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Abstract

For a two-way layout with interactions, necessary and sufficient conditions are given for the
asymptotic distribution of rank transform statistic to be chi-squared under the null hypothesis of no
interaction. When both main effects are present, it is shown that as the number of replications
approaches infinity, the expected value of the rank transform test for interactions also approaches
infinity under the null hypothesis of no interaction. However, when there is at most one main effect,

the test is asymptoically chi-squared.
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1. Introduction. The rank transform procedure was proposed by Conover and Iman (1981) as a
bridge between nonparametrics and classical analysis of variance procedures. In the rank transform
procedure, all of the observations are ranked together without regard to row or column membership,
and the classical normal theory tests are applied to the ranks, instead of to the observations. This
procedure has gained much popularity because it is very easy to implement with most common
statistical packages (whereas other nonparametric methods are often unavailable to the data analyst)

and because it often yields significance where other tests do not.

The asymptotic properties of the rank transform statistic for testing for interaction in a two-
way layout are studied in this article. Confusion about the performance of the rank transform statistic
for interaction stems from several seemingly contradictory simulation studies. Using only small sample
sizes, the simulation studies of Iman (1974) and Conover and Iman (1976) show that this rank
transform statistic performs well at detecting interaction in a two-way layout. On the other hand,
simulations by Blair, Sawilowsky, and Higgins (1987) and Sawilowsky, Blair, and Higgins (1989) show
that the rank transform procedure is very poorly behaved for detecting interaction in two and three-
way layouts with large numbers of replications. The fact that this particular rank transform statistic
performs well for small numbers, but not large numbers of replications, points to the critical need to
study the asymptotic properties of the test. In contrast to the asymptotic properties of the rank
transform test for interaction, the asymptotic properties of rank transform statistics to detect column
effects and row effects (with and without dependent data) have been widely studied, (cf. Hora and
Conover (1984), Iman, Hora, and Conover (1984), Hora and Iman (1988), Kepner and Robinson
(1988), Thompson and Ammann (1989), Thompson (1990a), Thompson (1990b), Thompson and

Ammann (1990)).

This discussion of the asymptotic properties of the rank transform statistic for testing for
interaction in a two-way layout with replication is motivated by the fact that the critical points for the
rank transform test are identical to the critical points for the normal theory test and are obtained from

the F-distribution. The asymptotic null distribution of the normal theory test for interaction is chi-



squared with (I—1)(J—1) degrees of freedom. Hence, for the rank transform test to have acceptable
behavior, it is necessary that its asymptotic null distribution also be chi-squared with (I—1)(J—1)
degrees of freedom. It is shown that the asymptotic null distribution of the rank transform statistic for
interaction is not chi-squared if both main effects are present and unknown because the expected value
of the test statistic appoaches infinity (under the null hypothesis of no interaction) as the number of
replications approaches infinity. As a result, this particular rank statistic is grossly liberal for testing
the null hypothesis of main effects with no interaction effects versus the alternative of main effects with
interaction effects. However, it is shown that this rank test is a suitable asymptotic test for testing the
null hypothesis of no nested or interaction effect against the alternative of exactly one main effect and

a nested or interaction effect.

These are the first theoretical results proving that a commonly used rank transform statistic
has unacceptable properties. They are important results because despite the limited theoretical results
and the contradictory simulation results, the rank transform procedure has become popular with social
scientists, business professionals, and other researchers in both academic and industrial fields. This is
not particularly surprising — easily implemented tests that detect alternatives are attractive. Further
contributing to the inappropriate use of the rank transform are two widely used manuals for statistical
procedures that endorse the procedure without reservation. The 1985 release of SAS states:

“Many nonparametric Statistical methods use ranks rather than the original values

of the variable. For example, a set of data may be passed through PROC RANK to

obtain the ranks for a response variable that could then be fit to an analysis-of

variance model using the ANOVA or GLM procedures.” (SAS,1985,p.647)
The 1987 IMSL User’s Manual Stat/Library also suggests applying analysis of variance tests to ranked
data. These endorsements of the rank transform are misleading. In general, a test statistic based on
the rank transform does not behave like its normal theory counterpart. Frequently, the two tests
detect entirely different alternatives. As shown in this paper, extreme care must be taken when using a

rank transform statistic to assure that the null hypothesis is correctly specified and that the test has



the correct asymptotic null distribution.

