SENSITIVITY OF POSTERIOR MEAN TO UNIMOBILITY
PRESERVING CONTAMINATIONS

S. Sivaganesan
Southern Methodist University
Dallas, Texas 75275

SMU/DS/TR-208

Department of Statistical Sciences
Southern Methodist University
Dallas, Texas 75275




SENSITIVITY OF POSTERICR MEAN TO UNIMODALITY
PRESERVING CONTAMINATICNS

S. Sivaganesan
Received:
ABSTRACT

The sensitivity or robustness of postericr mean to uncertainties in
the specification of the prior distribution is considered. Wwe model
the uncertainty in an elicited prior mng, which we assume unimocdal,
by means of a es-contaminated class of priors T = {7 = (1-€) 7g + €q
G € J} where ¢ is the amount of uncertainty in To anc¢ < is the set
of all ccntaminations g which make the resulting prior m = {1-eg)ng +
€q unimocdal with the same mcde as that of =g. Then, we find tre
range of the posterior mean as prior varies over this class, and

give an example involving normal distritution.

INTRODUCTICN

In carrying out a Bayesian analysis about an urnknown parameter 6,
one is required to quantify the prior infcormaticon in the form of a
prior distribution. 1In practice, the avazilable prior information,
however valuable it may be, is typically vague. Due to this and the
natural limitations on time and other resources it is virtually
impossible to accurately quantify the prior information in the forn
of a single prior distribution. Thus, after arriving at a single
prior, mp, through a carefully carried out process of prior

elicitation, one
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would usually feel somewhat uncertain concerning the validity of mg
in that any other prior "realistically close" to mwg wWould alsc seem
equally plausible. Therefore, only those statistical procedures
which are insensitive or robust with respect to the changes in prior
distribution within the class of all priors " =2alistically close"

to mg would be desirable. This view, now known as the Robust
Bayesian View, has been espousea by many authors at least since

Good [9]. A detailed account of its implications along with a review
is given in Berger [2]. Other related references are Dempster [8],

Rubin [12], Kadane and Chuang [11], Hill [10] and Berger [3].

In achering to the robust BRayesian view, two steps become
fundamental to any investigation of Bayesian robustness. 0One is to
determine the "right" class T which ccnsists of the priors that
remain plausible after the elicitation of mg, and the cther is tc
find the ranges of the relevant posterior criteria. Then, if these
ranges are reasonably small, one can be satisfied that robustness
occurs with respect to misspecification of prior distribution.
Otherwise, one would conclude that rcbustness is not gresent with
respect tc I'. For recommendations on how one may rroceed in the

latter case, see Berger [2].

An attractive way of specifying the class of cpricrs close to mg

is by e-contamination class given by
{r = (1-e)m + eq : q € Q}

where €, (C < £ < 1), is the amount of error or uncertainty deemed
possible in wg, anc QG is a set of probability distributions
representing all plausible contaminations of mg. When € is a
real-valued parameter ancd wg is unimodal with mode 6p, as will be
assumed throughout this paper, an interesting chcice for Q is one
consisting of all contaminations q (+) for which the resulting prior
m = (1-e)rg *+ €q is also unimodal with the same mode 6g. The

resulting class of priors, denoted herein after by T is very



arpealing, from subjective viewpoint, for two reasons. First, any
prior which remains plausible after the elicitation process would
naturally be close to wg and unimodal (with mode 8;) and hence to be
included in I'. Second, most priors in T would typically be
plausible after the elicitation of mg. Thus, while consisting all
plausible priors, this class also disallows most of the (apiriori)

unrealistic priors.

In this paper, we model the uncertainty in wg by the class T,
and find the range of the posterior mean (a commonly used Bayesian
estimator) as the prior varies over I'. Indeed, what class is
appropriate in a given situation is almost entirely a subjective
cdecision. However the class T can be a very realistic model for

many situations.

Much cf the early wcrk related tc this pagzer involved classes
of conjugate pricrs and classes ¢f pricrs specified by mcments, both
of which are nct very sensible in view cf the nature of the
difficulties assceiated with pricr elicitation. A discussion of
this and cther mcre sensible priors is given in Zerger [2]. Recent
work involving sensible classes include De Eobertis and Hartigan
[7:,
Goel [£] and Sivaganesan [13]. Most closely related to this paper

(D

erger and Eerliner [L], Rerger and O'Hagan {553, 2erliner and

is that of Berger and Berliner [4], where they sclve what is known

as the ML-II problem for the class T considered in this paper.

