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Summary

The purpose of this paper is to investigate the distribution
and independence properties of quadratic forms of the type X'AX
where X, a pxl random vector, has the multivariate normal distribution
with the corresponding mean vector J;, and the pxp variance covariance
matrix V of rank k < p.

1. Introduction

The distribution and properties of quadratic forms of the
type X'AX where X has a p-dimensional nonsingular multivariate
normal distribution with the corresponding mean vector y and a
nonsingular variance covariance matrix V and A is a pxp symmetric
matrix have been extensively studied by several authors [Graybill,
1961]. 1In this note, the similar results are derived when the
variance covariance matrix is singular.

2. Notation and Preliminaries

Thfoughout this paper all matrices and vectors will consist of
‘real elements. The notation D = [B, C] will be used t§ indicate that
D has been partitioned into sub-matrices B and C and, similarly

B, C
D = will denote the partitioning of D into the submatrices

E, F

B, C, E, and F, of suitable dimensions. In general, upper and lower

case Roman letters will denote matrices and scalars respectively.
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lower case Greek letters will usually denote parameters, and under-
scored letters will be used to denote column vectors. The symbol @
will denote the null matrix. The rank of the matrix D will be denoted
by r(D), the trace of D by tr (D), and the transpose of D by D'. The

symbol ~ will be used to mean "is distributed.” X ~:NP(H,V)

will indicate that the pxl random vector X has the multivariate
normal distribution with mean j, and variance covariance matrix V.

The noncentral chi-square distribution with n degrees of freedom

and noncentrality parameter ) will be denoted by X?(n, A) .

3. [Theory

Theorem 3.1: Let the random vector X be distributed as Nb(g,v) with

r(v) =k <p. A sufficient+ condition that X'AX be distributed as a

noncentral chi-square with k degrees of freedom and noncentrality
parameter )\ = %(H‘AQ) is that A be the unique generalized inverse

of V; that is, A = V*.
Proof: Suppose A = V*¥. Since V is a p by p symmetric matrix of

rank k < p, then there exists an orthogonal matrix P such that

D @

P'VP = D, =
1 1o ¢

where D is a k by k diagonal matrix with the nonzero characteristic
roots of V displayed on the diagonal. Let P be partitioned as
P = [Pl’P2] where P

is p by k and P, is p by p-k, then the unique

1 2

generalized inverse of V (Gateley, 1962) is given by

+ .
It can be shown by constructing a counter example that the condition
given in the above theorem is not necessary.



-1
* '
v PlD P1 and hence,
-1
= * = '
A v PlD Pl
If ¥ = P'X,
ol g
then X'AX = Y' Y .
g g

Partition Y as

where Y. is k by one, Y

1 5 is p-k by one. Y. is distributed as Nk(gl,D)

1

where 2 is the vector consisting of the first k components of P'y; That is,

-— ¥
@ = PlE. Then

bl g X
X'AX = [_Y.i: Z.é] )
g g Y
X'AX = ¥'D Y
S R
YiD-lZl is distributed as a noncentral chi-square with k degrees of

freedom and noncentrality A\ = %ng-lgl (Graybill, 1961). Hence X'AX is

distributed as a noncentral chi-square with k degrees of freedom and

noncentrality

l L L] -l ]
A= D (Piw)
l 1 —l 1
= EH PlD Pl‘g:

1
= EH'A_Q .



Theorem 3.2: Let the random vector Y be distributed as Np(u:V):
with r(V) = Xk < p. Then Y'AY is distributed as a noncentral chi-square

. 1 . . . .
with k degrees of freedom and A= Ewg'Ag) if and only if A is a generalized

inverse of V.
Proof: Suppose A is a generalized inverse of V. Then k = r(V) = r(av) =
tr (AV), and hence, VAV = V (Rao, 1962).

There exists an orthogonal matrix P such that

D ¢
P'VP = s
g 9

where D is the k by k diagonal matrix with the nonzero characteristic
roots of V displayed on the diagonal. ILetting P be partitioned as

D @

P'VP = - v _ ppYan’ep:
= and V = P,DP} = PD'2D’2P!
g @

Y/

) ,
where D’2 is the k by k diagonal matrix of the positive square roots of the

1/ 1

characteristic roots of Vv, such that D/aD/2 = D. There exists a vector X
A ot crs Y2

such that Y = PlD X, where X is distributed as Nk(ux’lk)’ and y = PlD -

(For if such a vector did not exist, then there would exist no vector X such

-1
that X = D ’ePiz, where X is distributed as Nk(“k’lk) , which is a contra-

diction, since the existence and distribution of Y determin the existence

and distribution of X. Then

' _owt 1/2 1 1/2
¥'AY = X'D'2P{AP D'2X

/.

