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ABSTRACT

A new transformation referred to as the Gém)—transformation is
introduced to establish a general methodology for finding functions which
are easy to evaluate and give very good approximations to tail
probabilities. The transformation is based only on a general class of
differential equations that include the specified density function in the
solution set. As a result this new method applies to a broad class of
distributions. Not only is the method general but it is also very accurate.
Unlike many other approximation methods, the approximation functions
produced maintain their high degree of accuracy even in the extreme tails,
making them also suitable for extreme tail probability approximation. 1In
this paper the method is applied to the Pearson family members: the
distribution of the normal, t, gamma, F and the Pearson type IV and the
inverse Gaussian which does not belong to the Pearson family. Tables are
included which show the high accuracy of this method even with small values
of n (n=1, 2, 3). 1In most cases satisfactory approximation functions can
be obtained which are sufficiently simple so that they can all be
calculated on a hand calculator.

KEW WORDS: Ggm)—transformation; Generalized jackknife; Inverse Gaussian;

Pearson family.
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1. Introduction

The problem of approximating tail probabilities is one that has been
of interest in statistics since its beginning and remains of strong
interest today. One of the more popular approaches to the problem is to
produce an approximation function which is easy to evaluate. There are
however few general methodologies for producing such functions, most being
the product of ad-hockery. An exception to this is the B,-transform method

introduced by Gray and Lewis (1971). Actually the B,-transform method has

been shown by Gray (1988) to be a special case of the Generalized Jackknife.

In this paper we follow the approach of Gray (1988) to show how the
Generalized Jackknife can be employed to establish a very general method
for obtaining approximation functions for most tail probabilities. The
method has the advantage, over most methods, of producing approximation
functions which maintain a high degree of accuracy even in the extreme
tails, thus making it suitable even when extreme tail probabilities are

needed.

2. Background

Given a collection of estimators él’ éz, cee, ék+1 and a set constants
cj such that
6, - col = 3
ElB8., - ¢c.08] = a,.b,(8), j=1, 2, ..., k+l |, 1
J ] igl 1] 1 J (L)
where c) = 1, the ajj are given constants, and the b;(8) are unknown

functions of 8, the k-th order Generalized Jackknife is defined by

A
A A A Hk+1(8.;ai.)
G, 8,, ..., 8 :a )= SRS A (2)
1 2 k+1 ij Hk+l(cj’ aij)

where
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Z1 22 Zk+1
all ajn e al,k+l

Hk+l(zj; aij) = . . . (3)
ag,1 - - Ak, k+l

The Gneeralized Jackknife defined by (2) is a slight extension of the
original definition given in Schucany, Gray and Owen (1971). The value of
this extension has however been demonstrated in Gray (1988). If

ajj b;(8) = 0 for i > k in (1), then taking the expectation of both sides
in (2) easily shows that G(él, ey ék+l? aij) is an unbiased estimate for
8. If aijbi(e) # 0 for i > k, then the jackknife is not unbiased but,
under general conditions, is lower order bias.

The fact that the Generalized Jackknife is a general method for bias
reduction is well known; see Schucany, Gray and Owen (1971). It is however
not so well known that the Jackknife also furnishes a general methodology
for reducing the error in a numerical approximation. That is, suppose the
éj are degenerate, i.e., each has its probability mass concentrated at a
single point, then they are more commonly referred to as approximations

-~ -~

(rather than estimators) and E[Bj - 8] = Bj - 8, so that the bias is in
fact the numerical error. Therefore when the Jackknife is applied to a
collection of approximations it can be viewed as a general approach to
reducing the error in the approximation. This was pointed out by Gray
(1988) where it was also noted that such an observation can be used to show
that such well known numerical methods as Simpson's Rule, Lagrange

interpolation, Romberg integration, Newton-Cotes' method, Newton's Rule,

the ej-transformation of Shanks, Gray's Gp~transformation and many others



can all be viewed as Generalized Jackknives. In the next section we will
show how, in addition, this observation leads to a general method for

approximating tail probabilites.