2. Notations

iie cbserve a random variable X which has density f(x | 8) where
8 is unknown real valued parameter. For an observed x, we will
denote the likelihood f(x | 6), a function of &, by fy(8) and assume
that 1/f4(8) is convex. As one consequence, f,(8) is unimodal with
uniqgue nocde, which we denote by g. As indicated earlier, we
also assume that the (base) prior mg is unimodal, with unique mode

€y, and formally define the class T as



s {m=(1-e) g + €qa : qe Q} (2.1)
where
Q = {probability distritutions g(-) such that
m = (1-g)mg + €q is unimodal with (not
necessarily unique) mode 8g, and (2.2)

m(6g) S mgleg)}

3. Preliminaries
The posterior mean with respect to e-contaminated prior wm = (1-g)mg

+ €q 1s given by
§T(x) = A(X)EC(x) + (1-x(x))59(x) (3.1)

ﬂf\
where § "V (x), §9(x) are the postericr means with respect

to the griors mny and g respectively, and

(1-¢) m(x | m) (2.2)

/

A(x) =
(1-e)m(x | mg) + € m(x | q)

here m(x [ =g), m(x | q) are the marginél distributions of X with
respeet to mg and . Now, we introduce the notation (used as a
generic notation) T to denote any prior, in I, which is

equivalernt to (1-g)my everywhere except in some interval where it is

a constant. That is, m € T is of the form

= K 6 €8
m(8) = ¥ (-e)mg () 6 ¢ 3 (3.3)

for some interval B and an appropriate ccnstant K. The value of the
constant K and the length of the interval B are determined by the

conditions that m is unimodal with mode 8g, and

J(K - (1-e)mg(s))de = e . (3.4)
B

We now give the specific form of I for different invervals 3.
When B C (8g, =), writing B = (8, w(g)) for some & > 80,

the corresponding 7 is



- (1-e)mg(e) if 9 e[8, w(s)]
n(g) =
(1-e)ng(e) otherwise

where w(8) > 8 is defined implicitly by

w(8)
(1-e)mg(8) (w(B) - 8) - (1-g) [ my(t)dt = e.
8

When 6g is the left end-point of the interval B, 7 is of the

form

- (1-p)mg(eq) if &€ [8g, v(p)]
m(g) =
(1-e)mg(e) ctherwise

for some O £ p s €, where v(g) > 8g is defined implicitely by

v{p)
(1-p)wg(8g) (v(pl)-8g) - (1-g) J"O(E)di = €,

%0

When 8p is an intericr pcint cf B, 7 is cf the fornm

- (1~e)ng(8g) 9 ¢ [p', 8"]
m(8) =
(1-e)ng(8) otherwise

where 8' < 6" are solutions to the equaticn
e"
(1~g)mg(eg) (8"-8") - (i-g¢) Jvo(e)de = €.
GV

The forms of = when B Cl-=, eO] can be similarly defined by
using the condition (3.3). Now, let TC T be given by

I = {m=(1-e) mg + €q ¢ I': 7 is of the form w}.



4, Range of the Posterior Mean

4,1 Statement of the Result and Exanrle

In the following theorem, we show that in order to find the sup and
inf of 6™(x) (as given in (3.1)) as = varies cover I', (as given in
(2.1)), it is sufficient to do the maximization and minimization
over the sub-class T of I'. The latter can be done by means of

a simple numerical calculation due to the simplicity of the form of

7 (as given in (3.3)).

THEOREM Let I, T be as in (2.1) and (2.2). If 1/f,(9) is

convex, then

m ™

sug § (x) = sup § (x) (4.1)
TET TE T
and
inf §7(x) = inf §"(x) . (b.2)
T€ T TE€T

The proof of the theorem is given in section 4.2.

