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Abstract

Influence functions for intercept and slope estimators are used to
assess the effects of influential observations on least squares and maximum
likelihood estimators for structural measurement error models. Based on
the information provided by the influence functions, recommendations are
made for the use of diagnostics in the detection of influential
observations with measurement error models.
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1. Introduction

Influence functions often are used to assess the effects of
influential observations on least squares regression estimators (Cook
& Weisberg, 1982). Kelly (1984) derived influence functions for the
method of moments intercept and slope estimators in a structural
measurement error model having independent measurement errors. In this
paper we present influence functions for measurement error models
having normally distributed, correlated measurement errors. By
re—expressing the influence functions in terms of residual vectors,
geometric interpretations of the effects of influential observations
are readily apparent.

Linear structural measurement error models are linear models
Y = a + BX between two stochastic variates (Y,X) in which both
variates are measured with error:

vi = Y + vy, X = X+t uy (i =1,...,n). (1.1)
Assume that X and (v,u) are mutually independent with X ~ N(uy, OXZ),
[v 0 0y2  poyoy
u 0 poyey 042
Let A = 0,2/0,2 denote the error variance ratio, Y = 0,2/0x? the
noise-to-signal ratio for the observable predictor variable x, and 6 =
pkl/z‘
Least squares estimators of the intercept and slope parameters

are
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= Sxy/sxx (1.2)



where Syy» Sxxo and Sxy denote the sample variances and covariance of
the observable variates. Maximum likelihood estimators of the
intercept and slope parameters, assuming known values for A and p,

are (Reilman, Gunst, & Lakshminarayanan 1985):

= s(1,0) + sgnfu(®)}{s(1,0)2 + t(r,0)}1/2 (1.3)
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s(A,G) = (Syy - )\.SXX)/{ZU(G)},

t(r,0) = (ksxy - Bsyy)/u(e),

It

and u(8) Sxy ~ Osxx-

Fuller (1987) provides comprehensive coverage of the estimation of
measurement error models, including multivariate and multiple
regression models. Properties of least squares and maximum likelihood

estimators under measurement error model assumptions are also

detailed.

2. Influence Functions

2.1 Least Squares

Under the assumptions accompanying model (1.1) the influence
functions for the least squares intercept and slope estimators are

IFps(o) = yo = #y = Brs(xg - #y) - IFLg(B)ny
and (2.1)

TFLs(B) = {(x0 = 1) (yg = By) = Brg(xg = 1x) 2}/ oy,

where py = Hx, Py = By = @ + By, Brg = (B + 6Y)/(1 + Y), and dyy =
0X2(l + Y) is the variance of the observable predictor x. These

influence functions are similar to those of Hinkley (1977). While



these expressions can be evaluated for any choice of (yg,xq), three
specific choices simplify the expressions and provide interesting
interpretations:

X0_= Px

IFs(a) = yo - #y , IFg(B) =0

There is no effect on the least squares slope estimator when an
influential observation occurs at the mean of the predictor variable.
The intercept estimate is changed by an amount equal to the difference
between the response value and the mean of the response variable. The

least squares line is moved parallel to the noncontaminated line.

Yyo_— Uy = B(XO - UX)

IFLs(e) = -Brg(xg - Mx) — Aps(xg = Hy)?/0xy
= -Brs(xg - nx) - Brs(xq - ux)zux/“xxs
IF;,s(B) = -Brs(xg - ux)z/ﬂxx,

where A;g and Byg are the asymptotic biases of the least squares

estimators,

A = a5 - o = -Brguy,

Bi,s = Bpg — B -(B - 0)Y/(1 +Y),

and a5 = py - Bpshy, Brg = (B + 0Y)/(1 + Y). When influential
observations are true to the unobservable theoretical model, the
effects of the original biases in the estimators (Apg and Bpg) can be

mitigated since the changes in the estimators are opposite the

respective biases.



Yo T ¥y

TFs(e) = - Brs(xg = 1yx) - BLs(xg = Bx) Zhx/Oxx,

1}

IFg(B) = - Brg(xg - ux)z/ﬁxx.
An influential observation at the mean of the response variable
increases the bias of the least squares slope estimator since the

change in the estimator is negatively proportional to the parameter

value.

2.2 Maximum Likelihood
The general form for the influence functions of the maximum
likelihood intercept and slope estimators are
IFyp(a) = yo = vy — B(xg - mx) - IFy;(B)uy

and (2.2)

IFy,(8) = {(B - 0)(yp - uy)? = (82 - M (xp - 1) (yo = ny)

- B(L - BO)(x0 - my)2}V/0g2,

where °e2 var(e;) = var(vy - Buj) = ouz{(B - 8)2 + (L - 62)} is the
variance of the model error e; when y; is expressed as a linear

function of x;. When p = 0, these expressions reduce to those of

Kelly (1984).