3. The Jackknife Method for Approximating Tail Probabilities

Let f be a probability density function and let

X
F(x) = I f(t)dt (4)
a

and suppose F(x) - S as x » ». Then let €(x) = § - F(x) and

b3 E I 1
k k,i
U (%) = x 'Z — | (5)
i=0 x

where ay g # 0 and R is an integer with 2 § k. Now suppose m is the

smallest possible integer such that £(x) satisfies the differential

equation
(m) (m~1) ! _
Um(x)y + Um_l(x)y + ...+ Ul(x)y -y =0, (6)
for some collection of Uy'y. Then if @y i = @) § = e 0 when
i 2 ny, n9, ..., ny respectively, we have
nm“1 lm—l (m) nl—l 11—1 .
Y @ . X e (X)) + ...+ F o, .X e (x) - e(x) = 0.
. 1 1,1
i=0 i=0
Then
Ot Yot (el ny-l 2,1
F(x)-S = ) a .x f (x) + ... + Y a, .x f(x) (7
& m, i . 1,1
i=0 i=0
and
n -1 . n,—~1
m 2 -1 1 L.-1
k -1 k
S L ST ALY 2 R CO % L R N C S TE S0 AR
P , 1 . 1,4
i=0 i=0
m
k = -— =
0, 1, , N-1, N 'Z n,
i=1

[N



The system of equations defined by equations (7) and (8) is of the
same form as (1) with c¢; =1 and ¢y = 0 for j =2, 3, ..., N+l, and with
the oy 5 corresponding to the b;(8). Equations (7) and (8) therefore
define a Generalized Jackknife which is exact, i.e., produces the exact
tail probability when applied to the N+1 functions F(k>(x), k=20,1, ...,
N, if g(x) satisfies equation (6). That is if e(x) satisfies (6) for x 2
a, then for any x 2 a

GIF(x), F (x), ..., FV(x); ay (0] = (9)

if the ajj are properly defined by (7) and (8). Since (9) holds for all x

Z a, we can take x = a and F(x) = 0 so that no integration is required at
all in (9). To be more specific, suppose m = 1, n} = n and x = a. Then N
= n and denoting G[0, F'(x) ,..., F(n)(x); aij(x)] by Gém)[f(x); ajj(x)] we
have
0 £(x) C £(n=1) (%)
all(x) alz(x) e e . al,n+l(x)
an,1(x) ap 2(x) .o an n+1(x)
(1) . =
G, [£(x); aij(x)] = , (1)
i 0 .o 0
aj1(x) ajn(x) < a) n+1(x)
an,l(X) an,2(x) R an n+](x)




where

.o —-i+1 .
a0 = (x LFITH S LSt D (12)

From our earlier remarks it therefore follows that

oo

¢ Vet a, (0] = [ (o) . (13)
n 1] N

Now suppose f(x) satisfies (6) for some set of Up(x) defined by (5)
and limy, . Ul((i‘l)(x)f(k'i)(x) = 0, k=i, i+l, ..., i=l, 2, ... . Then Levin

and Sidi (1981) have shown that there exist aé’i such that

U;(x) s(m)(x) + U;_I(X) E(m—l)(x) + ...+ UT(X)E‘(X) - e(x) = O(X_n), (14)
where
- n-1 kk—i
Uk(x) = 3 a x . (15)
i=0 k,i

This leads us to define the Generalized Jackknife tail probability

approximation function as follows.

