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Summary

For two-dimensional spatial autoregressive (AR) models, asymptotic properties of the spatial
Yule-Walker (YW) estimators (Tjostheim, 1978) are studied. These estimators although consistent,
are shown to be asymptotically biased. Estimators from the first-order spatial bilateral AR model are
looked at in more detail and the spatial YW estimators for this model are compared with the exact
maximum likelihood estimators. Small sample properties of both estimators are also discussed briefly

and some simulation results are presented.
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1. Introduction

The analysis of spatial processes has received much attention in recent years and has been
studied in disciplines such as geography, geology, biology and agriculture. Many of the developments
have been summarized in the books by Bartlett (1975), Ripley (1981), Clff and Ord (1981), and Upton
and Fingleton (1985). We consider spatial processes on a regular rectangular grid of size mxn defined
in two dimensions with sites labeled (i,5), with an associated random variable Y,-]- defined at each site.

Examples of such phenomena include data collected from satellites and from agricultural field trials.

Tjostheim (1978, 1983) examined in detail a special case of the bilateral AR models, as defined
by Whittle (1954), where the value Y'-]- defined at each site (4,) is a (finite) autoregression on the
values at the sites which are in the lower quadrant of (i,j). In two dimensions the spatial

autoregressive model of order (p;, p2) becomes
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with the convention that agy = 0. The ¢, are a collection of independent random variables with

i
E(eij) = 0 and Var(e'-j) = ¢2. The obseivations Yij’ i=1,...,m, j=1,...,n are available for the
estimation of ay,. Tjostheim (1978) considered spatial Yule-Walker (YW) estimators and proved that
the asymptotic distribution of the spatial YW estimators from model (1) is Gaussian. There is an
error in the proof, and hence the asymptotic distribution of the spatial YW estimator, although
Gaussian, contains an asymptotic bias term. We first study this asymptotic bias of the spatial YW
estimator in more detail, and discuss the consequences for small to moderate grid sizes. The results are

also compared with the recently proposed exact maximum likelihood estimator of Basu and Reinsel

(1990) for the special case of the first-order spatial bilateral AR model.

2. Asymptotic Bias of Spatial Yule-Walker Estimators

For s > 0 and t > 0, define
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which are the sample covariances at lags (s,f) and (s,—?), respectively. Note that R(s,t) = R(—s,—1)
and R(—s,t) = R(s,—1). Guyon (1982) compares R(s,!) with the unbiased estimator of v(s,f) =
E(Y Y j .+ By(s,8) = mn R(s,)/(m-s)(n-1), and claimed that the unbiased estimator is preferred.
As one of the examples, Guyon (1982) considered the YW estimator for a spatial model with one
parameter and showed that the estimator was asymptotically biased if R(s, ) is used, but the bias
vanishes when R, (s,?) is used instead.

For0 < s<py, 0 <1< pgand (s,) # (0,0), using (1) we can write

1 m-s n-t 1 m-s n-i pl P2
Rty =mg ), >, Yic€eiry + mn, > > ou Yy Yips—kjst—t
=1 j=1 =1 j=1 \ k=0 =0
)
= A(s) + ) D apy BlstkD (2)
k=0 =0
where A(s,1) = (mn)'1 E",:"‘f 1 Y i Cidsjt and
1 m-s n-i
B(s,tkD) = ;1 y. Yi+s—k,j+t—l = R(s—kt—0 + R*(s,,,k0), (3)
=1 =1
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With R(S-k,t—l) = {22'1 E‘;‘=j‘ Y’j Y‘+8—k, J+t—'l }/mn, l*= max(l,k_3+l),
m*= min(m,m—s+&), j*= max(1l,/—t+1), and n*= min(n,n—1+10). So, using (3), (2) can be written

as
| Mg et Py Py Py Py .
R(s,t) = WZ Z €irsrt + ap R(s—kt= + Y > R*(s;,k).
=1 =1 =0 0 =0 E0

— !
Define a = (001,..., 00’p2, 001,..., al’p2,..., apl, 0 apl’p2 ) ’
r= (RO, RO, pg)y R(L,0),.., R(L, pg)-s R(pp,0)ye. s R(pys pg))'s

