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ABSTRACT

We consider the test of the null hypothesis that the largest mean in a
mixture of an unknownlnumber of normal components is less than or equal to
some threshold. This test is motivated by the problem of assessing whether
or not the Soviet Union has been operating in compliance with the Nuclear
Test Ban Treaty. In our analysis, the number of normal components is
assessed using AIC while the hypothesis test itself is based on asymptotic
results given by Beehbodian for a mixture of two normal components. A
bootstrap approach is also considered for estimating the standard error of
the largest estimated mean. The performance of the tests are examined

through the use of simulation.
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1. INTRODUCTION

The mixture of normals model is one that has been studied extensively
dating back to Pearson (1894), Charlier (1906), and others. More currently
there are major monographs which focus on the subject by Everett and Hand
(1981), Titterington, Smith and Makow (1985) and Mc Laughlan and Basford
(1988). 1In addition the contemporary literature continues to explore the
theory and application of the mixture of normals. In spite of all of the
attention given the mixture of normals, the problem to which we apply the
normal mixture here has apparently not been previously considered. 1In
particular, in this paper we develop a test of hypothesis that the maximum
mean from a mixture of an unknown number of normal distributions is less
than some threshold value. This test is then applied to a problem of
national importance, which was in fact the stimulus for the development of
the test. More specifically we consider the problem of testing the
hypothesis that the Soviet Union has remained in compliance with the
Nuclear Test Ban Treaty since 1974, and we show how the test studied in

this paper can be used to help answer that question.

2. BACKGROUND
A random variable, X is said to be distributed as a mixture of normals

if its probability density function f is given by
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The py are usually referred to as the mixing proportions, while p and d are
the mean and standard deviation vectors. We will sometimes use the
notation 8 = (p, B, 8) to denote the entire parameter set. When % is
given, the maximum likelihood estimates ﬁ, ﬁ and é from a sample of size n

are the solutions to the equations
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Although in the general problem, the likelihood function is unbounded,
this is not the case when ¢ = d, i =1, ..., *. Fortunately in the
problem we wish to consider, the assumption that o; = ¢, with ¢ known, is a

reasonable one and one which we will make henceforth. 1In this event



é and ﬁ, are consistent and asymptotically normal. See Redner and

Walker (1984) for a discussion of properties in general, i.e. whether or
not the d; are known. The solution of the system (2) is nontrival.

However it can be obtained via the EM (Expectation Maximization) algorithm,
a result discussed by Redner and Walker (1984) as well as others.

The resulting iterative solution is given by the following equations
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where m denotes the m-th iterate, k=1, 2, ... # while £(m) ang fﬁm)

represent the m-th iterate of the mixture density given in (1) and the kth
component density in (3) respectively.

One feature of the equations in (4) is that they require starting
values. These can be obtained in a number of ways. 1In this paper the
starting values were obtained using a simple clustering algorithm. The
algorithm begins by considering all combinations of p&o), pgo),..., péo)
such that pgo) + p§0)+ ey pgo) = 1 and each p§0) is a multiple

of T%’ with & s 10. Each combination ng)’ péo),...,pio) partitions the

sample. Essentially, the smallest npio) data values fall into cluster 1,
the next npgo) observation are placed into cluster 2, etc. For each
combination of pio),péo),...,pio), the sum of within-cluster sample variances

is obtained as a measure of within-cluster variability. The starting

values ﬁl(o),..., ﬁEO) are taken to be the combination of pgo)'s resulting



in the minimum sum of within-~cluster variability. The starting values for

Mi,-.., Py are then the sample means of clusters associated with
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3. ESTIMATING £
The estimation of % is nontrival and in general cannot be effectively
accomplished by simple inspection of the histogram even when the sample

size is large. This is due to the fact that the yp; have to be reasonably

well separated for the true mixture density to exhibit multiple modes. For

example a necessary condition for the mixture of two normals to be bimodal

is that | py; - p2 | > 2 min (o), 6p). Figure 3.1, shows the density

functions for mixtures of two normals for various parameter configurations.