Definition 1. Let f(x) be a probability density function with infinite

support and suppose f(x) satisfies the differential equation in equation
(6) for some m and some set of Uyp'g. Then we define Ggm)-transformation
of f(x) as the Generalized Jackknife approximation of !; f(t)dt corres-
ponding to equation (1l4), i.e.,

(m) (mn-1)
Gnm [£(x); aij(x)] =G[0, £(x),..., £ (x); aij(X)] ; (16)

where

SN Y N

e 2 -



f(x)} , i=1,..., n, j=1,..., nm+l,

£,=i+n+l (3-1
a, (x) = / X f (x) , i=n+l, ..., 2n, j=1, ..., nm+l,
\

, (j-1)
f lm—1+(m—l)n+l (m=1) }
£ (x) )

“ 1x i=(m-1)n+1,..., nm, j=i,...

It is clear that Ggm)[f(x); aij(x)] - I; f(t)dt as n increases for
x > 1. One should therefore expect very rapid converge of Gém)[f(x);
aij(x)] to F(=) for large x and n in view of the error being o(x™1). One
important property of the Gém)—transform is that it does not require

1
any knowledge about ap ; in (6) or @, i in (14).

4. Applications

The Gém)—transform defined by equation (l6) can be used to obtain a

good approximation to most tail probabilities. 1In all of the examples we

consider, m=1. This is certainly not necessary and is simply a consequence

of the fact that many of the more popular probability density functions
(PDF) satisfy a first order differential equation. It is however easy to
find PDFs for which m > 1.

More specifically, we demonstrate the application of the
Gém>—transform to the Pearson family and to the inverse Gaussian PDFs and
in each of these cases m=1. Some comments are in order however before we

proceed. Although one could apply Ggm) to any diffentiable PDF by simply

b

mn+].



selecting m (usually in practice we take m £ 2) and increasing n, the most
efficient use of Gém)is when m can be ascertained, i.e., if it can be shown
that f(x) satisfies an m-th order differential equation of the type of (6).
In this event there is the added advantage that the differential equation
itself normally will furnish a recursion formula for the required
derivatives so that one need only calculate directly the first m-1
derivatives. Making use of the observations and the fact that if g(x) =

x5f(x), then

r
) = 3 (lr{>s(s-1> o (smkel) KSTRETTR) (17)
k=0 \ y B
the Gém)—transform can be easily calculated. In thevcase m=1,
£(x) = Up(x)f (%), (18)
kl kl—l kl—Z
Ul(x) = aox + alx + a2x + ..., as X » =
For the Pearson family of PDFs
2
b0 + blx + bzx ,
f(x) = f (x), (19)

X - a

which is clearly of the form in (18). The tail probabilities of all of
these distributions may therefore be well approximated by Gél)[f(x);
aij(x)]. For those distributions with finite support, the method can still
be employed simply by transformating the data to a distribution with
infinite support.

For larger values of m and n the form of the Ggm)—transform given by
equation (16) is a convenient one, and one which is easy to calculate on a
micro-computer. However for m=l and n ¢ 3 the transform can be simplified
to the extent that it is easily computed on a hand calculator.

Specifically we have (shortening our notation)

.

-~



2
[£(x)] = ~x £ (x) ) (20)

x £ (x) + R ECx)

(1)
Gy

2
Gél)[f(x)] ; x £ (x) A(;> : , (21)
x"B(x) - ll(ll—l)f (x)-xf (x)A(x)
and
(1 x£2(x) C(x)
X D(x)+3(11—2)x F(x)IB(x)-(f (x)) ]+(ll—l)(ll—2)f (x)E(x)
where A(x) = xf'(x) + 2(1-D)f(x),
B(x) = f(x) £"(x) - (£'(x))2,
Clx) = 3= EG) [xE'(x) + (L -DEG)] - x2[2B(x)-(£'(x))2],
D(x) = -f2(x)f(3)(x) + 6f'(x) B(x)
E(x) = -3xf'(x) - 21f(x).

As we will see in the following examples, n s 3 is sufficient in these
applications. Since %} is often O or 1, Gél) in (20), (21) and (22) is
usually even simplier than it appears in these equations. 1In all the

examples we consider here Gél)[f(x)] is a rational function times f(x).

Example 1. The Normal distribution.

