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ABSTRACT
Let x be a function defined on a finite interval [a,b], and suppose that yl""’yﬁ are
uncorrelated obsérvations with E(yj) = u(tj) and var(yj) = a? j=1,....n, where the tj are
lixed in [a,b]. We consider a method of estimating u by regression on a combination of low
order polynomial terms and trigonometric terms. Estimation based on trigonometric
functions alone is known to suffer from bias problems at the boundaries due to the periodic
nature of the fitted functions. We show that these boundary problems are alleviated by
adding low order polynomial terms. The utility of the method is illustrated with examples,

and asymptotic results show the estimators are competitive with other nonparametric

procedures.
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1. INTRODUCTION

The traditional approach to fitting regression models of uncertain form is to
regress on a suitable number of polynomial terms. Occasionally polynomial regression is
replaced by regression on sine and cosine terms, and it has even been noted (see e.g.,
Graybill (1976)) that it can be useful to include a few polynomial functions when
performing trigonometric regression analysis. In this paper we show that regression with
.both polynomial and trigonometric terms has certain practical and theoretical advantages
over either method separately. Our results demonstrate that regression analysis using a
combination of trigonometric functions and low order polynomials is a viable approach to
estimating unknown regression curves and is competitive with a number of widely studied
nonparametric regressibn techniques.

Consider the regression model with bivariate observations (tl,yl),...,(tn,yn)

satisfying
yi = u(ti) +¢,i=1..n, (1.1)

where the €; aTe zero mean, uncorrelated random errors having common variance 02, and g
is an unknown regression function that we wish to estimate. The t; are assumed to be
design points falling in some finite interval [a,b]. There are many effective methods of
estimating g in (1.1) including kernel, nearest neighbor, spline and smoothing spline
estimators. However, the methods invariably advocated in textbooks and undoubtedly
most widely used in practice are regression on a polynomial or trigonometric function basis.
There are several obvious reasons for this. First of all, least squares is simple to implement
ﬁsing available statistical software. In addition, statistics for inference, diagnostic analysis,
model selection, etc. are readily available. In contrast, most other nonparametric

regression methods generally require access to specialized code which may even require



modification to provide these capabilities.

Despite the popularity of trigonometric and polynomial regression estimators, the
two methods have certain shortcomings which seem to be common knowledge. Polynomial
regression is frequently subject to problems of multicollinearity. Although this difficulty
can be avoided by using orthogonal polynomials, the simplicity of the method is then lost.
Despite this problem, polynomial regression can be shown to attain the theoretical optimal
rate of convergence for mean square error in certain settings (see e.g. Rafajlowicz (1987),
Cox (1987)).

The problemé associated with trigonometric regression (TR) estimators stem
mainly from their behavior at the boundaries of [a,b]. Since trigonometric functions are
periodic, the estimator will also share this property, regardless of whether or not the true
regression curve is periodic. An unfortunate consequence of this fact is that a TR
estimator of 1 cannot be relied on to satisfactorily resolve the behavior of the regression
curve near the boundaries. This characteristic is manifested in slower rates of convergence
for trigonometric estimators than would be anticipated for competing estimators. For
example, mean squared error convergence rates for trigonometric series estimators can be

—2/3 (locally) for a twice differentiable, nonperiodic

as slow as n -/ 2 (globally) or n
regression function (c.f. Hall (1981,1983) and Eubank, Hart, and Speckman (1987)), rather
than the uniform optimal n—4/ 5 rate attained by both kernel and smoothing spline
estimators. In essence, the boundary behavior of a trigonometric series estimator
dominates its mean squared error. When a data driven method based on a mean squared
error estimate such as cross validation is used to choose the number of trigonometric

functions in the regression, the result is often an estimator involving too many terms that

undersmooths and exhibits anomalous wiggles.