Figure 3.2 shows the shape for a particular mixture of 3 normals. These
figures make the difficulty of estimating % clear and show the need for a
quantitative method for estimating %.

At first glance one might be tempted to use the likelihood principle
to estimate %. However since the dimension of the parameter space changes
with 2, the maximum likelihood method does not apply. Fortunately we can
use Akaike's Information Criteria (AIC), which is a generalization of the
likelihood method that employs the likelihood function accompanied by a
penalty function (see Akaike, 1974). For the mixture of normals density
function given by (1), the AIC for each value of R can be calculated as
follows (see Redner, Kitagawa and Coberly, 1981):
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where ﬁk and ﬁk are determined by (4). The AIC estimate for % is then
given by
2 = {2; AIC = minimum, & =1, 2, ..., M} | (6)

where M is a preassigned positive integer.

4. TESTING THE HYPOTHESIS THAT MAXIMUM py s T.
Let fpax = maximum {pi, i=1, 2, ..., %}, where % is unknown. For a
given threshold, T, we wish to test the hypothesis Hp: ppax £ T against
Hpo: Ppax > T- If é is the MLE obtained from (4), then é is

asymptotically a 28-1 variate normal with covariance matrix

v = n~Ir-1,
where

R = (rij) (7)
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(e.g. see Everitt and Hand, 1981).

In order to obtain a test of hypotheses we estimate R, which is a
nontrivial task in general. It has however been accomplished by Behboodian
(1972) for the mixture of two normals. Even though the method of
Behboodian could be extended to f > 2, it would undoubtably take a very
large sample to obtain good estimates of the rij. Suppose, however, the yjy
are sufficiently separated that it is reasonable to assume that E[max ﬁi]
Pmax and E[2nd largest ﬁi] = W2, Where ypo is the 2nd largest mean. In

this setting, we denote max ﬁi = ﬁmax and second largest ﬁi = ﬁmZ'



We will emplov a test statistic of the form
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where SE(ppax) is the estimated standard error of the largest estimated

mean. Thus, the problem is to estimate the variability of ﬁmaX' We assume

that the variance of ﬁmax is affected only slightly by data values

associated with components whose means are less than pgp. Therefore, since

our only interest is in determining whether or not uy,x is less than a

given threshold, it seems intuitively reasonable to assess the variability

of ﬁﬁax by applying Behboodian's (1972) results to the two component

mixture involving the components with estimated means ﬁmz and ﬁmax' In

Section 6 we will argue that in the test ban compliance application

considered here, these are reasonable assumptions.

The procedure utilized is as follows:

(a)
(b)

(c)

Select & with AIC and obtain MLE estimates of (p,mu).
Consider the two component mixture consisting of the largest two

estimated means obtained in (a). Estimate the 3 parameters g3,

Ppax and p* (mixing proportion) by ﬁmz, ﬁmax, and ﬁ* = (5m2/(§m2 +

ﬁmax) respectively where components 1l and 2 correspond to Wypo and
Pmax respectively and 5m2 and ﬁmax are ML estimates of the
proportions in the components associated with yupy and ypax
respectively. Note that we also approximate the sample size nj
from this two component mixture to be njp = n(ﬁmz + ﬁmax)'

For this two component mixture, the information matrix, R, given
in (7) is estimated by R obtained by applying Behboodian's (1972)

and

results to the two component mixture with 8; = ﬁmz, 8y = ﬁmax

hap:



83 = ﬁ*. In particular, the elements are found using Gaussian 48

point quadrature to approximate integrals of the form
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The components r(i,j) in (7) are found from My, (i,j) as given by
Behboodian with obvious simplification for the fact that in our
case 0 is known. Thus, we obtain

SE(Mpax) = A(2,2) /0y

where 3(2,2) is the element in the second row and second
column of V = R™1. The hypothesis is then tested
by treating Z in (8) as a standard normal random variable. We

will refer to the test procedure described in this section as the

Upper Two-Component Test (UTCT).