Finding a proper functional approximation to the tail of a normal
distribution is a problem which has a rich history in statistics and many
approximations have been proposed. In some applications one requires a
tail probability that is accurate in the extreme tails as well as at the
usual nominal significance levels. This problem has recently been
addressed by Hawkes (1982) who employed an ad hoc approach to obtain a
specialized approximation which is accurate in the very extreme tails. In

the event f is a normal PDF, i.e., f(x) = (2m)-1/2 exp{—xz/Z}, then



£'(x) = - xf(x)
and clearly m=1 and %] = -1. Furthermore
f(R) (%) = -xf(k=D)(s)+(1-k) £(k=2)(x),
so that Gﬁl)[f(x); aij(x)] is easy to calculate. Using (16) and (17) one
could calculate the tail probability to any desired degree of accuracy by
increasing n. However for most purposes the simple formula in (20), (21)
or (22) will suffice. This is in fact the case in all of the examples

which follow.

In the case of the standardized normal, it is easily derived that

Gil)[f(x)] = =5 f(x),
x +1
(1) x(x+4)
G, " [£(x)] 5 > £(x),
(x"+1)(x"+4)-2
and
2 2
ciP [e(o] = FEIRE ) oy,
xT(xT+3)(x7+9)+6
Table 1 compares Gil), Gél) and Gél) with the the approximations QL2 and

Qy2 given in Hawkes (1982); see Hawkes (1982) for details. Note that
Ggl)[f(x)] is essentially as good as the best of Q9 and Quy and
Ggl)[f(x)] is better. 1In fact, these new approximations are exact to many

more significant digits than those shown in Table 1 in the extreme tails.

—— -



Example 2. The t distribution.

Good (1986) gives two asymptotic formulas to approximate the extreme
tails. The formulas are easily calculated on a hand calculator with great
accuracy in the extreme tails. The Ggl)—transform yields approximations
which are equally easy to calculate and more accurate. Moreover as in the
previous example Gél>[f(x)] is also a satisfactory approximation at
standard nominal significance levels.

The density of ty, where k is the degree of freedom, is

~(k+1)/2

/ZF(k/2)]}(l+x2/k) )

F(x) = {T((k+1)/2)/[(nk)?

so that

(k+x2)£'(x) = ~(k+1)xf(x). (23)
Dividing both sides of (23) by x shows that m=1 and %;=1. Taking (r-1)th

derivative on both sides of (23) and after some simple algebra, we have

£(r)(x) = [(1-2r=1)xf (=D (x) + (r-1)(1-r-k)E(r~2)(x) ]/ (k+x2).  (24)
Using (16), (17) and (24) the tail probability can be calculated to any
desired degree of accuracy. However for most purposes Gél)[f(x)] and
Ggl){f(x)] are more than adequate. Simplified expressions for them in this

example are as follows:

2
¢\ e = 2 gy,
k(x"-1)
(1) x(x2+k)
GoIE(x)] = BEEEE ey,
- k(x"+1)

11



and

- x(x2+k){(k+2)x2+5k}
k{(k+2)x4+6kx2+3k}

@V
3

G [£(x)] fF(x)

*
The comparisons are given in Table 2. The quantities Qp and Qg here
are the two seemingly best asymptotic formulas given by Good (1986); see
Good (1986) for details. From the table we see that Gél) is

more accurate than Qj and Q; and G§l> is even bhetter.

Example 3. The gamma distribution.
The density of the gamma distribution with parameters a and B8 is

f(x) = {1"(0L+l)}—l B_(a+l) x%e -x/8 s X

v
o

Therefore
£'(x) = (a/x - 871) £(x) . (25)
Equation (25) implies m=1 and dividing both sides of (25) by a/x - 8~!
shows 2; = 0. Rewriting (25) as
xf'(x) = (¢ - x/B)f(x)

and taking (r-1)th derivative on both sides leads to

£(r)(x) = [-871 + (a-r+1)(r-1)/x1E(r=D )= [(r-1)/(8x) 1 £(r=2) (x). (26)
Using (26), (16) and (17), Ggl) can be calculated for any n. However
once again n=2 and n=3 are both quite accurate so that (21) or (22)

sufficies. It is easily calculated that in this case,

QY _ _Bx
6 GO = e £,
¢ Ve = Bx{x+B(2-a)} F(x),

x2—28(a—l)x+82a(a—l)

12



and

(l)[

3 £(x).