= (A(0,1),..., A(0, pg), A(L,0),..., A(L, Po)y...s A(p1,0)s..., A(py, 29))s

R(0,0) R(0,1) . : . R(-py,1-po)
R(O’l) R(an) . . . R(’p112'p2)
R=
R(pyspy-1)  R(pypy-2) - . . R(0,0) B
[ R*0,1,01)  R*(0,102) . . .  R*Olppp) |
R*(0,2,0,1)  R*(0,2,0,2) . . . R*(0,2,p,p9)
R*=
R*(P1,P210,1) R*(Plap2’0,2) . . . R*(PI,P2aP1,P2)

Note that a, r, and A are (p;+1)(py+1)—1 dimensional vectors, while R and R* are (py+1)(py+1)—1

dimensional square matrices. These imply that we can write the equations (2) in matrix form as

r=A+Ra+R*. (4)

The spatial YW estimator of « is given by &YW = R'1 r (Tjostheim, 1978), and thus from
(4) we obtain

ayw=R!'r=Rl4+a+R1R%



This implies dyy — @ = R'1 4 + R R*a, so that
(""‘)1/2 (dyw — )= R (mn)1/2A +R1 (mn)I/2 R*a . (5)

Writing v(0,0) = v, note that as m,  — oo, R £ v Ka), where

o —_—

Y 7(0,1) . . . 7(-py»1-p5)

7(0,1) Y . - - 7(-p1:2-p9)
vHa)=

7(?1,1’2'1) 7(1’1,1’2‘2) . . . 7 B!

Also, it can be established that (mn)1/2R* £ ~I*£ 0, where the matrix vI* has a particular form,

under the assumption that m/n — c2, 0 < ¢ < 0o. This implies that

R (mn) 2 R* 2 oyl Pa =5. (6)
Also, from Lemmas (8.1) —(8.4) of Tjostheim (1978), we obtain that
R (mn)/%4 L N0, z.?- Ka)1). )
So from (5)—(7) and Slutsky’s theorem we obtain,
(m)'/? (ayyy — @) 2 M3, % a1 ). ®)

It should be noted that Tjostheim (1978) incorrectly arrived at the conclusion that b = 0 in the above
distributional result (8) concerning the spatial YW estimator @y While this result indicates that the

- -1/2
estimator has an asymptotic bias of the order (mn) Y 2, with E(é& yp)= a + (mn) / b.

3. Yule-Walker Estimator for the First-Order Spatial Bilateral AR Model

A special case which is of interest is the first-order spatial bilateral AR model. This model has
been studied by Basu and Reinsel (1990), and Martin (1979, 1990) studied the special case of
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1= —a19%1- In this case we have p; = 1 and P9 =1, and the model is

Yi =201 Yijo1+ e Yimyjton Yicym1 + 6 ©)

for 1+ = 1,...m and j = 1,..,n. Recall that *= max(l,k—s+1), m*= min(m,m—s+k),
j*= max(1,l—t+1), and n*= min(a,n—¢+0) and (s2) and (k) take on only the values (0,1), (1,0)
and (1,1) for the spatial YW estimation in this model. We will obtain explicit expressions for all the
relevant terms B(s,t,k0), R*(s,t,k,]), and I*(s,t,k,]) for the special case of first-order spatial bilateral AR

model. From (3), the expressions for B(s,t,k,]) are as follows:

m n-1 9 m B LU
ma BOLO) =) Y Yi=) % Y- Vi,
1=1 j=1 =1 j=1 =1
m nl n-1 n-1
mn B(0,1,1,0) = :Zl JZ: YiYi 141~ '_22 J—Zl YiYic1jm t Z Yo, 541
n n
mn B(0,1,1,1) = g; Y, 4 J Z E Y, 4 J (Z inYic1 N _j; YleOj)
mnB(1001)—;]ZYY+1,,_1—EZ Yit1,5— 1+Z Yirr0o
m
mn B(1,0,1,0) = ‘; )y =) YORC E
= 11—1 =1 y=1
m n m n
mn B(1,0,1,1) = Z Z YiYiic1= 2 2 YaYiioi + (X YaYi = Ymi¥mjo1 )
=1 =1 =1 ;=2 =1 =1
m-1 n-1 m-1 n m-1
mn B(1,1,0,1) = Z E Yijyz-«l-l,] Z Z :+1,] Z in :+l n’
=1 =1 =1 j=1 1=
m-1 n-1 m 21
mn B(1,1,1,0) = ) E YiYiie1 =20 2o Yi¥ij — E mj Y, 1
=1 =1 =1 ;=1
m-1 n-1 m R m
mnB(llll)_ZZ %:ZZY?J.—(EY?n+ZY?nj—ann),
=1 =1 =1 y=1 1=1 =1