In the next section we show that z; simple solution to difficulties associated with
TR estimators is to regress on a few low order polynomial terms as well as the
trigonometric functions. This provides a natural boundary modification to the TR
estimator that results in a method obtaining "proper" rates of convergence. Since the sine
and cosine functions are orthogonal for equally spaced data, one can anticipate fewer
collinearity difficulties than in polynomial regression. Two examples and a small
. simulation are also discussed which demonstrate the improvements that can be realized
from the proposed method. |

Sirrﬁlax results to those in Section 2 are given in Section 3 for estimators computed

using either sine or cosine functions alone. We then summarize our findings in Section 4.
2. POLYNOMIAL-TRIGONOMETRIC REGRESSION

Assume that model (1.1) holds and without loss of generality set a=0 and b=27.

To estimate u(t) we will use, for some integers d > 0 and A > 0, the estimator

d . A
() =by+ T bit! + X (ccosjt + ssinjt), (2.1)
0 =1 J j=1 J J '

J
coefficients in (2.1) are the minimizers of

where the bj’ ¢. and sj are obtained by regression on the y data. More specifically, the

d 5 A : 2
— E Bjti - X (Cjcosyci+ SjSIHJti)]

n
Z =B = E 2

i=1 J
with respect to the Bj’ j=0,...,d, and (Cj,Sj), j=1,...,A. When A = 0 in (2.1), this is taken
to mean that 4, is a polynomial estimator. We will hereafter refer to Ity as a polynomial

trigonometric regression (PTR) estimator.




There are two parameters in (2.1), d and A\. The parameter d will be fixed so that
a low order polynomial, say of degree two or three, is included in the regression, while A
will be allowed to vary. We will show that the polynomial terms give the PTR estimator
satisfactory bQundary behavior, and the parameter A, which defines the number of sine and
cosine terms, can be manipulated to give a desired amount of smoothing to the data. |
Smaller values of A correspond to smoother estimators, and larger values will provide
rougher estimates. In practice, one must select a suitable A to construct an estimator.

One approach is to use trial and error through examination of various fits. We will also
discuss the use of automated selection methods.

To see the motivation for Ly consider the case d = 2, and suppose that xin {1.1)
admits an absolutely continuous first derivative with a square integrable second derivative.
This is the standard situation in which O(n—4/ 5) is the best possible uniform mean squared

error convergence rate. If 4(0) = u(27) and p'(0) = #'(27), then a trigonometric regression
estimator alone achieves the "correct" rate. However, p typically does not satisfy such
boundary conditions, and in this case the trigonometric regression with no boundary
adjustment is far from optimal (see Eubank, Hart, and Speckman (1987)). However,
suppose q(t) is a quadratic polynomial such that q(27) — q(0) = p(27) — p(0) and ¢'(27) —
q'(0) = p'(27) — p'(0), and let

() = py(t) + a(t).
Clearly ys, is twice differentiable with uO(O) — hg(27) = py(0) — p(27) = 0. Thus p can be
written as a quadratic polynomial plus a function o that can be well approximated by sine
and cosine functions. The form of the proposed estimator is a direct consequence of this
fact. Heuristically, the trigonometric functions are expected to model Iy while the
polynomial part of the estimator will account for the boundary behavior of 4. We now

establish that this is what actually occurs.



2.1 ASYMPTOTIC PROPERTIES

We are interested in the global behavior of p ) 88 an estimator of y and therefore

confine our study to the (total) mean squared error or risk,

-1 2 2
Ry =1 3 B(ult) — iy (1)) (23)
We assume that the t, are distributed approximately as a sample from a distribution with

cdf W and continuous positive density w on [a,b]. Ifa < by <ty <. <ty <b, let W 1 be

the corresponding empirical cdf

k+1
where tp=a and b1 = b, and let 6n be the Kolmogorov—Smirnov distance between W

and W,

Wn(t) = k/n for b St <t

by = sup |W(t) =W (0)].