5. A BOOTSTRAP APPROACH

The methodology in the previous section involved several
approximations. Among other things, the covariance estimate may be poor
unless the sample size is quite large and the actual critical region may
not be robust to the dispersion of the mpy. An alternative method for
obtaining an estimate of SE[ﬁmax] is to use bootstrap techniques which
are based on the use of resampling (see Efron and Gong, 1983 and Efron and
Tibshirani, 1986). Although it is computationally intensive, the bootstrap
eliminates the need to estimate the covariance matrix. Moreover, there
need be no assumptions about the dispersion of the y; except that ny,,, and

Np2 be sufficiently separated so that E[figax] = Pmax-



Two different techniques for resampling are used in practice. The
nonparametric bootstrap is based on repeatedly resampling from the actual
sample. On the other hand, the parametric bootstrap is based on taking the
observed sample, estimating the parameters of the assumed model, and then
repeatedly generating samples from this estimated parametric model. 1In
either case, variability of a particular estimator, such as fip,x, can be
estimated by the sample variance of the estimator under consideration
across the bootstrap samples. In our setting, we implemented the
parametric bootstrap in the following manner. As mentioned in Section 2,
we assume that our observed sample is from a mixture of normal components
with known variance but with unknown number of components. For the
observed sample, we then estimate the model parameters including the number
of components. Then, 99 samples of the same size as the observed sample
are generated from the estimated model. For each of these generated
samples, we estimate the model parameters assuming that the number of
components is known and is equal to the number of components estimated in
the original observed sample. The sample variance of the largest sample
means across the 99 samples is then obtained, and we denote this estimate

N
as SEg(fipax)- The test statistic, corresponding to (8), is

-7
7z = -Sex (10)

A A
SEB(pmax)

where we employ the same rejection rule as before and fig,, is as in (8),
i.e. it is the estimate of the largest mean based on the original observed

sample.



6. APPLICATIONS AND SIMULATIONS

In 1974 the Soviet Union\and the United States negotiated a treaty
referred to as the Nuclear Test Ban Treaty (U.S. Congress, Office of
Technology Assessment, 1988). This treaty restricted all nuclear testing
to underground explosions whose yields do not exceed 150 kilotons.
Although this treaty was never ratified by the United States Senate, it is
in force under international law by executive agreement. Currently it
appears that most, if not all, countries are abiding by such a limit.
Since 1974 the Soviets have carried out numerous nuclear tests. Such tests
are of course monitored seismically by the United States and estimated
yields are obtained. For each blast the logarithm of the estimated yield
is obtained. This log-yield data can be reasonably modeled as coming from
a mixture of normal components. The assumption that the data follows a
mixture model seems reasonable when one considers the fact that nuclear
tests are made for purposes of weapons development. Thus, it is not
unreasonable to expect that more than one explosion would be made at
roughly each of several theoretical yield levels associated with the
weapons being developed. Also, since the levels of testing associated with
different weapons are likely to differ significantly, one may expect the
components to be reasonably well separated. Unfortunately, the actual
yield estimates are in fact classified and cannot be given here. Figure
6.1, however, shows histograms for three different sets of 80 simulated log
yields which are for the most part representative of the nature of the
actual data. The first two of these sets, (a) and (b), are obtained from

2.176 where in this

HA

underlying models representing compliance, i.e. Wpax

case our variable of interest is log yield and 2.176 log 150.

Specifically, these two sets were each simulated from a mixture of three



components with means 1.699, 2.0, and 2.176 respectively. In the
simulations, 16 samples were generated from the first component, 22 from
the second component and 42 from the third component. The third set, (c¢),
is for a hypothetical case which is not in compliance with the treaty,
This sample came from an underlying mixture of 4 components whose means
were 1.699, 2.0, 2.176 and 2.3. The number of observations from the four
components were 16, 35, 20 and 9 respectively. Visual examination of these
histograms does not provide a clear answer concerning the compliance or
noncompliance. However, applying the Z-test given in (8) with T = 2.176
results in a rejection of the null hypothesis of compliance for the
noncompliance set (c) and failure to reject the compliance null hypothesis
for sets (a) and (b) at the a« = .05 level of significance. Specifically,
the results for the test outlined in Section 4 for these three data sets
are summarized in Table 6.1.

