). The calculations used to obtain the sample
semivariogram values in Figure 1(a) will be detailed in the next section.

Of interest here is the occurrence of spikes in the plotted values for the complete
data set (all the European stations having at least 15 years of complete data over the
reference period). The spikes are important because they greatly affect the ﬁtiing of a
smooth nonlinear semivariogram model to the semivariogram values. It is common for
such attempts to fail because of lack of convergence, as occurs with the fitting of a
Gaussian semivariogram model to these values. Spikes such as these also affect the choice
of a semivariogram model because they have a great influence on the estimation of
semivariogram model parameters and thus to the adequacy of the fit.

Computational difficulties in fitting the sample semivariogram values to the
complete data in Figure 1(a) led to an investigation of various contour plots and other
graphical displays of the data, three of which are shown in Figure 1. The contours in
Figure 1(b) sharply increase around the Copenhagen station (latitude 55.7°N; longitude
12.60E). The perspective plot (S-Plus, 1991) in Figure 1(c) clearly shows the discrepant
value for this anomaly, as does the box plot in Figure 1(d). The November 1990
- Copenhagen anomaly is not only discrepant from the anomalies for all stations in its
vicinity, it is also discrepant from the other November anomalies for this station over the
last century. The November 1990 Copenhagen temperature anomaly is 50C. Over the
previous 200 years the next warmest November anomaly for Copenhagen is 2.6°C. The
quartiles of November anomalies for Copenhagen are -2.5°C, -1.10C, and 0°C with a
mean of -1.23°C.

Elimination of the November 1990 Copenhagen anomaly results in the smoother

semivariogram plot shown in Figure 1(a), convergence of the nonlinear algorithm for



fitting a Gaussian semivariogram model to the semivariogram values, and more realistic
estimates of the model parameters. It is important to note that this one observation
affected several of the sample semivariogram values in Figure 1(a), as indicated by the
absence of several of the severest spikes in the semivariogram plot when Copenhagen is
deleted. While deletion of the discrepant Copenhagen anomaly is not the onli"form of
accommodation that can be taken, one could argue that it is warranted in this case because
of the severe effects the anomaly has on the sample semivariogram values and on the fitted
semivariogram models, and that doing so provides a better representation of the spatial
variability of European temperature anomalies for November 1990.

When spatially modeling large data sets, it may be prohibitively laborious to
critically examine all data values in order to determine whether there may be influential
observations present. For example, the temperature anomaly data set that provides the
focal point of this research consists of monthly anomalies for almost 1,900 temperature
stations that have various lengths of temperature records from the mid 1800s to 1990.
Nevertheless, the problems noted above necessitate that influential observations be
identified and a decision be made regarding whether to retain or otherwise accommodate
. aberrant data values. Robust estimation of the semivariogram values can reduce the effects
of aberrant observations and rectify the computational difficulties associated with
variogram model fitting. Alternatively, the detection and deletion of severely influential
observations might suffice to ameliorate the computational and estimation difficulties.

Because of the lack of statistical independence of the anomaly differences used in
the estimation of semivariograms, it is not clear whether robust procedures or the
identification and elimination of aberrant data values would be more advantageous. While

the context of the problem and characteristics of a data set should always be used to help



determine how to accommodate influential observations, influence diagnostics should be
included in any such investigation. In this paper both influence diagnostics and robust
estimation are studied with regard to their impact on semivariogram estimation and

modeling.

2. Robust Semivariogram Estimators

A spatial random function is a random variable defined over a continuous spatial
domain D: {Z(s), seD}, where for fixed s, Z(s) is a random variable. A realization of this
random function {z(s;), s;j€D} is often termed a regionalized variable. The theoretical
semivariogram associated with a random function is defined as

Y(8y,8;) = var{Z(s,) - Z(s;)} /2 .

In this paper, discussion is restricted to spatial second-order stationary random functions.
A further simplification assumed in this paper is that the theoretical semivariogram is
isotropic, not dependent on direction. Under these assumptions, the semivariogram is a
function of only the distance between two spatial locations. For the fitting of temperature
anomalies, great circle distances are used. Alternative methods for calculating and fitting
semivariograms are available when either the stationarity or the isotropy assumptions is
violated, see Journel and Huijbregts (1978) or Cressie (1991). In addition, Gunst (1994)
discusses the advantages of trend removal for the reduction or elimination of anisotropy.