Concerning Rn(A) in (2.3) we are able to establish the following result.
Theorem 1. Assume that p has (d—1) absolutely continuous derivatives with u(d) square

integrable. Then
R () = 0O\ 29) + 632\ + d + 1)/n + O(5 A 20H), (2.4)

In the applications we have in mind, either the ti are the order statistics from a

sample of size n, or they are generated by the relation



In the first case, 6, = O(n_l/ 2loglog n) a.s. (see e.g. Cséfgé and Révész (1981)), while 5
= O(n_l) in the second. An immediate consequence is that we obtain the rate
O(n_2d/ (2d+~1)) for Rn(’\) by taking A proportional to nl/ (2d+1) in either case. Stone

—2d/(2d+1) is the best uniform rate for

(1982) and Speckman (1985) have shown that n
linear estimators over functions with the same smoothness properties as x. This rate is to
be compared to a rate of n—l/ 2 for unmodified trigonometric series estimators (c.f. Eubank,
Hart, and Speckman (1987)). |

The proof of Theorem 1 is instructive, and a sketch of the main steps will be given
here. Many of the details are relegated to the Appendix.
Proof. Let u= (”(tl)""’”(tn))" y= (yl,...,yn)', and let S, = denote the hat matrix for

regression of y on 1, t,...,td and {cosjt, sinjt; j=1,...,A}. Then

R_(A) = B(\) + 0%(2A + d + 1)/n

and

2 -1 2
B (A) =n “[(I-S5, ull,,
where || - ”121 denotes the Euclidean norm.

Now define p(t) to be the polynomial of degree d uniquely determined by the

conditions

and set



Then Ky satisfies the periodic boundary conditions
w0 = s @m), i = 1,0, (25)
! - .
and since p = (p(tl),...,p(tn)) is in the column span of S\, it follows that
2 _ -1 2
B2 = 07 (1- 8, nyl?,

'
where gy = (uO(tl),...,uO(tn)) . Further, if T, is the hat matrix for regression on {1,

cosjt, sinjt, j=1,...,A}, we have span(T/\n) C span(S/\n), hence

-1 2
B2 <n7H -, 2.

(29

Thus we need only establish that n_1|l(I -T /\n)”0”121 is O() to complete the proof.

As a result of Lemmas 3 and 1 in the Appendix,
-1/ 2 2 —2d+1
n I =T kg l2 < 8BEN) + 06 A724T),

where < o is a constant,

27
B = [ g0 = (Typg) )

and T g is the L2[0,1] projection of fg Onto the linear span of 1 and {sinjt, cosjt: j =
1,...,A}

It will be notationally convenient to formulate the remainder of the proof in terms



of complex exponentials rather than sines and cosines. In doing so we implicitly make use

of the well known fact that T o is equivalently the projection of }q onto {eikt; —A<k(
A} If g Is real.
An arbitrary function g in L2 has the Fourier series representation
00 .
uty= & ae* (2.6a)
k=—c0
where
-1 27 ikt ok
ay = ay (1) = (27) j(') p(t)e b,  (2.6b)
It follows that
A .
kt 5 =
(T/\,u)(t) = kE_/\ake1 . (2.
If 4 has d derivatives in L, repeated integration by parts on (2.6b) shows that
d—1 . . .
~1 1 y—j—1
SCEICURE) 90y - l2m)ig™
J =
3 d D QO
+ (k)% (4 9)). (2.8)
In particular, by (2.5)
2 —d d
ay (1) = (1) %, (4 ).
Using (2.7) with this result and Parseval's equality,
2 2
B*(A) = |§|>,\ |2y (i) |
24 % 2
QY o (i D)2 (29)
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=\ g Do,

and (2.4) is obtained. o

The proof of Theorem 1 makes it clear that the key to improving convergence of
trigonometric regression estimators is to obtain the right boundary behavior for Ko This
translates into faster convergence of the Fourier coefficients assuming p is sufficiently
smooth.

The conclusions of Theorem 1 are under the assumption that d is fixed and known,
while in practice a value for d must be chosen. It is, of course, difficult to tell by visual
inspection of data what boundary modifications are needed for a particular regression
curve. However, one of the nice properties of this estimator is that decisions of this nature
can be guided by examining the t—statistics for the polynomial coefficients. If a particular
polynomial coefficient is not statistically significant, this provides an indication that the

corresponding boundary adjustment is not necessary.
2.2 SELECTION OF A

In this section we discuss the use of data driven methods for selecting A, the
number of sine and cosine terms to be included in the estimator. Attention will be focused

on two methods for estimating the value of A that minimizes the loss

L (\)=n" Elwi) ()2 (2.10)