G

2 2 3 9 )
£(x)] : x{Bx -87(2a-6)x+B” (a"-4a+6)}

X +B(a+6)x2+82(3a2—9a+6)x—83a(a—l)(a—2)

Gray and Lewis (1971) introduced the Bp-transform method of
approximating the tail probabilities for a class of distributions where the
density approximately satisfies some homogenous differential equation with
constant coefficients. Because B, uses the derivatives up to £(2n~-1) (%)
while Gél) uses those up to £(n)(x) only, it is sensible to compare, say,
By and G§1>. Consider now more closely the special case where B8=2 and
a=k/2-1, i.e., the chi-squared distribution. Interestingly, from Table 3
we see that Gél) and By give e#actly the samé approximations in this
special case. 1In general G§l) is clearly more accurate than By, or

Ggl). Note that Bj, Ggl) and Ggl) are exact for k=4, But only

Ggl) is exact for k=6.

Example 4. The F distribution.
The density function of an F distribution with degrees of freedom k
and s is given by
£(x) = (k/s)K/2 x(k=2)/2 {1 + (k/s)x}(k+s)/2/B(k/2, s/2).
Simple calculation shows that
x(1+(k/s)x)f'"(x) = {k/2-1 + [k(k+s/2-1)/s]x} f(x).

Therefore for r = 2, 3, ...,

f(r)(x)

{[(k/2-r)s + k(k+s/2-2r+D)x]£(r=-D(x) +

ro
~4
—

(r=1)k(k+s/2-r+DYE(r=2) ()}, {x(s+kx)}. (

13



It is easily seen that m=1l, fj=1. It is straightforward to calculate
Ggl)[f(x)] using (16), (17) and (27). Table 4 compares Ggl) with the true
values for n = 2, 3, 4, and demonstrates the great accuracy of Ggl). Again
n=3 is sufficient for most practical purposes. The simplified versions of
(20), (21) and (22) for Ggl), n=l, 2, 3 can be easily obtained in this case
as in Examples [-3. This is also true for the following examples. We omit

these formulas in the remaining portion of this paper.

Example 5. The Pearson type IV distribution.

As Woodward (1976) pointed out, the type IV curve is the only one of
Pearson's curves for which the probability integral cannot be reduced to
known integrals such as x2 integrals or incomplete gamma functions and thus
it is more difficult to handle in practice. Its density is as follows:

f(x) c(1+x2/a2)~ke-s arctan(x/a), o & x &

, a > 0,

where

m/2
c 1 = a I e s@ COSZk—Ze ds.

~n/2

The values of the integral above can be found in Pearson (1914) or
calculated in a standard program. We may take the scale parameter a = 1.
Then

(1+x2)£'(x) = (=2kx-s)f(x) . (28)

Taking (r-1)th derivative on both sides of (28), we have

£Cr) (x) = {([2(r+k-Dx-s]ET" D (x) + (r=1)(r+2k-2) (=2 (x) }/(1+x2). (29)
Using (29) and (17) we are able to compute Gél) with m=1 and %=1 for all
n. Woodward (1976) applied the B,-transform to this case and compared B,

with Shenton and Carpenter’'s (1965) approximation C,. Table 5 compares

14



Ggl) with By and Cyp for the same reason mentioned in Example 3. It is seen
from Table 5 that Ggl) tends to be more accurate than By when X increases
and is uniformly more accurate than Cp. Again we notice that Gél)
converges to the true values quickly as n increases. Approximations By and
Co were taken from Woodward (1976).