where for each of the expressions above, following notation of (3), the first term on the right-hand side
corresponds to mn R(s—k,21—1), while the remaining terms equal mn R*(s,t,k{). It is shown in Basu
and Reinsel (1990) that for model (9), ¥(1,0) = Ay, v(0,1) = p7, v(1,—1) = Apvy, where A and p are

solved using the relations

-1 -1 -1 -
am/\+001p tapAp =1=0q9A +a01p+a11/\1p, (10)
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with|A|<land|p|<1. Supposmg that mfn — c2, 0 < ¢ < 00, a8 myn — oo, and noting that
(mn) 1/2 = (m/n) 1/2 1= (n/m) / , we obtain from the above relations, (mn)1/2R* £ ~I*

and R & vI(a) where

v 7(1’—1) 7(1’0) 1 A u A
yKa) = ¥(1,—1) ¥ ¥(0,1) =5 [Ap 1 7 (11a)
7(1,0)  ¥(0,1) 7 A H 1
—c 2y -c)a
= A -1 -1 11b
=7 cAp ¢ c—bHn : (11b)
I
So from (6) and (11a-b), using the relation I(a)"ll* a = b, we obtain
[ —c 22 pu 2 ) —
2 2
c(1— 2%) o(1—-2%) -
a
01
2clip 1 2cu .
b= —z —5 a . (12)
1—p? ¢ 1— 2 10
a
11
_2cap® 2%y 1+,\2+0(1+u2))
1—p? (1-2%) (1-22)  1-42

Now using the relations (10) and simplifying equation (12), we obtain the elements of the asymptotic
bias vector b = (by1, b1q, b1) in (6) explicitly as

2p
by = —ca +—2—'\——— pa1g+ a =—{c+ 2 )a +— ,
01 01 c(l_,\2) ( 10 11) c(l-Az) 01 c(l-/\2)

1 2cp 1 2¢ 2 cA
bjop =~z + (" agy + C'11) “(é + ) apg + 1l

(1- 2) (1-u?)
_ (44 | 1422 2cAp? 2 22y
bi=- oaaileaey N S el M) Sl ML T
L2 o(1-A%) l-u o(1-X2)

Hence we find that the asymptotic bias of the spatial YW estimator for this model may be particularly

large when the roots of the characteristic equations (10), A or u, have absolute value close to one.
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As a special case of model (9), consider the multiplicative AR(1) model where ay;= —aq9%1-
In this special case, (12) can be simplified and the asymptotic biases of the spatial YW estimator

reduce to

_ _ 1 _ 1
bo1= —c g1y  bo= —c ey b= “(C + E) 91219 -

This simple result indicates that the biases can be quite substantial when the grid sizes m and n are

small or moderate.

4. Comparison of Spatial YW Estimator with the ML Estimator and Concluding Remarks

In this section, we first give some numerical illustrations of the values of the theoretical
asymptotic biases b from (12) for the spatial YW estimator for different values of ¢ = lim(m/ n)l/ 2.
The values of ¢ are chosen so that the biases from the simulation results, given later, can directly be
compared to the corresponding asymptotic values. For the choice of (m, n), ¢ ranges from 0.5 to 1.0.
The three sets of a-values chosen are (a) g= 0.2, ay0= 0.3, 1= 0.2, (b) o)1= 0.3, 0= 0.5,
ay1= 0.1, and (c) ay= 0.7, a19= 0.8, ay;= —0.6. The values of the a’s are chosen to represent a

range of values for A and p.

Table 1 gives the values of the asymptotic biases of the spatial YW estimator. It is seen that
magnitude of the bias is dependent on the value of ¢. For example, for small values of A and u, that
is, for ag1= 0.2, a 0= 0.3, and aj = 0.2, when ¢ is changed from 0.5 to 1.0, the bias 601 changes
from 0.436 to 0.068 and the bias b; changes from —0.503 to —0.107 for the spatial YW estimator.
For moderate values of A and u, that is, for o)1= 0.3, a10= 0.5, and o= 0.1, the magnitude of the
biases are larger and changes (with changing c) are also larger. For large values of A and u, the biases
are very large for the spatial YW estimator estimator. Also, it is seen that the biases are larger when ¢

has a smaller value, and they decrease in magnitude, in general, as ¢c—1.