A numbér_ of procedures are currently available for estimating the minimizer of
(2.10); see, e.g., Rice (1984) and Li (1985,1987). These methods include cross—validation
(or PRESS), generalized cross—validation (GCV), and unbiased risk estimation (or,

equivalently, Mallow's Cp). The latter two techniques are particularly simple to utilize
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with p \°
Let

N f=]

RSS(N) = T (3 —my(1))%

i=1

Then the GCV and unbiased risk criteria for selecting A are

GCV()) = nRSS(A)/(n — 2A —d — 1)2 (2.11)
and

R(A) = 0 'RSS(A) + 02(2A + d + 1)/n, O (212)

respectively. Note that, apart from estimating o in (2.12), both criterion functions
require only the additional computation of the residual sum of squares. This quantity will
generally be available as output from any regression software package. The parameter 02
in (2.12) can be estimated using, for example, the error variance estimator proposed by
Gasser, Sroka and Steinmetz (1986).
To estimate the minimizer of (2.10) one can use the minimizer of either (2.11) or
(2.12). The optimality of this type of selection method is addressed in work by Li (1937).
Using his results we can conclude that if the € satisfy certain mild restrictions and if
infy nR_(A) - w, then
L (A)/inf L_(}) 01,
A

where A is a minimizer of either (2.11) or (2.12). We have been able to demonstrate this
result under certain conditions on the Fourier coefficients of x, but the proof is outside the

scope of this paper.
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2.3 EXAMPLES

In this section we illustrate a number of points from previous discussions through
two examples and a small scale simulation. To begin, we will examine the voltage drop
data from Montgomery and Peck (1982). These data consist of 41 readings on the battery
voltage drop in a guided missile motor at equally spaced time points during its flight. The
data are shown in Figure 1. The t variable represents time in seconds rescaled so that all
points fall in the interval [0,27].

A number of TR and quadratic (i.e. with d = 2) PTR estimators were fit to the
voltage drop data. The corresponding values of the GCV and unbiased risk criteria are
given in Table 1. The unbiased risk estimates were computed using the
Gasser—Sroka—Steinmetz estimator of 0—2. Notice that both criteria seem to point to the
use of 12 trigonometric functions (6 sines and 6 cosines) for TR while iﬁdicating that only 4
trigonometric functions (2 sines and 2 cosines) are needed for the PTR estimator.

Actually, there is very little difference between the loés estimates for A = 1 or 2 for the
PTR estimator. Since the t—statistics were also very small for the coefficients of the last
two sine and cosine terms, we elected to use A =1 rather than 2 in this case. The two
resulting fits using TR and PTR are shown in Figure 1.

Notice from Figure 1 the marked difference in the boundary behavior of the PTR
and TR estimators. The TR estimator also exhibits some anomalous wiggles near the peak
in the data which are not reflected in the PTR estimator. These wiggles disappear if fewer
terms are used in the TR estimator, thereby indicating that undersmoothing has occurred
and that our seléction criteria have pointed toward the use of too many terms. As noted in
the introduction, this difficulty can be attributed to properties of the loss for a TR
estimator of a nonperiodic regression curve.

Also shown in Figure 1 is a cross—validated cubic smoothing spline (SS) estimator
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of the underlying regression function. Note the similarity between the SS and PTR
estimators. This provides a further indication that the PTR estimator has adjusted
correctly at the boundaries.

We were also interested in the performance of the PTR estimator relative to
polynomial regression. We therefore fit polynomials of order one thfough eight to the data.
GCV indicated that a quartic polynomial provided the best fit. The resulting estimator is
shown in Figure 2 and seems to be quite comparable to the other fits to this data. Our
primary reason for comparing these estimators, however, was to demonstrate the difference
in the conditioning of the design matrices for the two cases. |

A commo.nly used index of the conditioning of a matrix is the ratio of its smallest
and largest singular values. We computed these indices for a number of comparable cases
for the quadratic PTR and polynomial regression estimators. The ratios of these index
numbers are given in Table 2. Thus, for example, the second row of Table 2 corresponds to
the quartic polynomial estimator and the quadratic PTR estimator using the first sine and
cosine functions. The ratio of index numbers for this case is 2.73 indicating that
collinearity is roughly three times worse for polynomial regression than it is for PTR. The
ratios grow large quite rapidly supporting our belief that collinearity has been significantly
reduced through the use of PTR.