In Section 2 the model and the rank transform statistic are defined. In Section 3 the

asymptotic properties of the rank transform are discussed. The proofs are in Section 4

2. Definitions and Preliminary Notation. Consider the model for a two-way layout with

interaction: X.. =p+a;+0; +71]+€

in 1<i<l, 1<j<J, and 1<n<N, where the €jn 2T iid random

ijn’

variables with an absolutely continuous cdf F(x) such that F(0)=%. The parameters for the main
effects, o and ﬂj are considered unknown and completely arbitrary. Because the main thrust of this
paper is to show when the rank transform has undesirable properties, we will restrict ourselves to the

| J
balanced case. Without loss of generality assume that E al_O E ﬂ =0, Y 7ij=:0, and 3 7ij:0.
i=1 j=1 i=1 j=1

The null hypothesis of no interaction effect is Ho:-yij:O for all 1<i<I, 1<j<]; the alternative of an
interaction effect is Ha:v;; ;EO for some i,j. Let F, (x) Flx—a; —ﬂ ) denote the cdf of X o, under the

null hypothesis, and let the “average” cdf be H(x)=(1J) Z ZFU(X) Let Xij’ 1<i<I, 1<£j<I,
j=1i=1

denote 1J independent random varible with cdfs Fij(x)‘ Because H(x) is increasing on the support of

J’ it follows that var(H(X; ))>0 We will also make the assumption that var(H(X; ))<oo for all i

and j.

To define the rank transform statistic for this model, first define the function u(x)=1 or 0 as

N J
to whether x>0 or x<0, so that the rank of xij is R =Y X E u(X..
c=lb=1la=1

ijn— a.bc)' Note that Rij n

is the rank of Xijn among all of the M=IJN observations. Because the primary intent of this paper is
to discuss the validity of the rank transform statistic for interaction under commonly used conditions,
we will restrict our attention to approximate scores generated by ¢(u)=u. For notational convenience
let aijnzaM(Rijn)=Rij o/(M+1). Then the rank transform statistic is
D PR | 1 )2
JEIIZ:( 33— 5 +Ha.

N=T=DE-D & '
D(N-1) ,,_IEI,Z( ijn N iy’ )2

)

where a dot in the subscript denotes summation over that index. Note that the rank transform



statistic, Ty, is exactly the classical normal theory test with the scored ranks, B4’ substituted in place

of the observations, X.. . Define

ijn
J |
_1 Clalayda Y
Qn= N j§1 igl(aij. ) Rl L ﬁa...)
to be the quadratic form in the numerator of Ty and define

oo 1 Mg 1 \a
N_U(N“l)nz=:1j§1 ig(aﬁn—ﬁaij.)
to be the denominator of Ty, divided by (I-1)(J—1).

3. Asymptotic Properties of Ty Under Hy. To show that the asymptotic distribution of Tn
is not chi-squared and that E(TN)—voo under the null hypothesis when both main effects are present,
we will first show that Dy P.¢ where 0<c<oo and that E(Qy)—oco. Because Dy and Qp are both
functions of the linear rank statistic a.-.=§: 85in’ the following lemma concerning the asymptotic

y n=1

normality of 8- is useful. First, however, define
oi= lim M2(M+1)'2va.r(H(X..)—(IJ)'1 $ Y F(X ))
j7 N—ooo ij b1, i abl)?
— [
a-—-(all. N 312- g see y alJ. y 321. y ses y aU.) N and
— '
I‘—(I‘ll- 1 B9y oy B13e s B9pes e I-‘[J-) .
Let ¥ be an IJxIJ dimensional matrix whose rows are indexed by the ordered pairs (i,j), 1<i<],
1<j<J, with the second index running faster than the first. Similarly, index the columns by the
ordered pairs (r,8), 1<r<I, 1<s<J. Let the elements of ¥ be given by
H(X 1 J | 1 J |
”(iJ),(r,s)—w"( ( ij)—ﬁbglaglFij(xab)’ H(xrs)—ﬁbglaglf‘rs(xab)) .
Note that a(i,j),(i,j):aii . Also note that 0<va.r(H(Xij))<oo implies that 0<0 (i jy.(r.s) <o for all
1<ir<], 1<j,8<J.