All examples considered so far belong to the Pearson family. We now

consider the last example which does not belong to the family.

Example 6. The Inverse Gaussian.
The density of Inverse Gaussian distribution is

1/2 22
F(x) = (A/2mx°) oA xmw) T 2ux

, x>0, A >0, n>0.
For simplicity, let A = p = 1. It is easily calculated that

x2£'(x) = [(-x2-3x+1)/2]1f(x) ,

w
[y*]

and therefore m=1, 2;=0. Similarly to the previous examples, for r
£(0)(x) = {[(-x2-(ar-5x+1)/2] £(r-D)(x) - (r=1)(x+r-1/2)£¢T"2)(x)}/x2. (30)
Our approximation is tabulated in Table 6 for n=2, 3 and 4. Again Ggl) is
shown to be accurate in approximating tail probabilities, especially in the

extreme tails.

5. Concluding Remarks

In this paper we have developed a general method for approximating the

tail probabilities of continuous random variables. The method is three
fold. First it is very accurate. It is theoretically and numerically
sound that Gém) converges rapidlyv as n -~ =, In fact, n = 2 or 3 is enough



for most applications, especially in the extreme tails when Gém) or Gém) is
more than adequate. Secondly, the Ggm>—transformation is very simple.

When m=1, simple formulas for Gém), n=1, 2, 3 have been obtained. These
formulas can easily be simplified even further for each given distribution
and are suitable for computation on a hand calculator. For higher order m
and n, a short FORTRAN program which calls any standard subroutine of
calculating a determinant is sufficient to carry out the calculation.
Thirdly, the method is general. Unlike most simple approximations designed
 for some particular distributions the Ggm)—transformation can be applied to
‘a very broad class of distributions. Finally we should point out that in
this paper we have determined m and %y in order to obtain efficiency of
calculation. However Ggm) is very robust in general and in most cases very
accurate approximations can be obtained by letting 2;=i, m=1 or 2 and
simply increasing n until the approximation remains essentially constant.
Due to its simplicity a macro program could easily be written into
statistical packages such as GLIM for the calculation of the

Ggm)—transformation.
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Table 1.

Approximations to the upper tail of the normal distribution.

true tail QL2 QH2 Gil) Gél) G;l)
1. .11507 .11737 11402 .09550 11244 . 11504
1. . 05480 .05589 05465 . 04985 .05452 .05486
2. .02275 02314 02274 .02160 .02273 .02276
2. .008198 .008312 .008197 007951 .008199 .008200
3. .001350 .001364 .001350 .001330 .001350 .001350
4, .398x10°6 .414x1076 .396x1076 .385x107 .398x1076 .398x1079
6. .866x10~10 .881x10~10 .861x10710 .853x10"10 .866x10710 .866x10710
8. .221x10"16 .229x10-16 .218x10716 .218x10~ 16 .221x10"16 .221x10°16
10. .620x10724 .625x10724 .618x10724 .618x10724 .620x10724 .620x10~24
4. .794x10745 .796x10745 .793x10745 .793x10745 .794x10745 .794x10745
18. .741x10773 .742x10773 .741x10773 .741x10773 .741x10773 .7641x10773
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Table 2. Approximations to the double-tail of the t distribution.

k X true tail Q2 QR G;l) Gé“

10 1.812 0.1001 0.2426 .1196 .0917 .0986

10 2.228 0.0500 0.0853 .0569 L0474 .0497

10 3.169 0.01000 0.01261 .01075 .00978 .00999

10 4.587 0.001000 0.001124 .001037 .000990 .01000

20 6.927 1.000x10-6 1.008x10-6 .018x10-6 .998x10-6 .000x10-6
60 5.449 1.000x10-6 1.002x1076 .030x107 .9970x1070 .000x1076
120 20 5.105%10740  5.105x10740 .118x10740 .105x10~%0 .105x10740
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7
Approximations to the upper tail of the Xy distribution.