Two critical steps in the use of semivariograms for spatial modeling are the
estimation of the semivariogram values and the fitting of these values by semivariogram
models. Semivariogram models are fit to the sample semivariogram values in order to
ensure that the matrix of fitted semivariogram values is conditionally negative definite,

which is equivalent to the requirement that the estimated covariance matrix of predicted



spatial variates is positive definite. This property cannot be ensured simply by estimating
the semivariogram values themselves. In addition, a valuable interpretive feature of
semivariogram model fitting is the decomposition of spatial variability into components
corresponding to model parameters such as the nugget, the sill, and the range.

In order to estimate semivariogram values, several choices concelrning'r the
grouping of the regionalized variables must be made if locations are not equally spaced on
a grid. Ordinarily, pairs of regionalized variables are binned into several equally spaced
lags. The lag distances are first selec_ted and then pairs of regionalized variables whose
locations are within a specified distance and direction from one another are binned
together. For isotropic semivariogram values, the direction is ignored. In Figure 1(a), lag
distances were set at multiples of 100 km. Thus, all pairs of station locations that were
within (0 km, 100 km], regardless of direction, were binned into the first lag, those within
(100 km, 200 km] were binned into the second lag, and so forth. The lag distances,
multiples of 100 km, and the number of lags used, 20, were subjectively chosen after an
examination of a number of alternative choices. The choice of lag distances and number of
lags are not the focus of this paper.

The traditional semivariogram estimator is

7(d)= X {z(s;)-z(sj)}* /2ny , 2.1)
N(d) :

where N(d) denotes the set of all pairs of locations binned together at nominal lag distance
d and nq is the number of such pairs of locations. For a fixed distance d, the classical
estimator is an unbiased estimator of the semivariogram. The sample semivariograms

plotted in Figure 1(a) were calculated using equation (2.1). Under intrinsic stationarity



assumptions, the sample semivariogram estimator (2.1) is unbiased. If a mean shift is
added to the value of a regionalized variable at location sy, one can show that the sample

semivariogram has expectation

where Np,(d) is the number of location pairs at nominal lag distance d that include Sm and
8y is the magnitude of the mean shift. This quantification of the effect of a mean shift can
account for the spikes in the sample semivariogram plot in Figure 1(a).

Cressie and Hawkins (1980) recognized the tendency for extreme values of
regionalized variables to influence the calculation of variogram values. After studying the
cumulants of squared anomaly»‘differences under normality assumptions, they

recommended the following robust variogram estimator as an alternative to the traditional

estimator (2.1):

4
% lz(s;)-z(s) 2/
{N<d)z‘ j nd}

2(.457+.494 / n

7 (@ = 2.2)

4)

Another alternative to using the traditional estimator (2.1) is to weight a function
of the anomaly differences using robust estimators of location or spread. Cressie and
Hawkins (1980) investigated several forms of trimming and four different M-estimators of
location applied to the square roots of the anomaly differences, y =|z(s;) - z(s j)l” ?. They
reported simulation results for lag-1 semivariogram values, (1), and concluded that none
of these alternative robust estimators was preferable to the robust estimator (2.2). They
also concluded that the robust estimator (2.2) was more efficient than the sample

semivariogram (2.1). McBratney and Webster (1986), on the other hand, concluded, also



on the basis of simulation results, that neither the sample semivariogram (2.1) nor the
robust semivariogram (2.2) could always be recommended over the other. Zimmerman
and Zimmerman (1991) concluded from their simulation results that weighted least
squares estimators of theoretical semivariogram model parameters with either the sample
semivariogram (2.1) or the robust semivariogram (2.2) generally performed as well as the
more computationally demanding likelihood-based methods they studied.

A further alternative to (2.1) consists of weighting the anomalies themselves. For
example, weighted anomalies can be calculated as

z,(s,)=m, +w,{z(s;)-m,},
where my is a robust estimator of location and wj is a weight assigned to the ith anomaly
in a bin based on robust estimates of location and scale. The robust estimator used in the
following investigation was calculated from Huber's (1973, 1981)

y(z) =min{cs,max(-cs,z-m,)} , (2.3)
where s is a robust estimate of scale and ¢ is a "tuning" constant. The weight in zy,(s;) is
then wj = y{z(s;)}/z(s;). The minimum absolute deviation, MAD, was used as the estimate
of scale and the tuning constant was set to 1.345. Other estimates of scale and choices for
the tuning constant were investigated. The conclusions reported below do not materially
change for any of the other estimates of scale or choices of the tuning constant.