1, 1
and since D’ePiAPlD 2 can be shown to be an independent matrix, it follows



1/ 1
that §'D/3PiAP1D /2_}g is distributed as a noncentral chi-square with k degrees

1 1
of freedom and noncentrality parameter ) where k = tr (AvV) = tr(APlD /2D /EPi)

Y,

2) = r(D/BPlAplD/

tr(D/zP:‘LAPlD /2) and tr (D/aP 'AP.D ) (Searle, 1966). The

11

noncentrality parameter A is given by

1 . 1/2 . 1/2
i D P AP DB

>
fl

LA
2_L_Lx) A(P D -‘*x)

[

1
2(PlD

1

Eu'Au .

Hence Y'AY is distributed as a noncentral chi-square with k degrees of
1

freedom and ) = EH'A_Q, .

Conversely, suppose Y'AY is distributed as a noncentral chi-square with

1 1
k degrees of freedom and )\ = %‘E'A}i . Then, as above, g(_'D/zPiAPlD /2_)g is
distributed as a noncentral chi-square with k degrees of freedom and

L Yarian /A /A
A= ZHxD p! AP D “‘x . Hence, D PlAPlD is idempotent of rank k, so

that
b7

D”2p'AP. D2 = I or
171 D S

Yo Y. Yo Y. YV, Y
2p ’2p? 2p 2p' = 2p 2pt
PlD D PlAPlD D Pl PlD D Pl y
and VAV = V, implying that A is a generalized inverse of V (Rao, 1962).

Theorem 3.3: Let the random vector Y be distributed as Np (u,V) with

r(V) = k sp . Then Y'AY is distributed as a noncentral chi-square with



rl degrees of freedom and noncentrality A = %H'AQ if AV is idempotent of

rank r1 .

Proof: As in the proof of Theorem 3.2, let P be an orthogonal matrix

such that

D ¢

5/ Y 1
P'VP = ,v=PlDBDQPi,andg=plD2_>g,
g @

where X is distributed as Nk(uk’ Ik).

Since Y'AY = X' D/%PlAPlD’éX and assuming AV an idempotent matrix of

1 1
rank r, it can be shown that D’éPiAPlD’é is an idempotent matrix of rank and

1
hence §'D’5PiAP X is distributed as a noncentral chi-square with r

1 1

degrees of freedom and noncentrality A\ , where rl = r(AV) =

1/ 1
tr (AP D/2D/ZP') = tr(D/Bp ' AP D/B) , and tr(D/aP ' AP D/B) =
1 1 1 11
Yoo ap. pYb Y Y, ;
r (D PlAP D®?) = r(D PlAP D'2) = X, the noncentrality parameter
is given by
x:%&xn/‘?P'AP D/ZQX

%H'A& , as derived above.

Thus Y'AY is distributed as a noncentral chi-square with r, degrees of

1
freedom and \ = EQ'AQ .

If in addition it is known that AV is symmetric, the converse of

Theorem 3.3 is true: if Y'AY is distributed as a noncentral chi-square



with r1 degrees of freedom and noncentrality parameter A , where

1 1
Y is NP(E:V) as in Theorem 3.3 , then §'D’6PiAPlD'6§ as a

noncentral chi~square with r, degrees of freedom and noncentrality

1., — : 1/2 ' 1/2 A
A=SuAy o, Ty o= r (2AV) as in Theorem 3.3. D PJAP. D% is idempotent
AR/ . .
or rank r, - But APlD 2p BPi has the same nonzero characteristic
L7 Y. . AR/ .
roots as D 2PiAPlD 2 (Scheffe, 1959). Hence AP,D 2D aPi = AV is idempotent

of rank r1 .