Next we look at some simulation results for small to moderate grid sizes and compare the exact
ML estimators (Basu and Reinsel, 1990) and the spatial YW estimators. The simulations are
performed for the grid sizes (8x8), (20x20), (8x10), (16x20), (6x10), (15x25), (6x15), (12x30),
(5x20), and (10x40), and for the three different sets of a-values. 500 replications are obtained for each
of the three sets of a-values as well as for each of the grids chosen. The averages of the estimates of
the parameter values from the 500 replications are presented in Tables 2 and 3 for the spatial YW and
the exact ML estimators, respectively. The standard errors of the average estimates over the 500
replications are of the order of 0.002 for both the estimators. It is seen that the spatial YW estimates

are more biases than the exact ML estimates and the biases increase as the values of A and g increase.
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The average values of the exact ML estimates were always very close to the true values of the

parameters for all grid sizes and for all values of the parameters.

The biases of the estimators from each replication are calculated as (mn)1/2(& — «a) and the
average biases over the 500 replications are given in Table 4 for the spatial YW estimator. The
standard errors of the average biases over the 500 replications are of the order of 0.04 for the
estimators. These values can then be compared with the corresponding asymptotic values in Table 1.
The agreement between the two sets of values is reasonably good although not excellent, but it does
tend to improve for the larger grid sizes. As the values of A and u increase, the fact that the biases
increase also tends to hold. The lack of agreement may be due in part to the contributions to the bias

of the spatial YW estimator from terms of higher order.

To examine further the lack of agreement between the asymptotic biases and those obtained
from the simulation results for the spatial YW estimators, we use the identity from equation (3.6) of

Lewis and Reinsel (1988),

Rl=rl-rlR-nrls+ rir-prl-r}H

1

and approximate R™* by the first two terms. Now using (5), since £(A) = 0 we approximate the biases

of the spatial YW estimator from the small to moderate grid sizes as
1/2 . - - . 1/2
El(ma) Xy — ol & [0 = TUER) — DY (o) HRY @ = 5° (13)

and hope that b* might provide a somewhat more accurate approximation to the biases than b for
smaller values of m and n. The values of b* are presented in Table 5 for the grid sizes and the three
different sets of a-values considered above. The values of b* approach the asymptotic values b as m
and n get large. For cases (a) and (c), the differences between the asymptotic biases in equation (12)
and the small grid approximation in (13) are rather small and both approximations give values close to
the simulated values. For case (b), the asymptotic biases from (12) are not in good agreement with the
simulated biases, but the biases obtained using (13) differ substantially from the values obtained
through (12) and those from (13) are in much better agreement with the simulated biases.

In conclusion, we have obtained the asymptotic distribution of the spatial YW estimator, and
shown the spatial YW estimator to be asymptotically biased. The first-order spatial bilateral AR
model is studied in more detail, and for the first-order model, the spatial YW estimators are also
compared with the exact maximum likelihood estimators. Simulation results show that the bias of the

spatial YW estimators for small to moderate grid sizes is substantial.
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Table 1. Asymptotic biases of spatial Yule-Walker estimators obtained from (12) for different sets of
a-values and for different values of c=lim(m/ n)l/z.

(a) )= 0.2, a19= 0.3, a;;=10.2, A=10387, p=0314

c bo1 bio b1
1.000 0.068 —0.107 —0.564
0.894 0.121 —0.163 —0.573
0.775 0.191 —0.238 —0.594
0.632 0.297 —0.352 —0.645
0.500 0.436 —0.503 —0.738

B) agi= 0.3, a;o= 0.5, ay,=0.1, A =0.664, pu = 0.549
01 10 11

¢ bo1 bio b1
1.000 0.590 —0.030 —1.049
0.894 0.726 —0.139 —~1.092
0.775 0.916 —0.282 —1.169
0.632 1.217 —0.494 —~1.319
0.500 1.629 —0.765 —~1.561

(¢) agy= 0.7, a10= 08, a;= —0.6, A =10.756, pu=0.624

¢ bo1 b0 byy
1.000 ~1.057 —0.945 1.560
0.894 —~1.025 —~1.024 1.590
0.775 —1.003 —1.145 1.657
0.632 —~1.007 —1.357 1.811

0.500 —1.063 —1.672 2.084
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Table 2. Average estimated value of parameters from spatial YW estimation from 500 replications for

each set of a-values.