Figure 2 shows fhe effects of applying the Cressie-Hawkins robust estimator (2.2)
and weighting the anomalies using (2.3) on the sample semivariogram for the November
1990 Europe anomalies. The Cressie-Hawkins robust estimates are less affected than the
traditional estimates by the Copenhagen anomaly but the spike at lag 9 (950 km) remains,
as do large semivariogram values at several of the other lags. The M-estimator weighting

of the individual anomalies has shifted the entire semivariogram well below the other



semivariograms. The reason for this shift is the bound placed on the magnitude of the
difference z - m in (2.3). Anomalies that exceed this value in the final iteration of the
calculation of the M-estimator are all set to the same value, £1.345s depending on the sign
of the difference z - m;. An examination of the weights reveals that a number of anomalies
in most lags are set equal to the upper or the lower bounds, not just Copenhaéen.
Consequently, many of the weighted anomaly differences are zero, causing the averages of
the squared differences for all the lags to be negatively biased estimators of the true
semivariogram valués.

These features of the robust estimators can be confirmed in simulation studies.
Figure 3 shows the results of a simulation of 200 realizations from a Gaussian
semivariogram model

¥(d) =61 + (82 - 81){1 - exp(-d2/632)} (2.4)

with the following parameters: nugget (1) = 0.2, sill (62) = 2, range (63) = 7. Ninety-nine
locations were randomly selected over the square region [0,20]x[0,20]. Location (10,10)
was added to the 99 as the location where an influential observation would be placed. The
same 100 locations were used in all replications and Euclidean distance was used in the
calculation of the sample semivariogram values. Figure 3(a) does not contain an influential
observation. Figure 3(b) contains an influential observation whose value was set equal to 2
at location (10,10). Figure 3(c) has an influential observation at the same location with a
value equal to 4. In Figure 3(d), the value was set equal to 8. The sample semivariogram
that includes all the data contains spikes and has a general tendency to overestimate the
theoretical semivariogram when the influential observation is added, Figures 3(b) to 3(d).
The Cressie-Hawkins robust estimator ¥, does provide protection against catastrophic

effects of the influential observation, but in doing so it is biased upward. Weighting the



anomalies shows the clear effects of the weighted observations being set equal to the
upper and the lower bounds of the M-estimator weighting function. In all four plots the
negative bias in the weighted semivariogram values is apparent. On the other hand, the
sample semivariogram with the observation at (10,10) deleted was closest to the
theoretical semivariogram in all four plots.

Other simulations were performed with different outlier locations. The results were
similar to those just reported. These investigations confirm the importance of having
appropriate influence diagnostics to detect the presence of unusual or discrepant

regionalized variable values. Diagnostics are discussed in the next section.

3. Influence Diagnostics
One compelling characteristic of commonly used case-deletion influence
diagnostics is the ability to calculate the diagnostics without refitting. Thus, a de-facto
requirement for routine application of influence diagnostics is that thgre be computational
shortcuts which enable case-deletion diagnostics to be calculated from one fit to all the
data. Hoaglin and Welsch (1978) introduced this technique for least squared estimators
and others have generalized the approach to a variety of models and estimators, See, for .
example, Christensen, Johnson, and Pearson (1992), Cook and Weisberg (1982), De
Gruttola, Ware and Louis (1987), Escobar and Moser (1993), Fox, Hinkley and Larntz
| (1980), Pregibon (1981), and Wellman and Gunst (1991).
Several approaches were used to derive influence diagnostics in this research. One
approach was to express kriging model fits as generalized least squares prediction
equations and to derive regression-based influence diagnostics. Stein and Corsten (1991)

showed that the various types of kriging and co-kriging model predictions could be
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expressed in terms of generalized least squares predictors of the regionalized variable. This
work connects the optimal linear prediction theory for linear models (e.g., Goldberger
1962) to kriging predictors. The linear model formulation readily lends itself to the
derivation of influence diagnostics. »