To further investigate the PTR estimator we éonducted a small simulation
patterned after the voltage drop example. For this purpose we used the model fit to the
voltage drop data by Montgomery and Peck (1982). They found the data to be well
modeled by a cubic spline with knots at 6.5 and 13 seconds; the knots correspond roughly
to course changes in the missile. We therefore simulated from model (1.1) with n = 41 and
u taken to be the- Montgomery and Peck cubic spline fit to the voltage drop data. The
random errors were simulated from a normal distribution with variance 02 = .07. This
value for o coincides with the estimate of the error variance for the Montgomery and Peck

fit.
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The basic simulation experiment was repeated a total of 100 times. For each of
the 100 data sets, TR, quadratic PTR and cubic SS estimators were computed with
optimized smoothing parameters for each estimator derived from GCV. To assess the
performance of the three estimators we computed the squared error loss, as defined in
(2.10), for each estimator over the 100 data sets. The results are summarized in Table 3.
The PTR estimator has the smallest average loss followed closely by the SS estimator.

We analyzed the data from our simulation as a randomized block design with 100
blocks and three treatment levels corresponding to the three estimators used in the study.
The Friedman test indicated a highly significant treatment effect. Follow up treatmeﬁt
comparisons using the Wilcoxon signed rank statistic revealed all three treatments to be
significantly different. The largest P—value was .0046 for the comparison involving
smoothing splines and PTR estimators.

While the improvement of the PTR and SS estimators over the TR estimator is no
surprise, we were somewhat surprised at the PTR estimator's performance relative to
smoothing splines. Subsequent simulations using other functions have given similar results,
however, so this should not be regarded as a fluke. Our limited experience with the PTR
estimator suggests that it performs similarly to a smoothing spline estimator provided the
function does not change too rapidly. Sharp peaks in a regression function that are
reflected by the data will tend to cause a ringing or Gibb's type phenomenon away from
the peak that will not be present with smoothing splines. We should also note that all our
investigations have been in the context of an equally spaced design. The variable
bandwidth nature of smoothing splines (Silverman (1984)) may pay performa.nce‘dividends
for unequally spaced data.

Our secdnd example extends the application of PTR curve fitting to an analysis of
covariance problem. The data are from a Rothamsted mildew control experiment and are
found in Draper and Guttman (1980). In the experiment, the effect on yield of four mildew

control spray applications were tested: none, early spring, late spring and repeated. The
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experiment was arranged as a single column of 38 plots in 9 blocks of 4 plots each with an
extra plot on each end. When analyzed as a conventional block design, there is strong
evidence of block effect. Using nonparametric techniques, Green, Jennison, and Seheult

(1985) and Speckman (1986) analyzed these data assuming an additive model of the form
y; = xiB+ (i) + €. (2.13)

Here xi'ﬂ represents the treatment effect, and u(t) for t =i = 0,...,37 is the plot effect.

The analysis of Green et. al. (1985) and their graphs strongly suggest that even
blocks of only four plots each are too large to assume homogeneous error variances. Their
analysis results in a decomposition of variability into treatrhent effects and a spatial effect
corresponding to u(t) for which the residuals are satisfactory. It is also clear from their
analysis that no simple low order polynomial model (e.g. linear or quadratic) for spatial
effect will be adequate.

We analyzed these data with the PTR approach of modeling x(t) as a function of
1, t, t2, and {cosjt, sinjt: j = 1,...,8}. In the spirit of the original design,'the two end plots
were omitted from the analysis, and we took t; = 2x(i — 1)/36 to scale the plot position to
the interval [0,27]. The choice A = 8 here was the minimizer of GCV on the complete
model. With 14 degrees of freedom for error, MSE = .0081 and the test for treatment
effect had F = 71.0 on 3 and 14 degrees of freedom, results close to those obtained by
Green et. al. (1985) and Speckman (1986). In contrast, the standard analysis for a block
design yielded MSE = .0363 on 24 degrees of freedom and F = 28.8 for treatment effect.
Although both analyses show a significant treatment effect, the large reduction in MSE
from the PTR fit could be important.