The results in Table 6.1 are rather anecdotal in nature and do not
provide conclusive evidence that the test procedure described in Section 4
performs acceptably. In order to further examine the test, we performed an
extensive simulation study using the IBM 3081D computer at Southern
Methodist University. Since the testing procedure involves approximations,
we first examined the extent to which the observed significance levels
agreed with the nominal levels. We simulated samples from mixtures of
normals whose component variances were equal and assumed to be known and
for which the mixing proportions were approximately equal. The component
means took on the values 2.176-(k-1)dd, k=1,2,...,% where % is the number
of components, d¢ is the common component variance and d is a multiplier
specifying the separation among the components. Note that pp,x = 2.176 in

all cases considered here so that these are situations in which the null
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TABLE 6.1

Compliance Hypothesis Test Results for the
Samples in Figure 6.]1 using the Upper Two-Component Test

(a) (b) (c)
Estimated # of Components 3 2 3
Umax 2.257 2.143 2.263
m2 2.044 1.764 2.009
Pmax .328 .732 .349
Pm2 410 .268 437
$E (Pmax) .058 .020 .046

Z (Reject Hg if Z>1.645) 1.408 -1.648 1.901



hypothesis of compliance is true. We considered the cases in which the
number of components, &, was 2, 3 and 4 and in which the multiplier d took
on the values 1.5, 2, 2.5 and 5. For each of the 12 resulting
combinations we generated 2000 samples of length n = 80. Each sample was
analyzed using the UTCT procedure described in Section 4 where the maximum
number of components considered by AIC is M=5. 1In Table 6.2 we show the
actual proportion of the 2000 samples for which the null hypothesis of
compliance, Hp: pPpax € 2.176, is rejected when using a nominal & = .05 test.
There it can be seen that there is reasonably close agreement with a
tendency for the observed significance level to be slightly higher than
nominal levels.

Obviously, one would expect that AIC performance would improve as the
separation among component means increases. It should be noted that
Behboodian (1970) has shown in the case of a two component mixture that the
mixture density function is bimodal if and only if |pl - pzl > 2¢. 1In
Table 6.3 we examine the ability of AIC to select the correct number of
components for the cases in which d = 2 and d = 2.5. There it can be seen
that when d = 2, AIC had a definite tendency to underestimate the number of
components in the model, as would be expected. Although performance is
better when d = 2.5, the table shows that AIC's estimate of the number of
components is often incorrect. However, as we see in the results shown
here, the performance of the test does not appear to be overly sensitive to
the estimation of the number of components.

The use of the bootstrap has been examined for a subset of the
configurations considered in Table 6.2 Because of computer time
considerations, we restricted our simulations to 200 samples of size n = 80

for the cases in which & = 2,3 and 4 with d = 2 and 2.5. For each

11



TABLE 6.2
Proportion of Times the Hypothesis
Hp: Mpax = 2.176 is Rejected

using the Upper Two Component Test

# of repetitions/cell = 2000
# of data points = 80

Number of Components

2 3 4
1.5a .052 .044 .050
Separation
Among 2¢ .051 .073 .060
Means
2.5¢ .061 .066 .071
5d .061 .064 .069
TABLE 6.3
AIC Performance
True Number of Components
2 3 4
Separation Separation Separation
20 2.5¢d 20 2.50 24 2.5¢
Estimated 1 7 0 0 0 0 0
Number
of 2 | 1954 | 1928 1091 140 24 1
Components
3 38 72 895 1840 1757 845
4 1 0 13 19 214 1141
5 0 0 1 1 5 14




configuration in Table 6.4(a) we show the average of gi(ﬁmax) and
éEB(ﬁmax) across the 200 samples. Additionally, in Table 6.4(b) we show
the observed significance levels for the tests given in Sections 4 and 5.
While there is reasonable agreement between the results for the two
procedures, it appears from the tables that in general §E(ﬁmax) g
éEB(ﬁmax) which has the effect that the bootstrap-based test produces
fewer rejections of the null hypothesis, lower than the nominal level for
all 6 configurations examined.

