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Abstract
Estimation of the value of an unknown function at a point of continuity using kernel
estimators is considered. Optimal bandwidths for second- and fourth-order kernels are
derived and their asymptotic and large-sample efficiencies are examined. For fourth-order
kernels generated by the generalized jackknife combination of two quadratics with different
bandwidths, the optimal bandwidth ratio is derived. In the regression context the potential

advantages of a fourth-order kernel make it a viable competitor to the usual second-order

kernel estimator.
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I. INTRODUCTION
One version of a nonparametric regression problem is to consider modelling indepen-

dent response variables, Y;, by
Y:=m(t) + e, i=1,...,n, (1.1)

wheré the ¢; are independent identically distributed random variables with mean zero and
variance o2, the ¢; are equispaced fixed design points on some finite interval and m is an
unknown function. Without assuming more than a certain amount of smoothness of m,
the desire may be to estimate m at a fixed point ¢.

The class of kernel estimators of m(t) in this context is defined by

(t) = %gj 1x (%)Y , (12)

where K is a continuous kernel, usually assumed to satisfy regularity conditions such as

boundedness, [ K(z)dz =1 and [ |2?K(z)|dz < oo for some integer p such that

/zjK(z)dz={0’ ]:=1,...,p—1 (1.3)
kp#0, j=p.

The‘ most widely-used kernels are symmetric, finite-variance probability density functions.
These have p = 2 and are called second-order kernels (see Silverman [8]).

This extension of kernel estimators to nonparametric regression was proposed by
Priestley and Chao [5]. The estimators were originally defined by Rosenblatt [6] and
generalized by Parzen [4] for probability density estimation. In both settings the consis-
tency properties depend upon the sequence of bandwidths, A = h(n), and characteristics
of K and m. The expression for asymptotic mean-square error (mse) of Mm(t) in (1.2) is
presented by Hardle [3] for the model in (1.1). The results are similar to the classical
derivations for density estimation, which require A — 0 such that nh — oo as n — oo.

Assuming that the unknown function is reasonably smooth, e.g., m € C*[a,b], and that
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the kernel is such that its fourth moment is finite, ie. k4 < oo in (1.3), leads to a useful

expression for the asymptotic mse

mse [(t)] = Variance + [Bias] |
= o2Q/nh + [R2m® () k2 /2 + h*m® () ks /4])?
+ o(1/nh) + o(k*), | (1.4)
where @ = [ K2%(z)d=.
Schucany and Sommers [7] introduced a generalized jackknife combination of two
estimators of the type (1.2) designed to eliminate the A% term from the bias expansion

in (1.4). If the same kernel is used for both estimators, then H&rdle [3] and others have

shown that the resulting estimator is again of the type (1.2). The kernel
K*(2) = [K(2) — SK(e)]/(1 - &),

where c is fixed and is in effect the ratio of the two bandwidths, is a fourth order kernel. In
other words, it has been previously demonstrated that one can begin with a second-order

kernel, K, and create a fourth-order kernel, K*, so that

*(t>——Z—K*( -

has asymptotic mean-square error

)Yi (1.5)

mse [m*(t)] = ¢2Q* /nhy + [Rim @ (1)k}/4!]? + o(1/nhy) + o(RS) , (1.6)

where Q* and kJ are the quantities introduced in (1.4) and (1.3), respectively, evaluated
at K* rather than K.

Hardle [3] alerts potential users of m* to the pit.falls of indiscriminate selection of the
constants ¢ and h;. He illustrates with a specific example application that it is possible

to choose ¢ and h; in a manner that will produce a larger approximate mse for m*(t)
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than for %(z). Of course, in practice one has little a priori guidance on the best choices
for either h or ¢ and h;. What is needed is a reliable data dependent procedure for
selecting bandwidths. Local squared error cross validation [2] is a possible approach to
this. However, until such procedures are refined and evaluated by convincing simulation
experiments, it is of interest to compare m and m™* at their respective optimal bandwidths.
In the next section expressions for the asymptotically optimal bandwidths are derived. For
the estimator m* the constant c is taken to be fixed. In subsequent numerical examples

the sensitivity of the relative efficiency to the choice of ¢ is examined and the optimal value

is found.

II. OPTIMAL BANDWIDTHS AND EFFICIENCIES

Using only the dominant term of the bias component in expression (1.4), the asymp-

totic mse of M(t) can be readily minimized with respect to A. The solution is
hopt = [07Q/ (km® (2))?n]'/® . (2.1)

Recall that the user selects the kernel, K, and thus can evaluate both @ and k,. The noise
variance, 02, and the value of the second derivative of the function are usually unknown.