One notable feature of PTR is that conventional F—statistics are obtained. This is
in contrast to other nonparametric methods such as in Green et. al. (1985) and Speckman.

(1986) which are not based on projections. The second feature is that this analysis is very
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simple to perform using a statistical package such as SAS. Both of the other approaches
cited above require specialized software for their implementation.

One could of course account for the additive effect of plot position by modeling
u(t) as a polynomial of unusually high degree. For these data, it appears that GCV
chooses a polynomial of degree 14. Without constructing orthogonal polynomials, this
approach can have difficulties. Using MINITAB as configured for an IBM 4381 computer,
for example, we could not fit a polynomial of degree larger than eight. SAS apparently
works with polynomia.ls of degree up to 15, although there are unusual statistics reported
(e.g. 0 degrees of freedom for some parameter estimates). In this situation, however, the
trigonometric functions are orthogonal, so neither program has any problem with fitting
models with even as many as 30 terms.

An analysis requiring such high order fits is admittedly unusual, and model (2.13)
may be somewhat suspect if the ﬁtted error term is too small. In our view, however, this
kind of application can be worthwhile if only for its diagnostic value. In the context of
field trials, one could try such a technique when for some reason the blocks failed to be

homogeneous. Moreover, F—tests can be used to compare models under this approach.
3. OTHER ESTIMATORS

In this section we examine the asymptotic behavior of two alternatives to the PTR
estimator based on either the sine or cosine functions alone. Throughout this section the
t;'s will be assumed to lie in [0,].

The standard motivation for the TR estimator of Section 2 is the Lq[0,27]
convergence of the Fourier series (2.5). Similar results could be obtained based on other
series expansions for 4 (see e.g. Rafajlowicz (1987)). If we consider functions p € L,[0,7],
either sines or cosines alone form an orthonormal basis, and the following expansions hold

in L2:
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[¢ ) [¢ )
p(t) = % Cjcosjt = Iz Sjsinjt,

j=0 j=1
where
-1 o7
Co=Colw) =7 j;) p(t)dt,
g
C;=Cylw) = (2/m) [ wlt)cositat, 21,
J J 0
and

. T
5; = 5,(1) = (2/) j(') p(t)sinjtdt, j2

If p is differentiable, integration by parts yields

and (3.1)

with

B(k) = (2/m[(0) — (-1 7).

As seen in the proof of Theorem 1, rates of decay of the Fourier coefficients for p
are directly related to convergence rates for trigonometric estimators. Using (3.1)

repeatedly, we see that if p is sufficiently differentiable,

and
Si(8) = 7 B + 58w ' (3.3)
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Then by analyzing expressions similar to (2.9) and using (3.2)—(3.3), one can show that the
sine series has O()\_l) bias if x' exists but ‘53.(/;) # 0, and the cosine series has O()\—?’) bias
if 4" exists but ‘53(;1') # 0. This leads to convergence rates of only O(h_l/ 2) and O(n-3/ 4)
in the two cases (c.f. Hall (1981,1983) and Eubank, Hart, and Speckman (1987)). However,
if appropriate boundary modifications can be made so that the ‘53 terms vanish, higher
rates of convergence are possible.

Our strategy in making boundary adjustments is the same here as in Section 2. -
We let p be a polynomial of degree d such that ,uo(t) = p(t) — p(t) satisfies suitable

boundary conditions. In particular, for the sine series, let d be odd and choose p(t) so that

- __ | — | —_— — (d_l) _ (d—l) _ _ n
#p(0) = pg(m) = p5(0) = pg(m) =..= py~ /() = py— ~(7) = 0. Then B(ng) = B(u)
=..= ﬂ(ugd—l)) = 0. With the cosine series, d is even and p is chosen to satisfy u[')(O) =
,u(')(n') =..= ,u(()d_l)(o) = ,u[()d—l)(ﬂ) = 0 so that ﬁ}(,u[')) =.= %(uéd—l)) = 0. The proof

of Theorem 1 can then be adapted to obtain the following result.