Table 3.

. oy (1)
ble true tail B2 G2 G3
5 .28730 .28730 .28730 .28730
7 .13589 .13589 .13589 .13589
9 .06110 .06110 .06110 .06110

13 .01128 .01128 .01128 .01128
6 .30622 .30272 .30272 .30608
8 .15624 .15561 .15561 .15622
10 .07524 .07510 .07510 .07523
14 .01561 .01560 .01560 .01561
7 .32085 .31252 .31252 .32085
9 .17358 .17190 .17190 .17190
12, .06197 .06178 .06178 .06197

16 .01375 L01374 .01374 .01375
9 .25266 .24616 .24616 .25285
11 .13862 .13709 .13709 . 13865
14 .05118 .05098 .05098 .05118
18 .01197 .01195 .01195 .01197
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Table 4. Approximations to the upper tail of the F distribution.
: (D oy (D

k S X true tail G2 G3 G4
1 1 5 .267720 .271148 .268009 .267751
1 20 . 140049 . 140170 . 140052 . 140049
1 200 044941 .044941 .044941 .04494]
1 10 3 .113938 .120508 .115110 .114228
10 6 .034291 .034790 .034343 .034297
10 11 .007792 .007825 .007794 .007792
L 60 2 162470 . 183623 .167128 . 163875
60 4 .050036 .051645 .050262 .050080
60 8 .006354 .006395 .006354 .006351
10 1 10 .241668 .241267 .241673 .241668
) 1 110 .074077 .074076 .074077 .074077
1 1000 .024605 .024605 .024605 .024605
10 10 2 . 144846 .136565 . 145669 . 144797
10 3 .048927 .048094 .048980 .048925
10 8 .001449 .001447 .001449 .001449
10 60 1.5 .161863 .142537 . 164436 .161660
60 1.8 .080036 .075538 .080491 .080007
60 3.0 .003919 .003887 .003921 .003919
40 1 10 .246526 .246068 .246533 .246526
1 30 . 143946 . 143917 . 143946 . 143946
1 125 .070824 .070823 .070824 .070824
40 10 1.9 .138782 . 130405 . 140300 . 138544
10 3.0 .033326 .032873 .033372 .033322
10 6.0 .002299 .002295 .002299 .002299
40 60 1.4 117146 . 104819 .120301 116413
60 1.7 .030729 .029676 .030907 .030700
60 2.5 .000641 .000637 .000641 .000641



Table 5. Approximations to the upper tail of the Pearson tvpe IV distribution.
(1

8 X true value B2 C2 G3
& .07 .087553 .078528 .071427 .077052
.15 .049286 .046772 .043898 .047860
.61 .001022 .001016 .001010 .001019
-4 1.03 .100113 .097962 .097085 .100298
1.24 .050102 .049055 .049428 .050180
2.50 .001080 .001070 .001080 .001080
-2 1.25 . 100993 .094930 .099260 .100662
1.60 .050398 .041595 .050076 .050382
4.40 .001004 .000961 .001004 .001005
2 .18 .099795 .091947 .077568 .086955
.36 .050747 .048978 .045573 .047920
1.38 .001146 .001124 .001142 .001144
0 .59 . 100093 .096507 .093037 .095589
.79 .050563 .048932 .049020 .049853
2.10 .001064 .001040 .001063 .001064
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Table 6. Approximations to the upper tail of the

inverse Gaussian distribution.

X true value c§1> Gél) cil)

1. .1892 .1759 . 1839 .1868

2. 1145 .1091 1126 .1138

3. .04681 .04562 . 04649 04671

4, .01430 .01413 .01427 .01429

6. .004850 .004818 004845 .004849

8. .001260 .001256 .001260 .001260

10. .0003504 .0003498 .003504 .0003504
16. 9.439x1076  9.434x1070 9.439x1076 9.439x1076
32. 4.1206x10710 4.1204x10710 4.1206x10"10  4.1206x10~10
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