When m €T, §T(x) can be written, using (3.1) and

t £ () [k - (1-€) vo(t)]dt
(4.3)

/
B
a + é fx(t) [k - (1-€) ﬁo(t)]dt

where a = (1-e)m(x | mg)/m(x | ¥). For example, when the interval B

is of the form [e8, w(8)] for some €& > 8y, 6"(x) can be written as

L w(8)
as “(x) + (1-g) ef t fx(t) [“o(e) - ﬂo(t)]dt
w(g) :
a + (1—5)6{ fx(t) [no(e) - no(t)]dt

. (4.4)




Similar expressions for di(x) can be written for the

other cases of B.
EXAMPLE

Suppose X | 8 -~ N(g,02), g = N(8&g, 12) and o, 1 are known. Then

2
1-e 1 (x-8,)
a = 2 2 exp{-— > 2}1
e V{2n(c"+17)} 2 (g+1%)
and
T 2 2
s 9(x) = o, .+ = x .
z 2
0+t o +T

The range of §"(x) as 7 varies cver T can be founcd by maximizing

(and minimizing) 6;(x) over the sub-class T.
This can be done ty maximizing (and minimizing) 5;(x)

in (&,3) over all possible B. ‘low, fincding supé™(x) and

inf§7(x) can be numerically carried out in view cof the fact that
5;(X) can be treated as a functicn of cne variable,

as is clear from (4.4). The ranges of 8§™(x) for the specific case
where €63 = 0, ¢ =1 =1 and € = 0.1 were computed for various

values of x. These are displayed in Figure 1.

5. Procof of the Theorem

For convenience, we let 6 > 6 and prove (4.1) of the theorem.

The proof of (4.2) is similar.

For & > 8g, we now define

w(e)
W(g) = fx(w(e)) (w(e)-8) - [ fx(t)dt . (5.1)
8
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It is shown in Lemma 4.1 of Berger and Berliner (1986) that, if

W(6g) 2 0 ( V(e) in their paper is the same as W(6p) here) then W(8) = 0

has a unique solution 8%, 85 S 8% < 5. It is then clear that w(g¥) > 5. In
the following we consider the case W(8p) 2 0. The other case can be treated

similarly. Before we begin the proof of (4.1), we prove some lemmas,
LEMMA 1

Let €x be such that f,(8x) = f,(w(8%)), 6 €(6%,9x) and a > 8

be such that fy(a)=fy,(w(6)). Suppose that be(f,a), and function

g,(9) satisfies

1. gq1(8) is non-decreasing in (b,w(8))

2. Mg (sy4e = 0.
1
b
Then,
Jw(S)
fx (9)81(9)d5 < ag1(b)
o)
where o = fw(e)fx(e)ds - (W(B)-B)F (W ().
o]
PRCCF

This proof follows the same lines as the proof of Lemma 4.2 cf
Eerger and Berliner [4]. Since g4(8) is ncn-decreasing in
(b,w(8)),
g
g,(8) = K, - l h(£)dg for 8e(b,w(8)).

where h(g) iIs some non-negative functicn. Then,



w(e)
J (w(8)=E)h(E)dE

and

Jw(é) w(g) w(g) w(g)
g.(8)f_(8)de = Ky J f (e)de - J h(g) J f (8)dedE.
b 1 X b X b £ X

The condition (4.12) of the Lemma 4.2 of Berger and Berliner [4],

namely

fx(e)ds 2 (w(s) - E)fx(w(e)),

holds for ¢ £ £ < w(€). Hence,

Jw(§> [w(é)
£.(8)f (e)ds € K, | f (9)de
b 1 X 1 b X
w(e)
- £(w(e)) J (w(8) - £)h(E)eg
b
Jw(é)
= K1_b fx(e)de - K1(w(e) - b)fx(w(a))
= K]Q
w(8) - -
where o = [ fx(e)de) - (w(e) - b)fxw(e)) > 0. This proves the
b

lemma since Ky = gq(b).