Theorem 2. Suppose the ti are generated as in Theorem 1 for a positive density w on [0,7],
and assume that p has (m—1) absolutely continuous derivatives with u(m) € L2[0,7r].

(i) Let d be odd and define p )\g b0 be the estimator of x obtained by regression on 1, t,...,

td and sinjt, j = 1,...,A. Then

N =07 E Bl -y ()

=00 2™ 4 o®(A+d+1)/n+ O(&nA_2m+1)

Rl

form=dord + 1.

(ii) Let d be even and define p e O be the estimator of x obtained by regression on 1, t,...,

td and cosjt, j = 1,...,A. Then

R (A= n_l‘ElE[u(ti) - /{)‘c(ti)]g
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= O(X2™) 1 6%\ + d + 1)/n + O(5 A 2MF1)
form=dord+ 1.

In practice, one would probably want to use either u As with a linear polynomial (d
=1)orp )\ With a quadratic polynomial (d = 2). As aresult of Theorem 2, p \g With d =
1 obtains the uniform optimal rates O(n_2/ 3) and O(n—4/ 5) for 4’ or x" in L, by taking A
= O(n1/3) or A = O(n1/5) respectively. Similarly, if " or 4'" is in Lo, ”.,\c with d = 2
obtains the rates O(n /) and 0(n%/7) by taking A = 0(n}/®) and A = 0(a}/7)
respectively. Thus the sine series linear PTR might be more suitable for curves thought to
be relatively "rough", and the cosine series quadratic PTR might be better for curves
thought to be relatively "smooth".

We also included the cosine regression (CR) and quadratic polynomial—cosine
regression (PCR) estimators in our simulation example of Section 2.3. The results for the
loss are reported in Table 3. Wilcoxon signed rank tests indicate that CR is not
significantly better than TR (P = .48) but is significantly worse than SS, PCR or PTR
(the largest P—value being less than 10—4). On the other hand, PCR is not found to be
significantly different, at the .05 level, from either PTR or SS.

We have not as yet had sufficient experience with x v Bye and u s O be able to
recommend one over the other. For unmodified trigonometric series estimators, Eubank,
Hart, and Speckman (1987) found that cosines had preferable asymptot'ics. However all
three PTR type estimators achieve the same rates of convergence, so convergence rates do

not provide a discriminating factor in this instance.
4. SUMMARY AND CONCLUSIONS

In this paper we have examined the properties of a simple alternative to
trigonometric or polynomial regression obtained by essentially combining the two methods.

The PTR procédure retains the implementational simplicity of the two methods while
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appeaﬂng to modulate some of their associated difficulties. In particular, convergence
rates have been derived for the estimator which show it performs comparably to other
nonparametric methods such as kernel or smoothing spline estimators and outperforms
what would be expected from trigonometric regression alone. Simulation results indicate
these conclusions cé,rry over to small samples.

The PTR estimator has a number of advantageous qualities deriving from its
connection with ordinary linear regression methodology. Foremost among these is that it
can be computed using standard statistical software without the requirement of special
code. Consequently the estimator seems ideal for use in situations where a simple, easily
computed smoother is required. One illustration of this was provided by the analysis of
covariance example in Section 2.3. As another potential application area we mention
additive nonparametric regression methods such as those discussed by Friedman and
Stuetzle (1981), Breiman and Friedman (1985), and Stone (1985).

Another benefit of the linear regression nature of PTR is that the choice of the
correct degree of smoothing is really a variable selection problem concerning the proper -
number of polynomial, sine and cosine terms to be employed. Thus such determinations
can be made usiﬁg any of a number of familiar methods (c.f. the discussion in Section 2.2).
Tools such as t—statistics for the coefficient estimates can also be used to aid in this
process.

Cleveland (1979) has noted the usefulness of robust methods for scatterplot
smoothing. We note in passing that PTR can be easily adapted for this purpose by
interfacing the estimator with any of a number of possible robust regression routines.