Lemma 3.1. Under the null hypothesis, NY 2(a—p)-—q>N| 4(0,X); in particular,

-1/2

d



By using Lemma 3.1 and decomposing Dy as

2
N J 1 & o -1/2
DN=——IJ(I‘11—1),,§”§1 i=laizjn'ﬁj§1 3 ((N(N—l)) "‘ij') )

i=1
Theorem 3.3 shows that under the null hypothesis Dy P.¢ where 0<c<oo .

Theorem 3.2. Under the null hypothesis, Dy converges in probability to the nonnegative,

. 1 1 d 2
finite constant c=§—ﬁj§1 i=z:I(E(H(Xij))) .
Next, to show that E(QN)—voo under the null hypothesis of no interaction when both main
effects are present, define an IJxIJ matrix A. The IJ rows of A are indexed by the ordered pair (a,b) ,
1<a<I, 1<b<J, where the second element in the pair runs faster; the IJ columns of A are similarly
indexed; and the elements of A are defined as
- . 1 sy 11 . -1
[A](a’b)(id)—(s(a,l)ts(b,,]) I6(byj)—3"6(a,i)+(13)
where 8(a,i)=1 or 0 as to whether a=i or a#i. Note that A is idempotent and symmetric, and that
Qp can be written as the quadratic form QN=N"3'A a=(N-l/za)'A(N-1/2a) . The expected value of
the quadratic form Qy is E(QN)=tr(A2)+N"1e'Ae where eij=E(aij') and e=(e11, €191 - 1 €11 €91
ey eIJ)' . The proof of Theorem 3.3 shows that tr(AX) is finite and gives conditions under which

N le/Ae is also finite.

Theorem 3.3. Under the null hypothesis of no interaction effect, E(Qy)—tr(AL)<oo only if

Fij(x)—§Fi.(x)—%F.J.(x)+rljF..(x)=o . Otherwise, E(Qy)— 0 .

When both main effects o and ﬂj are regarded as unrestricted and unknown parameters, the

solution to the functional equation

J J J |
F(x-a;-8)—§ 3 F(xeai-fr)— 3. F(xas-8) 4 . 3 F(x-as-Br)=0
1) r=1 ! r=1 J r=1s=1
is F(x)=mx+Db for some constants m and b. This is impossible because the c¢df F(x) is by definition a

non-linear function. Hence, when the model contains both main effects and the null hypothesis of no

interaction effect holds, it follows from Theorems 3.2 and 3.3 and Slutsky’s theorem that Ty is not



asymptotically chi-squared because E(TN)—voo .  This means that as the number of replications
increases, the test becomes more and more liberal. This result is entirely in keeping with the
simulation results of Blair, Sawilowsky, and Higgens (1987) that show, when both main effects are the
present, that the nominal a-levels approach 1 as the number of replications increases. Thus, Tyn»

should never be used as a rank transform test for interaction in the model defined in Section 2.

However, for any fixed value of x, Fij(x)—%Fi.(x)—%F.j(x)+%F..(x)=0 for all i and j defines
a system of IJ equations in terms of the 1J variables Fij(x)’ 1<i<I, 1<j<J. One obvious solution to
this system of equations is Fij(x)=Fi(x) or Fij(x)=Fj(x) which is equivalent to o, =0 for all 1<i<I or
ﬂj::O for all 1<j<J. Hence, E(QN)—>tr(AE)<oo when the model has at most one main effect, and
Ty is a valid test statistic with acceptable asymptotic properties for testing the null hypothesis
Hol:‘yij:O in the model xijn=”+ai+7ij+eijn where ig:laizo and jé:17ij=0 . This can be
interpreted either as testing the null hypothesis that there is exactly one main effect with a nested
effect, or equivalently, as testing the null hypothesis Ho2:ﬂj+7ij=0 for all i and j in the model

X.. = y+ai+ﬂj+7ij+e-. (as defined in Section 2). With either of these interpretations, Ty is no

ijn ijn

longer a rank transform statistic: it looks like the classical F-test for interaction, but it tests an entirely
different null hypothesis. Theorem 3.3 shows that E(QN)<oo under these conditions. It follows
immediately from Theorems 4.3 and 6.1 of Thompson (1990b) that under Hy; and H,, the statistic
Ty converges in distribution to Xfl-l) (-1 /(I-1)(J-1) and that under a sequence of Pitman alternatives

Ty converges in distribution to a noncentral chi-square .