Proceeding in a similar manner with (1.6) the asymptotically optimal bandwidth for
m*(t) is

Rope = [0°Q* /8n(kim™ (£)/24)°]'/° . (22)

As in (2.1) there are two unknown quantities, 62 and a higher order derivative of m.
Henceforth, a bandwidth for m*(¢) in (1.5) will be denoted by A* rather than h; as in the
previous section.

Evaluating the mse expressions (1.4) and (1.6) at their respective optimal bandwidths
shows that mse[i(t)] = O(n~*/5) and mse[m*(t)] = O(n~%/°). Indeed all that is necessary
for these rates to hold is that kA be of order n~!/® and h* in (1.5) be of order n~1/°.

Consequently, even without the information necessary to evaluate the coefficients in (2.1)
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and (2.2), the asymptotic relative efficiency (ARE) can be evaluated for any second-order
kernel estimator relative to any fourth-order kernel estimator, as long as each have their

bandwidth sequences decreasing at their proper rates. In other words, taking h = an~1/3

and h* = a*n~1/? we have

ARE[(t),m*(#)] = lim 2Ol _ o

n—co mse [m(t)]

Naturally, a question of greater practical importance is the value of this ratio of mse’s in

finite samples.

III. FINITE SAMPLE EFFICIENCIES

The specific choice of kernel for all subsequent illustrations is the one introduced by
Epanechnikov [1]. This quadratic K(z) = .75(1 — 2?), for |z| < 1 and zero otherwise, has
been shown to have certain optimality properties over the class of second-order kernels.
Even though the choice of kernel is not as critical to good performance as the selection
of bandwidth, there are clearly theoretical and practical advantages to one with compact
support. It follows that Q = .6, k; = .2 and k4 = 3/35. For the associated fourth-order

kernel, K*, straightforward evaluation yields
k: = —k4/C2

and

Q* = .3(3¢® + 6¢® +4c+2)/(c+1)2. (3.1)

A reassessment of a specific example in [3] which compares the leading terms in (1.4)
and (1.6) for n = 100, o = 1 and m(t) = sin(¢) at ¢t = w/4 is presented in Table I. The
optimal values of A and h* are evaluated from (2.1) and (2.2) and these substituted into
the large sample approximations for variance and bias?. A range of values of c is used
to illustrate the dependence of hj,, on c, as well as the relative insensitivity of optimal

mse [m*(t)]. The column labelled relative efficiency is the ratio of mse [r’h(t)] to mse [m*(¢)].



TABLE I

Large Sample Approximations for Second-Order Kernel and Several Fourth-Order Kernels.

kernel optimal A variance bias? mse g cggx%y
K 786 .00763 00191 00954

K*:¢c
4 1.155 .00630 .00079 .00709 1.346
5 1.286 .00609 .00076 .00685 1.392
6 1.406 .00601 .00075 .00676 1.412
7 1.518 .00600 .00075 .00675 1.415
8 1.624 .00603 .00075 .00678 1.407
9 1.725 .00609 .00076 .00685 1.392

It is clear that m* has the potential to be about 40% more efficient than the best
achievable by . This comparison for this specific example becomes even more favourable
for m* with larger sample sizes or better signal-to-noise ratio (02 < 1). For % = .5 (which
is equivalent to maintaining 02 = 1 but increasing n to 200) the figure is about 50%, at
0? = .2 it is approximately 60% and at 02 = .1, about 70%. The same insensitivity to ¢

persists for the alternative values of 02 and n and at ¢t = 7/8 and ¢t = 7 /2.

There is an obvious problem with the formal expressions (2.1) and (2.2) at points
where the second or fourth derivatives of the function vanish. This is a familiar problem
for density estimators. Clearly, the leading term for the bias in (1.4) vanishes at a point of
inflection and the optimal rate for 77 may be improved for that single special case. Near
0 (or =) for this specific example both m(?)(t) and m(9(t) are small and m* has relatively
greater difficulty than /. With 02 = .1 and n = 200 the comparison did not favor 7 unless
|t| < .03. To a great extent this difficulty is only an artifice of the asymptotics. For most
functions, when m(?(¢) vanishes, it is not the case that the bias [#(t)] is identically zero.
In practice with finite samples an appropriate adaptive procedure will deal with estimates

of variance and bias witout regard to any terms of a Taylor expansion.