LEMMA 2

Suppose that 5, a and b are as in Lemma 1. Let the function
g(e) be such that |

1. g(8) is non-inecreasing in (b,w,(8))

2. g(8) 20 in (b,w(8))°

3. Jfg(e)ds = 0.

Then
J £,(8)g(8)de < ag(b).
PRCOF:
We write
; w(8)
J £ _(8)g(s)ds = J £ (e)g(e)ds + J _ f_(8)g(s)ds.
% b X (b,w(3)1% X
Let
w(g)
J g(8)ds = K = - J . _g(8)ae
b [b,w(e)] :
Noew, [ - e fx(e)g(e)de< (-K)fx(w(é)). Furthermore,
[b,w(8)]
w(8) w(8)
J fx(e)g(e)de = J fx(e) (g(e) - ———:5———)de
b b (w(8)-b)
w(e)
b X J £, (8)de
(w(g)-b) b
Jw(é> w(8)
) « |
= fx(e)g1(e)de + fx(e)de

b (w(8)-b) b




K

Jw(é)
(w(8)~-b) b

S ag,(b) + £, (8)ds,
K
(w(8)-b)

where 81(6) = g(6) - and the last step in the above follows

from Lemma 1. Hence,

| } ¢ Jw(é)
J £ (8)g(8)de < -Kf (w(g)) + ——— f (e8)de
(w(e)=-b) b
+ ag1(b)
I S 1 D S—
(w(8)-b) (w(8)-b)
= ag(b).

LEMMA 3

Suppose 1/f¢(8) is convex. Let ¥ be the class of sub-protability

measures defined by
M o= {u(e): j L(d8) = o J £,(8)u(de) = ool
where C £ ¢1 £ 1 and co = ¢1fy(8) for some B > 8.
Suppose that I C(3,») is an interval containing 8, and
u1(*), uo(+)eM are such that
p1(I)=C1=u2(Ic).

- Then

,fefx(e)u1(de) 2 [efx(e)ug(de).



PROCF:

Since discrete measures form a dense set, it is sufficient to prove
the lemma for the case where pj(-) and ps(+) are discrete measures

in M. Suppose, therefore, that uj(+) and us(+) are of the form

m n

where e(i)el and eielc. Without loss of generality, we may assume
that 8; 2 6. For, otherwise, we could always replace any 8 < 8 by
two appropriate point-masses in [8,»). We now use induction on n and

then on m tc prove

where aj = fy(8;) and bj = fx(e(i)). vhenn=mn-= 2,
@) * ap = 89 + B2 anc ajaj*apaz = 8197 + Bzbz.
It is possible to find @y > O,as > C such that

e *tap = By
and
a1'31 + Qéaz = 81Dy (5.32)
Similarly, there exists a? > 0, ag > 0 such that
a] + a2 = B2
and
a}'a1 + 0.2“82 = 82b2. (5.4)

Now,

a1€yay + ax8sas < gy8(1)b,



and

a181a1 + ap8pap < 828(2)p;
(since, by Lemma 4, [ 68f,(8)u(de) is maximized, subject to [ u(ds)
= c1 and J fy(6)u(de) = cp, when u(-) is a point-mass at some 9 >
6). Hence,

(a{ + a?)e1a1 + (aé + 05)9232 < 819(1)b1 + 826(2)b2 (5.5)

Now, from the equaticns (5.3) and (5.4) we have

(af + afday + (a3 + addaz = 81b; + B2ba
= (81+82)5, say.
But,
@1y + apa@s = B84bg + Eobp = (B1+82)B.
Hence,

Thus, from (5.5)
a181aq + apbpan < 318(1)b1 + 328(2)b2 .

Thus, (5.2) is true for n=m = 2., Suppose that (5.2) is true for

n=%kancm= 2. Let



Choose 81,82 such that max {64,682} < min {6(1),8(2)} (or min{ey,65}
> max{8(1),8(2)}). 1If aja; + aras = (aj+apl)dip and fyu(Bo) =
g1 (81 < 812 < 62), then

@181 + a2823p < (a1+ap)B123)2.

Ncw,
k+1 k+1
v = a
.*,aieiai < (a1+a2)v12a12 +.23aieiai (5.6)
1= 1=
Also,
(g + ap) + o eg+1 = 87 + 8>
(C'.] + a2)§12 + e, C+18y+] = 81bs + Ezbg.

Thus, by the assumption that (5.2) is true for n=k,

+
- - (1) (2)
e L ; a,6,2, < 8,8 ‘b, + B8 "D,
Hence, by (5.6),(5.2) is true for m=2,n=k+1. So, (5.2) is true for
m=2,nz22. Now, induction on m, similarly carried out, leads to

the proof of (5.2) and hence the lenmma.