Let Z denote the spatial covariance matrix of the spatial random varia:Bles Z(s;).
Suppose that one wishes to predict the value Z() of the regionalized variable at a location
sq. Let o denote the spatial covariances between the Z(s;) and Z(s(). Let z denote the n-
dimensional vector of observed regionalized variables. The ordinary or universal kriging

predictor of Z is
Z, =0'E;Z"lz+x;[§ N G.1)
= 0‘02_1(2’ XB) +x(B
where p =X’z 1X)1x'21z, X is a matrix consisting of a single column of ones for
ordinary kriging or a column of ones and k-1 columns of trend variables for universal
kriging, and x, = xg - X'Z"loy.
Case deletion statistics for the fit (3.1) are
By -B = -ca(X'='X) " x,r,/(1-cih,,)
D; =hy,ry / {key, (1-ciuhy, )’}
2 - 24 =1,/(1-c;;h,,) (3.2)
and tay = Ta /{C:f (1-ch,, },
wherer, =z, — x'aﬁ, z, =z -c'(i)ZEili)z(i), X, =X; -X'(i)EE%i)O'(i), Caa =Oji -G'G)Zz}i)cs(i), and
h,, =x, (X'Z"'X)"x,. The first two diagnostics listed in (3.2) are generalized least
squares versions of Belsley, Kuh & Welsch's DFBETA and Cook's (1977) distance
statistic. They are derived in Christensen, Pearson & Johnson (1992). The third diagnostic

is a generalized least squares version of Belsley, Kuh & Welsch's DFFIT and the fourth
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one is a Studentized version of the adjusted residual z, -x;ﬁ(i). Interestingly, the DFFIT

statistic is identical to the adjusted residual because the kriging fit is an exact interpolator.

In equations (3.2), the subscript (i) denotes the deletion of the ith case. The
subscript a denotes a regionalized variable or a predictor that is adjusted for other variates
as indicated in the expressions following equations (3.2). The use of adjusted:‘predictors
and adjusted residuals in these diagnostics are a natural consequence of the focus of
kriging on optimal prediction of regionalized variables. They are adjustments due to the
assumed covariance structure of the errors in the model. Observe that the case-deletion
diagnostics can be obtained from the fit to the complete data set. If, as in ordinary least
squares estimation, the errors are assumed to be uncorrelated, the adjusted variates reduce
to the raw predictors and residuals and the diagnostics are the usual least squares case-
deletion diagnostics.

The studentized adjusted residuals ta(j) were calculated for the November
anomalies from a constant-mean, or ordinary, kriging model. The values are plotted in
Figure 4(a) by case number. The exceptionally large residual for the Copenhagen station is
clearly evident in the plot.

Alternative diagnostics that are not regression-based case deletion diagnostics can
also be derived. Compu_tationally more demanding than the regression diagnostics are
diagnostics obtained directly from nonlinear semivariogram model fits. The sensitivity of
these fits to the repeatéd use of each observation in the sample semivariogram calculations
necessitates the deletion of each observation and the recalculation of both the sample
semivariogram values and the model fits. For comparison purposes, each November
anomaly individually was deleted from the data set and the nonlinear least squares

algorithm was run 88 times to fit the Gaussian semivariogram model to the sample
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semivariograms. Case-deletion diagnostics for the estimated model parameters were
calculated similar to the recommendation of Bruce and Martin (1989, equation (2.8)):
dey = n(é(i) 'é)'i(é(i) -é), - ' 3.3)
where 1 is the estimated information matrix from the nonlinear fit using all the anomalies
and I = nFF, with F the nx3 matrix of partial derivatives of the Gaussian n;‘odel
evaluated at the n data values. These case-deletion diagnostics are plotted in Figure 4(b)
- and also clearly indicate the influence of the Copenhagen station anomaly. However, they
require a great additional computational effort over the one-fit residual diagnostics derived
above.
An alternative approach to the derivation of influence diagnostics is to estimate
E(yjlyk, k#1) and var(yjlyk, k#i) under normality assumptions and then form a diagnostic
based on the statistic y; -I:Z(yilyk, k #1). This type of influence diagnostic and others

were derived and studied but did not perform substantially different from those described

above.

4. Concluding Remarks
Semivariogram model fitting is a difficult theoretical and computational problem.
The effects of inﬂuentia} observations on semivariogram estimation and the fitting of
semivariogram models are made more severe by the reuse of individual data values in and
between bins. In settings such as the modeling of global temperature data, the sheer
magnitude of the data files preclude the extensive hands-on exploration of subsets of the
data for influential observations. Thus, diagnostics can be a valuable aid in the

identification of observations that might severely affect the fitting of semivariogram

models.
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Figure 4. Influence Diagnostics for the November 1990 European Temperature Anomalies.

(a) Studentized Residuals from the Kriging Model! Fit.
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(b) Model-Parameter Case-Deletion Diagnostics.
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