In summary, the PTR estimator provides a simple method of conducting
nonparametric régression that in many cases should perform comparably to more
sophisticated procedures. The method and its variants therefore appear to provide useful

additions to the arsenal of nonparametric regression estimators.
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APPENDIX

We use the following notation in proving Theorem 1. Let 0 < & < f < w be

constants such that & < w(t) < 3, t € [0,27]. Denote the ordinary L,[0,27] and the weighted
Lz(w) norms by

27
£(t)2dt

MF=4

and

27
Il = [t w(oyde

respectively.
Lemma 1. Let V be an arbitrary subspace of L,[0,27], and let P and PW denote projection

onto V with respect to ||-[| and [|- || respectively. If f € L,[0,27], then

() II~P )2 <8I~ P>
(@) (P =PI < 4 1= P I, where o = (8/) -1

Proof. The first assertion follows immediately from the inequalities
2 2 2 2 2
ol|(1=P)|I* < all(1 =P )I% < (T —P )2 < [I(1-P)EI2 < AI(T - P)fI*.
Moreover, these inequalities imply that
‘ 2 2
[(T=P " < (8/a)II(T —P)[|". (A1)

Because ow eV,
‘ 2 2 2
[T =P )" = [(T=P)|" + [I(P =P I,
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and so (ii) follows from (A.1).
Lemma 2. Let T, and T A denote, respectively, the L2(w) and L2[0,2 7] projection
operators for the linear span of 1 and {sinjt, cosjt: j=1,...,A}. Then if f is absolutely

continuous, {(0) = {(27), and f' € L,

I = (T D)'ll € (1 + DIF = (T D'l

Proof. Let v
(T, H)(t) = 5 b ekt
AW Ke—) kA
and
A .
kt
(T\Ht)= & ae™h
We then have |
A
2 2 2
||(T,\f)' - (T,\wf)'“ = kE—,\k |ak“bk,\'
A
2 2

k=A

2 2
= A ||(T,\ - T,\w)f“

2.2 2
< 2P -T i

where the last inequality is by (ii) of Lemma 1. Under the assumptions on f,

e ¢]
12 = Kla)? <
k

=—0w

Thus



) ) 2. 2 )
AMNIT-=THI" < B k%ay |7 = [If' = (T, )|
V2 s A

and an application of the triangle inequality completes the proof.

Lemma 3.

27 .
0 =Ty gl < S, v = (T oo (®)12w(t) + 08 A724F ).

Proof. To begin, note that

2= Tl <57 ) = (T )it

27
= [ I -(T k) (O12AW (1) (A.2)

For any function f with a continuous derivative, integration by parts (cf. Billingsley (1936),

Theorem 18.4) and the Cauchy—Schwarz inequality give the bound

27 2r
f2 — [
[ Twaw,e) - [ waw()|
27
= [2f  HOIOW,(6) - Wl

2% .
< 25n_/(') [£(t)f'(t) | dt

< 26 [/

- To prove the lemma, we apply this inequality to (A.2) with f(t) = p,(t) — (T/\Wuo)(t) and
note that it suffices to show that [|f|| = O(/\_d) and [[f']| = O(/\_d+1).
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—d
I(I=T) el = O(AT).
An application of Lemma 2 yields
d 2 .d 9
I — Ty gll” € (1 + DIG(T— T gl
2 '\ ,2
=1+7)2  Klals)l
|k|>A k™0

= 02442y

where the last bound is computed as in (2.9) again, and the proof is complete.
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Table 1. GCV and Unbiased Risk Estimates for TR and PTR Estimators

_ o b

© 00 N O v ke W N

j—t
o

TR

6.731
235
.149
139
122
103
.090
.097
114
127
154

y

=

6.410
212
132
119
105
.092
.086

.090 -

.097
101
.108



Table 2. Collinearity Comparison of PTR and Polynomial Regression

Number of Terms in the Estimator Collinearitv Index Ratio
3 1
3] 2.73
7 8.06
9 1132

Method

TR
SS
PTR
CR
PCR

Table 3. Summary Statistics for the Loss

Mean Standard Deviation
.0325 .0095
.0210 .0092
.0197 0127
.0322 .0116
0204 .0129
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" FIGURE 2. PTR AND POLYNOMIAL FITS TO
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