LEMMA 4 -
If 1/f4(8) is convex, then sup fefy(8)u(de) is attained,
subject to the conditicns fu(de) = c¢q and ffy(8)u(de) = cp, by a

point-mass measure.




Proof:

Without loss of generality we may assume cj
convex hull generated by the set U

= 1. Let V be the

= {(f4(8), 8f4(8)): 8€ R}. Now,
the lemma is a simple consequence of the fact that all the boundary
points of V are elements of U.

PROOF CF (4.1)

Let 0 < m < supy r m(x [ m) and let Iy be given dy

Tm = (n€7 : m(x|[m) = m}

Then, it is sufficient to prove that

sup &§(x) = 3up 8 (x).
r mr\?

D
m r

Now there exists € > &* such that

S £4(8) ®(8)de = =

where € T is given by

- (1-¢) 7,(3) if 6 [8, W(B)]
n(g) =

(1-¢) vo(e) otherwise .

We now note that, to prove (5.7), it is sufficient to prove

J afy(8)(a(8) - ®(e))de £ O

for all n € Tp.

Let w€T and define a functicn g(8) by



g(6) = =(8) ~ 7(8).

Then, g(8) is non-increasing in (8, w(8)), and

[}
Q

J g(e)ds

#
(@]

jfx(e)g(e)de
Let b be that number for which

g(e) >0 for & (8,b)

and

w
[§o3]

Then g(6) < 0 in I = (b,w(E)) and, when b we have, by
letting

uy (ds) = g(3)de in IC

[ X ]

po(de) = [g(8)] de ir

and using Lemma 3, that

! er (8)s(e)de = j 3£, (8)ur (¢0) - | 37, (9)ua(da) < 0.
Now, let b < @ (and hence 8* < § < 5). First, we note
that if £4(8) < f (w(E)) then b > a (where a is as in
Lemma 1, that is a < 8 and fy(a) < fy(w(8)) ); for

otherwise, using Lemma 2,
j £.(0)g(6)de < ag(b) = 0.

The rest of the proof for the case fy(8) > fx(w(é)).‘
g < o follows almost the same line, so we only consider

the case where f,(3) < f,(w(8)), & < 6.



Since ffy(8)g(8)ds = 0, there exists be(b’, w(8)) such
that

w(8) o w(8)

J f (8)g(8)ds = £ (B) J 2(8)ds
X X

b b

where b’ > 8 is such that fyu(b') = fy(b). Also,

b b
J fx(e)g(e)de = fx(g) J g(e)de for some ae(a,b).

- -

Let 3'€(v',w(8)) such that fy(3) = fy(3'). Then

-t

< b. Now, there exists tge(8,3') such that

I’E' [E'
Jb fx(e)g(e)de = £ (t) . g(a)de.
Letting
t
fo £.(8)s(2)de -
n(t) = , B8 <t < W),
IE g(e)de

we have

1. h(t) is continuocus;
2. n(3') = fylty) toe(s,ar);
3. h(w(8)) = fy(b) be(db',w(s)),

where fy(tg) < fy(b), tg < 3' < B. Thus there exists
bg€(a',w(8)) such that



or, equivalently,

b

b

I 0 £,(0)g(8)de = £ () J O g(o)de.

b

Suppose that

and let

g1(e) =

where C < i < 1

Then, [ gi(8)de = [ g(8)ds = 0.

[
fx(e)g(e)de

b

bo
J g(e)de < 0 ,

is given by

0 if —= <8< Db
(1-A)g(8) if b < 8 <bO
g(8) otherwise

b -0

c [
4 g(a)de!= )

-~ 20

g(8)de.

Furthermore,

_ fo
fx(a) g(e)de

J [
fx(e)g(e)de + fx(B)g(e)de

-

_ Jb _ Jbo
fx(a) g(8)de + fx(a) g(g)de

%
fx(E) J g(8)de =
- b

bO
(1-2) J £ (8)g(6)ao



[°
= fx(9)81(9)d6 .

Thus,
J £,(8)g(8)do = J £,(8)g1 (8)d8.

But

Jw(é) J«
fx(e)g1(e)de + fx(u)g1(e)de < C,

fo(e)g1(e)de = i
w(g)

since fy(8) < £4(8") when 8€(w(5),=) and o8 €(2,w(3)),

which is 2 contracdicticn. Hence
?