(a) ag;=0.2, a;g=10.3, a;;=102, A =0.387, u=0314

m n ¢ %01 %10 211
8 8 1.000 0.186 0.262 0.128
8 10 0.894 0.199 0.263 0.137
6 10 0.775 0.200 0.243 0.126
6 15 0.632 0.214 0.245 0.136
5 20 0.500 0.229 0.235 0.134

20 20 1.000 0.201 0.293 0.171
16 20 0.894 0.205 0.290 0.166
15 25 0.775 0.206 0.286 0.168
12 30 0.632 0.211 0.279 0.170
10 40 0.500 0.217 0.270 0.165

(b) a01= 0.3, alo= 0-5, a11= 0-1, A = 0.664, u = 0-549

8 8 1.000 0.317 0.454 0.014
8 10 0.894 0.332 0.459 0.013
6 10 0.775 0.344 0.426 0.006
6 15 0.632 0.366 0.420 0.006
5 20 0.500 0.390 0.406 0.001
20 20 1.000 0.321 0.489 0.057
16 20 0.894 0.325 0.483 0.048
15 25 0.775 0.322 0.480 0.049
12 30 0.632 0.346 0.464 0.048
10 40 0.500 0.364 0.459 0.039
(c) agy= 0.7, ayy= 0.8, a;y= —0.6, A =0.756, 4 = 0.624
8 8 1.000 0.561 0.654 —0.405
8 10 0.894 0.583 0.673 —0.434
6 10 0.775 0.571 0.625 —0.395
6 15 0.632 0.602 0.641 —0.423
5 20 0.500 0.606 0.623 —0.418
20 20 1.000 0.645 0.748 —0.522
16 20 0.894 0.643 0.738 —0.513
15 25 0.775 0.651 0.736 —0.519
12 30 0.632 0.651 0.725 —0.509

10 40 0.500 0.653 0.713 —0.502
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Table 3. Average estimated value of parameters from exact ML estimation from 500 replications for
each set of a-values.

(a) ag;= 02, ayy= 03, ap;=0.2, A= 0387, 4= 0314

- - -

m n ¢ %91 210 211
8 8 1.000 0.183 0.282 0.191
8 10 0.894 0.190 0.283 0.191
6 10 0.775 0.184 0.276 0.194
6 15 0.632 0.191 0.283 0.198
5 20 0.500 0.196 0.284 0.196

20 20 1.000 0.199 0.299 0.199
16 20 0.894 0.200 0.300 0.196
15 25 0.775 0.198 0.299 0.198
12 30 0.632 0.198 0.297 0.201
10 40 0.500 0.198 0.295 0.199

(» ag1= 0.3, ay0= 0.5, ay;=10.1, A =0.664, p = 0.549

8 8 1.000 0.277 0.474 0.102
8 10 0.894 0.286 0.486 0.097
6 10 0.775 0.274 0.481 0.100
6 15 0.632 0.293 0.480 0.091
5 20 0.500 0.293 0.487 0.094
20 20 1.000 0.299 0.493 0.100
16 20 0.894 0.294 0.496 0.097
15 25 0.775 0.297 0.496 0.098
12 30 0.632 0.296 0.491 0.104
10 40 0.500 0.300 0.497 0.100
(c) ag= 0.7, a;y=0.8, a;;= —0.6, A =0.756, u = 0.624
8 8 1.000 0.675 0.765 —0.565
8 10 0.894 0.675 0.780 —0.575
6 10 0.775 0.672 0.772 —0.570
6 15 0.632 0.680 0.784 —0.578
5 20 0.500 0.681 0.786 —0.582
20 20 1.000 0.694 0.795 —0.594
16 20 0.894 0.693 0.793 —0.591
15 25 0.775 0.696 0.794 —0.595
12 30 0.632 0.696 0.794 —0.593

10 40 0.500 0.698 0.797 —0.596
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Table 4. Average biases (average values of (mn)1/2(&—a)) from 500 replications of YW estimators
from simulation results for different grid sizes and for each set of a-values.