The power of the UTCT has also been examined via computer simulation.
We simulated samples from 4-component models for which ppax = 2.301, 2.398,
2.477, i.e. models for which the null hypothesis Hp: fpax £ 2.176 is not
true. For each of the models considered, the lower three means are 1.301,
1.903 and 2.176. We considered samples sizes of 22, 44 and 88, and in each
case there were a small number of observations associated with the
component with mean yg,, while the remaining observations were
approximately equally divided among the three other components. A total of
1600 samples for each configuration were simulated, and in Table 6.5 we
show the estimated power, i.e. the proportion of samples for which the null
hypothesis was rejected. There it can be seen that this test has
substantial power against several of the alternatives considered. The test
has also shown to be more powerful than other tests under consideration for
compliance testing. Additionally, it performs well when the model
assumptions are not met. For a discussion of these results see Gray and

McCartor (1986).
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TABLE 6.4

Comparison of Hypothesis Tests Based on Upper Two-Component Test
(UTCT) and the Test Based on the Bootstrap

A
(a) Average SE ({fiyyy) Across Samples

Number of Components

2 3 4
UTCT Bootstrap UTCT Bootstra UTCT Bootstra
Separation
Among 20 | .0381 .0402 .0380 .0427 .0403 .0462
Means
2.50 | .0316 .0326 .0396 .0469 .0402 L0462

(b) Proportion of Times the Hypothesis Hp: Mpax S 2.176
is Rejected (Nominal = .05)

Number of Components

2 3 4
UTCT Bootstrap UTCT Bootstra UTCT Bootstrap
Separation
Among 2¢ | .055 .045 .055 .040 .050 .025
Means
2.5a | .050 .045 .060 .030 .060 .045




TABLE 6.5

Proportion of Samples for which the Null Hypothesis
Hp: Ppax £ 2-176 is Rejected using the UTCT

# Repetitions/cell = 1600

Sample Size
Pmax % of observations

with mean pp,x 22 44 88
2.301 4.5% .11 .15 .21
2.301 13.6% .28 .40 .58
2.398 4.5% .22 .37 .52
2.398 13.6% .66 .87 .98
2.477 4.5% .40 .61 .82




7. CONCLUDING REMARKS

In this paper we have developed a test for the hypothesis that the
largest mean of a mixture of an unknown number of normals is less than or
equal to some threshold value, and we have examined its properties through
computer simulations. We discussed the use of Akaike's (1974) AIC criteria
for determining the number of components in the mixture. Other techniques
are available for this determination including BIC suggested by Akaike
(1977). Hannan (1980) showed that BIC provides a consistent alternative to
ATIC in the case of ARMA model identification. BIC has a more severe
penalty for adding additional parameters and thus often selects a smaller
number of components than does AIC in our case, causing ﬁmax to tend to
be smaller than that obtained using AIC. The impact of this on the UTCT is
that it causes the test to be more conservative in the sense that Hgp:
PnaxsT is not rejected as often. We observed this effect in simulations
related to those shown in Table 6.2. 1In particular, the proportion of
rejections using BIC was much lower than the nominal level when separation
was very slight, while it was closer to the nominal levels than the
AIC-based results shown in Table 6.2 for the larger separations. McLachlan
and Basford (1988) also mention other techniques for identifying the number
of components. It is possible that the UTCT and bootstrap procedures
suggested here could be improved with better estimation of the number of
components.

Preliminary investigation into the problem of testing the hypothesis
Ho:paxsST when the component variances are not assumed to be known and
equal have shown that the test performs poorly in this case. This seems to
primarily be due to the fact that the identification of the number of

components is difficult in this setting. For example, we considered the

13



case in which the component variances were unknown but assumed to be equal,
and our simulations typically produced several samples for which AIC picked
too many components. If one of these "extra" components is associated with
the largest data values, this may cause the estimate of ug,, to be
excessively large. Also, if more components are selected than are actually
in the data, this will have a tendency to cause the component variance
estimate to be small. These two effects caused the percentage of
rejections of the null hypothesis we obtained to be considerably larger
than nominal levels in the cases examined in Table 6.2. By placing
constraints on the unknown variance, these results improved. More work is
definitely required for the case in which the component variance is

unknown.
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