These comparisons were also made for the functions m(t) = %' and m(t) = ¢! with
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similar results for the fixed values of ¢t where the functions are changing. In general m*
did not exhibit better performance than  in regions where the function is quite flat, e.g.
for €2t when t < —2. It is clear that this is due to the fact that /2 has a small bias in such

cases and the bias reduction feature of m* is of little use.

IV. OPTIMAL BANDWIDTH RATIO

The construction of the fourth-order kernel, K*, was originally motivated as a linear
combination of two second-order kernels with the same K and bandwidths k; and k, such
that ¢ = A3 /h2. It may be observed in Table I, as in other numerical examples, that the
best value for the bandwidth ratio, c, is in the neighbourhood of .7. An analytical approach
to the selection of ¢ to maximize the ARE is possible. This is equivalent to minimizing
mse [m*(t)] at h},, with respect to c. This process yields the minimum with respect to h*

and ¢ simultaneously.

By substituting (2.2) into (1.6) one can show that the optimal mse to be minimized

with respect to ¢ is
mse [m*(t)] = (02 /n)*/*(m® [24)?(81/° 4 878/°) [(Q*)*/*(k})*/*] . (4.1)

Hence an equivalent objective function is proportional to (Q*)?/c. For the Epanechnikov

kernel, @* from (3.1) implies that an equivalent objective is

3¢ +6¢% +4c+2
c/2(c+1)?

(4.2)

Differentiation of (4.2) with respect to c leads to copt as the unique positive real root of

By Newton’s method the solution is cope = .670854. This is the recommended choice for
a specific member of the class of estimators defined by (1.5). The remaining task for the

user of either /m or m* is the proper selection of & or k*, respectively.
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A general expression may be derived for the degradation of the eﬁiciexicy of m* if the
optimal bandwidth A}, in (2.2), is not the value actually used. Neglecting higher order

terms the notation in (1.6) may be simplified to
mse [m*(t)] = A/h* + B(h*)®. : (4.3)

When h* = h,,, it can be seen from (4.1) that the ratio of A/AZ,, to B(h},)® is 8.0. It
follows then from (4.3) that

Mo = mse[m*(t; h3,,)] = 9B(hyp)® - (4.4)

Next consider letting A7 = (1 + €)h},,, where € may be positive or negative and represents
a possible relative error in the selection of the bandwidth. Substituting this in (4.3) and
using the same relationship that led to (4.4), produces an expression for mse that depends

on ¢ and will be denoted by M,. It is straightforward to obtain
M, = mse [m* (4 h2)] = B(hop)*[8/(1 + €) + (1 + )]
and then

Mo_ 9(1+6)
M. 8+(1+¢°°

(4.5)

Evaluation of this simple expression (4.5) at some typical values, such as ¢ = .10 and
.20, raises two pertinent points. First, if one selects a bandwidth within 10% of its optimal,
then the mse of m* will be within 4.5% of its minimum iralue, M. Second, it is better to
have h* < hj,, than to exceed A}, by the same amount. For example when ¢ = —.20 the
efficiency is 11.5% below optimum and yet at € = .20 it is almost 18% below.

Note that in general the ratio of the variance term to bias? term in the minimized
expression for mse is equal to 2p. It follows that the ratio M;/M,, similar to that derived
at (4.5), is 5(1 + €)/[4 + (1 + €)®] for the second-order kernel estimator. This tends to

indicate a degradation of 7 due to an error in assessing h,,: that is approximately half of

that occurring due to a comparable error in A*.



V. DISCUSSION

The better asymptotic rate for fourth-order kernels is widely recognized. However,
in the context of probability density estimation they have not been employed to a great
extent because they do not produce only non-negative estimates. In the regression setting
this is obviously not generally a flaw. In Section 3 specific illustrations show the potential
ad.va.ﬁtag_es of using a fourth-order kernel over the best second-order kernel. Clearly, the
estimator m* is not uniformly superior to 71, but the gains are substantial at points where
the unknown regression function is not approximately constant.

In Section 4 for the specific case of the Epanechnikov kernel the optimal bandwidth
ratio is found to be approximately 0.671. Using this value for ¢* in the kernel in (1.5),
reduces the difficulty of employing a fourth-order kernel to the same that exists for second-
order kernels. In either case a bandwidth must be selected. To the extent that this may be
accomplished without reliance upon subjective values, the question remains one of relative
stability. Finite sample experimentation with adaptive estimates of h and hA* will shed

more light upon the practical effectiveness of m* for nonparametric regression.
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