(a) a01= 0.2, a10= 0-3, a11= 0-2, A = 0-387, B = 0.314

- - -

m n c b1 410 511
8 8 1.000 —0.114 ~0.303 —0.574
8 10 0.894 —0.012 —0.332 —0.567
6 10 0.775 —0.001 —0.443 —0.571
6 15 0.632 0.134 —0.526 —0.607
5 20 0.500 0.285 —0.646 —0.658

20 20 1.000 0.015 —0.148 —0.571
16 20 0.894 0.096 ~0.173 —0.608
15 25 0.775 0.108 —0.281 —0.613
12 30 0.632 0.217 —0.406 —0.571
10 40 0.500 0.338 —0.612 —0.707

(b) 001= 0-3, 010-_— 0.5, all= 0.1, A = 0.664, B = 0.549

8 8 1.000 0.132 —0.367 —0.691
8 10 0.894 0.285 —0.368 -0.775
6 10 0.775 0.341 —0.577 —0.727
6 15 0.632 0.623 —0.758 —0.894
5 20 0.500 0.900 —0.944 —0.990
20 20 1.000 0.420 —0.229 —0.864
16 20 0.894 0.438 —0.298 —0.925
15 25 0.775 0.656 —0.398 —0.984
12 30 0.632 0.867 —0.682 —0.992
10 40 0.500 1.278 —0.826 —1.230
(o) = 0.7, 0= 0.8, = —0.6, A =0.756, u = 0.624
8 8 1.000 —-1.113 -1.172 1.564
8 10 0.894 —1.049 -1.136 1.486
6 10 0.775 —1.001 —1.357 1.591
6 15 0.632 —0.930 —1.506 1.682
5 20 0.500 —0.939 —1.769 1.823
20 20 1.000 —1.107 —1.043 1.569
16 20 0.894 —-1.015 —1.118 1.555
15 25 0.775 —0.957 -1.244 1.578
12 30 0.632 —0.929 —1.433 1.723

10 40 0.500 —0.932 —1.733 1.955
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Table 5. Theoretical approximation to biases from small to moderate grid sizes for the spatial Yule-
Walker estimators obtained from (13) for different grid sizes and for each set of a-values.

(a) ag= 0.2, a;y=03, ayy= 0.2, A =0.387, u=0.314

m n c b1 50 !
8 8 1.000 0.010 —0.146 —0.486
8 10 0.894 0.062 —0.195 ~0.499
6 10 0.775 0.113 —0.272 ~0.503
6 15 0.632 0.213 —0.378 ~0.555
5 20 0.500 0.323 —0.526 —0.626

20 20 1.000 0.044 ~0.123 ~0.532
16 20 0.894 0.091 —0.179 —0.535
15 25 0.775 0.158 —~0.252 —0.556
12 30 0.632 0.254 —0.365 ~0.599
10 40 0.500 0.378 —0.515 —0.681

(b) a01= 0.3, 010= 0.5, a11= 0-1, A= 0-664, B = 0.549

8 8 1.000 0.284 —0.158 —0.673
8 10 0.894 0.402 —0.242 —0.717
6 10 0.775 0.456 —0.386 —0.665
6 15 0.632 0.680 —0.570 —0.757
5 20 0.500 0.851 —0.831 —0.770
20 20 1.000 0.458 —0.084 —0.887
16 20 0.894 0.556 —-0.192 —0.895
15 25 0.775 0.719 —0.325 —0.954
12 30 0.632 0.937 —0.532 —-1.027
10 40 0.500 1.228 -0.797 —1.153
(o) ag= 0.7, a0= 08, ay= —0.6, A =0.756, pu = 0.624
8 8 1.000 -0.773 —0.853 1.140
8 10 0.894 -0.740 —0.954 1.194
6 10 0.775 —0.581 —1.069 1.114
6 15 0.632 —0.564 —1.309 1.283
5 20 0.500 —0.455 —1.634 1.402
20 20 1.000 —0.967 —0.918 1.423
16 20 0.894 —0.904 —-0.997 1.419
15 25 0.775 —0.886 —1.124 1.478
12 30 0.632 —0.812 -1.338 1.578

10 40 0.500 —0.789 —1.658 1.776