®

J g(h)de > 2.

Now, let

(1-2)g(8) iIif == < 3 < b
31(3) ={0 if b< g« bC
g(e) otherwise

where 0 < A4 < 1 is given by

Tnen

| £xtereterce - J £o(8)g1(8)ds , J g(2)do = C,



and

[ TaY

b b
A J of (8)g(8)de Ab J £ (8)g(e)de

b
= Abfx(E) J g(8)ds

®o
= bfx(E) J g(9)] de

]

bO
b J £, (8)] g(o)| do
b

bo
< J af (e)‘g(e) ée.
X
b .
Thus,
Jbo b
efx(e)g(e)de < (1=-X) efx(e)g(e)de.
Hence,

J or, (6)g(8)de < J of ,(8)g (8)d6.

Further, gj(6) < 0 only in [bo.w(é)]C:(g.w). Hence,
letting py(+) = [g1(+)| on [bg,w(8)] and us(+) = g1(+) on
[bo,w(é)]c and using Lemma 3, we get

J 6, (e)g1(8)ds < 0
and hence
J 8ry(8)g(e)de < 0,

proving the theorem,



and

A

b b
A J efx(e)g(e)de Ab J fx(e)g(e)de

-0 -y

b
= xbfx(E) J g(8)de

-

®o
= bfx(E) J g(e)‘de

[
b : fx(e) g(64 de

ds.

A

[
6f (e)s g(8)
b X

Thus,

% b
J efx(e)g(e)de < (1-1) efx(a)g(e)de.

- -

Hence,
J or,(8)g(8)de < J 8f4(8)g7 (8)da.
Further, gq1(8) < 0 only in [bo,w(é)]C:(e,m). Hence,
letting uy(+) = [g1(+) on [bg,w(6)] and us(+) = g1(+) on
[bO,W(5)1° and using Lemma 3, we get
J 60, (8)81(8)d8 < O
and hence

J 6f, (8)g(8)de < 0,

proving the theorem.



(2]

(3]

[4]

5]

61

[
|
[

£s]

91

f1c]

L11]

121

£13]

[14]

Berger, J. The robust Bayesian viewpoint (with discussion).
In Robustness of Bayesian Analysis (J. Kadane, Ed.). North
Holland, Amsterdam (1984).

Berger, J. Statistical Decision Theory and Bayesian

Analysis Springer-Verl, New York (1985).

Berger, J. and Berliner, L. M. Robust Bayes and empirical
Bayes analysis with -contaminated priors. Ann. Statist. 14,
461-uB6 (1986).

Berger, J. and O'Hagan, A. Range of posterior probabilities
for the class of unimodal priors with specified quantiles.
Technical Report, Department of Statistics, Purdue University
(1686).

Berliner, L. M. and Goel, P. Ranges of postericr probabilities
for the class of priors with specified quantiles. Technical
Report, Department of Statistiecs, Chic State University (1986).
DeRcbertis, L. and Hartigan, J. A. Bayesian inference using
intervals of measures. Ann. Statist., 1, 235-2i4 (1981).
Dempster, A.P. A subjective look at robustness. 32ull. Int.
Statist. Inst. 46, 2WUc-374 (1975).

Good, I.Jd. Protabtility anc the weighing of Evicdence. Criffin,
Loncon (1950).

Hill, B, Robust analysis of the random ncdel and weighted
least squares regressicn., In Evaluation of Econometric
Mcdels., Acacdemic Press, New York (1980).

Kedane, J.B. and Chuang, D.T. Stable decision problems. Ann.
Statist. 6, 1095-1110 (197€).

Rubin, H. Robust Rayesian estimation. In Statistical
Decision Thecry and Related Topies II, (S.S. Gupta and D.
Moore, Eds.). Academic Press, New York (1977).

Sivaganesan, S. Robust Bayesian Analysis with e€-contaminated
Classes. Ph.D. Thesis, Purdue University, West Lafayette
(1988).

Sivaganesan, S. and Berger, J. 0. Range of posterior measures
for priors w;Fh unimodal ccntaminations. Technical Report,

Department of Statisties, Purdue University.