It is interesting to compare the results of this paper with those of Akritas (1990). In the above
test for a nested factor, the data are ranked all together and the ranks are substituted into one of the
standard analysis of variance procedures, but not the procedure classically used to detect a nested
effect. In the tests that Akritas proposes, all of the data are ranked together. Then, a function of the
ranks, namely, the ranks divided by an estimate of the standard deviation, are substituted into the
classical F-test for detecting a nested effect. Hence, the two tests are fundamentally different. Even

though Akritas claims that his test is a rank transform test, it clearly is not. The tests that Akritas



proposes are sophisticated rank tests that adjust for heteroscedasticity. = Furthermore, in the same
paper Akritas claims that the rank transform procedure cannot be used to test for a nested effect in the
above nested design, or to test for an interaction effect in a two-way layout. While these may be true,
the arguments (which lend insight into the complications introduced by ranking non-identically
distributed random variables) only show that his type of tests (in which the ranks are first adjusted for
heteroscedasticity) can not be derived via his methods for these cases. This paper actually proves when

the rank transform test is not chi-squared for detecting interaction.

4. Proofs.

Proof of Lemma 3.1. The univariate result follows by writing a;. as the linear rank statistic
N J 1
aij.zcgl bz=:1 agldabcaabc where d_, =6(a,i)é(bJj) , applying Theorem 3.3 of Thompson and

Ammann (1989), and simplifying the expression for the variance. Note that the condition

var(H(X;:))>0 ensures that lim 02>0 . The multivariate results follows by noting that
) N—oo U

var(H(Xij))>0 implies that diagonal elements of ¥ are non-zero. Let A be any vector such that

MEA>0 . Then, an/ 2)'a is a linear rank statistic with regression constants dijnsz/2

Aij . From

Theorem 3.3 of Thompson and Ammann (1989), the linear rank statistic N2 4 is AN(M y, 22(2))
N J -1/2 .

where 02(/\):“2::1 j§=:1 i.—z-:lzijn(’\) and Zijn('\) corresponds to N /215 as defined by equation (3.3) of

Thompson and Ammann (1989). Straightforward computations show that ¢?(A)=A'ZA. Q. E. D.

Proof of Theorem 3.2. As in Thompson and Ammann (1989), the first term in the expanded

expression for Dy converges to J‘x"’dxzl . From Lemma 3.1, it follows that (N(N—-l))-l/ 2a--. is

3 y
AN(IH(x)dFij(x), afj/(N—-l)). Because a%<oo it follows that U?j/(N—l)—’O . Hence,
(N(N—l))_l/ 2aij' converges in probability to IH(x)dFij(x)zE(H(Xij)) , which in turn implies that
Dy —c . To show that 0<c<oo, note that Dn20 for all N implies that %ZCZO. Q. E. D.

Proof of Theorem 3.3. The elements of A do not depend on N and the elements of ¥ converge



to finite values so that tr(AZX) is finite. Hence, lim E(QN)<oo iff
¢
Ae_ﬁ;l .-E(eu‘le ~feg+ fe- ) =om)

This holds iff eij—j = %e.j+1%e..=O(N 1/2 ) for every pair (i,j). Theorem 3.3 of Thompson and

Ammann (1989) and Lemma 1.5.5.A of Serfling (1980) imply that I\Jh—x-»noo(eij_ pij)/aij=0 . Because

0<o.-<oo , both &; and #;; converge to the same limit as N approaches infinity. Therefore, we have

1 1,
that eij-—j et 8 O(N

1/2 1/2

) iff E(yﬁ—§,‘i.-%p.j+%p..) is also O(N"/?). This happens iff
JH(x)dG(x)—_-O where G(x):Fij(x)—%Fi.(x)—%F.j(x)+%F..(x) . The function H(x) is positive on the
support of xij for all 1<i<I, 1<j<], so IH(x)dG(x):O iff G(x) is a constant function almost

everywhere. Because lim G(x)= _lim G(x)=0, it follows that G(x) is equal to a constant almost
X—00 X —-00 ‘

everywhere iff G(x)=0 almost everywhere. Q. E. D.
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