Theorem 3.4: Let the random vector Y be distributed as NP(M’V)’ where

r(V) = k < p. Then Y'AY is distributed as a noncentral chi-square with

with r, degrees of freedom and A = %H'AH if and only if V(AVA - A)V =@ ,

where r1 = tr(av).

Proof: As in the proof of Theorem 3.2, let P be an orthogonal matrix

such that

b2 AR Y,
P'VP = , V=PD®D@P! , and Y = P.D'?X ,
g o 1 1 = 17 =

where X is distributed as Nk(Hk’ Ik) .

1 1
Suppose V(AVA - Bd)V = @. Then D/zP:'LAPlD/2 is an idempotent matrix,

7 Y. AR
and tr (D apiapln 2) = tr (AP, D 2p zpi) = tr(av) = r, , SO that

1 1 1
é) = r., . Thus Y'AY = K'D'éPiAP D’ég is distributed

r(D%%P'AP D
171 1

1

as a noncentral chi-square with r_, degrees of freedom and noncentrality

1



/2 / S
_2”1) PIAP.D2y = Zu'By .
b Yoo s . .
Conversely, suppose that Y'AY = X'D 2P]'_APlD 2X is distributed as

a noncentral chi-square with r., degrees of freedom and )\ = %H'AE'

1

1 1
It follows that D’QPiAPlD’é is idempotent of rank r,. Hence

2 _ p’2p:ap D72

1/ 1/ 1/
2p! 2p /2p?
D PlAPlD D PlAP D 1

LA L7ARA ,@ 1 N Yoo Yo, Yo Y,
(P D®?)D 2PlAPlD 2p PlAPlD (D 2P ) = (PlD 2)p zPlAPlD 2 (D 2Pl)

%/ ]/ y/ %/ y/ %/ %/ J/ y/ %/
2p ‘2p!? 2p 2p? 2 2p? = 2D Rpt 2p ‘2p!
PlD D PlAPlD D PlAPlD D P1 = PlD D PlAPlD D Pl , Or

VAVAV

VAV ,

V(AVA - A)V = ¢ s

and tr(Av) = tr(D’éPlAP D/é) = rl, as outlined above.

[Note: Rao (1965, page 443) proved the result stated in Theorem 3.4
for the case when p = 0 and Rao (1966) proved the result for (Y-p)A(Y-u)l.

It should be noted that the maximum number of degrees of freedom
of a noncentral chi~square variate of the type X'AX, where X is

distributed as NP(E,V), r(V) = k < p, is k, based on the proofs of

Theorems 3.1, 3.2, 3.3 and 3.4.
The proofs of the following Theorems can be derived from the method
given in Theorem 3.2.

Theorem 3.5: Let the random vector Y be distributed as Np (W, V),

 where r(V) = k < p. Then Y'AY and Y'BY are independent quadratic



- Y -

forms if and only if VAVBV = #.
Theorem 3.6: If B is a g by p matrix, A is a p by p symmetric matrix,

and Y is distributed as NP(M’V) with r(V) = k < p, then the quadratic

Y'AY is independent of the linear forms BY if BVA = g.

Theorem 3.7: Let the random vector Y be distributed as NP(E,V) with

g

r(V) =k <p. If Y'AY = X X'Aiz, where tr(AiV) =Py and tr(av) = p,
i=1

then any one of the following conditions is necessary and sufficient

that the X'Aiz be independently distributed as noncentral chi-squares

with P degrees of freedom and Ki = %E'Aig :

m
(1) V(AVA - A)V =@ and T p, =p .

i=1 *
(2) V(AVA - A)V = @ and V(AiVAi - Ai)V =@, for i = 1,2,--¢, m,

(3) Vv(ava - a)Vv

It
h

and VAiVAjV g, 1#£73.

4. Conclusions

It has been demonstrated that the distributional properties of
quadratic forms in the multivariate singular normal distribution are
essentially those of quadratic forms in the nonsingular normal distri-
bution. Thus, with a few exceptions, the singular case may be tréated
as the nonsingular case, with care being exercised to meet the exact
conditions of the theorems. The main conditions on distribution and
independence as given in Theorems 3.4 and 3.5 reduce at once to those
given in Graybill (1961), if the variance covariance matrix is nonsingular.
Further, the method of proof of the theorems suggests that other distri-
butional properties of quadratic forms in nonsingular multivariate normal

variates extend also to the singular case.
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