X0 = MBx

IFy () Yo T~ By - (8 - 8)Y(yg - uy)ZUX/UeZ,

TPy (8) = (B = 6)Y(yp - ny)?/de2.



Unlike least squares, the maximum likelihood slope estimator is
affected by influential observations at the response mean. The slope
estimator is biased proportional to the difference between the true
slope parameter and the scaled correlation coefficient, 0 = pkl/z.

When p = 0, the bias is proportional to the slope coefficient.

Yo~ By = B(X0_= Bx)
IFML(a) =0, IFML(B) = 0.
Because the maximum likelihood estimators are consistent, an

influential observation which is true to the unobservable theoretical

model has no effect on the intercept and slope estimators.

Y0 = My
IFyp(a) = -B(xg - Hy) + BY(A - BO)(xg — ny)? py/0e2,
TPy (B) = —BY(A - BB)(xg - Wy)2/0c2.

The slope bias introduced by an influential observation at the mean of
the response variable is opposite of the sign of the true regression

coefficient. The fit tends to be '"flatter" than the true regression

line.

3. Alternative Expressions

The least squares and the maximum likelihood influence functions

can be re-expressed in a form in which comparisons of the effects of

influential observations are more easily interpreted. The least



squares influence functions are expressible in terms of two residual

functions:

1]

IFps(e) = ryex = IFLg(B)py,
IF;g(8) = Uxx—lrxry-x: (3.1)

where

I'x = X0 ~ Bx> Tyex < {yvo - ny - Brs(xg - ny) )
These residual functions are the differences between the influential
response and predictor values and the response and predictor means. In
the usual Euclidian representation of the response and predictor
variables, these two residual vectors are orthogonal. Figure 1 depicts
this representation for a typical influential observation.

The influence functions for the maximum likelihood estimators can
be written in a form similar to (3.1) by transforming to polar
coordinates after re-expressing the model so that the measurement
errors for the response and the predictor variables are uncorrelated
and homoscedastic. If one then measures the horizontal (rh) distance
along the true regression line from the origin to the projection of
(xo, yo) and the perpendicular (rp) distance from the influential
observation to the true regression line, the influence functions can

be written as follows:

TPy (@) = ryex - IFyp(B)py,

TFyp,(8) 2

0X “ThTp; (3.2)

where

rh = (A-62)71/2{(8-0)2 + (1-82)}71/2[(8-08)ryuy + {(8-0)2

<+

()\—62) }rx] ’

rp = (A-02)*1/2{(8-0)2 + (A-82)}"1/2ry,,

and T'yex 1s now measured from the true regresion line, Tyex = Y0 ~



Fig. 1. Residual Vector Influences on Least Squares
Estimators.

Fig. 2. Residual Vector Influences on Maximum
Likelihood Estimators.




Figure 2 shows this representation for a model with A=l and
uncorrelated measurement errors.

In the forms (3.1) and (3.2) it is seen that both of the slope
estimators are susceptible to influential observations in all but two
directions, those for which the residuals in either term of the
product is zero. For the least squares estimator, the two directions
are vertical at xg = yux and along the (biased) least squares line at
yo = My *+ Brs(xg - Hx) = eps + Bpsxg. For the maximum likelihood
estimator, the two directions are parallel and orthogonal to the true

regression line through the point (ux, py).

4. Implications for Diagnostics and Robust Estimation

It is not the intent of this paper to investigate diagnostics or
robust estimation for measurement error model estimators. The
influence functions do, however, suggest important implications for
such procedures. Diagnostics for measurement error model estimators
must be sensitive to departures from the true model in all directions
except those for which the influence functions are zero. It is clear
that diagnostics which only measure departures from assumptions in
either the x- or the y-directions are not suitable for maximum
likelihood estimators of measurement error model intercept and slope
parameters.‘More sensitive diagnostics would make use of the residual
vectors in the influence functions (3.2).

Likewise, robust estimators for measurement error models should
be insensitive to local departures from model assumptions in

directions that are not parallel to the residual vectors ry and rp-



The form of the slope influence functions for least squares and
maximum likelihood estimators suggests that satisfactory robust
estimators should be based on procedureé which weight the two residual
components separately. This principle supports the use of bounded
influence (Kraker and Welsch, 1982) and similar estimation schemes
over alternative robust estimators which only weight response

residuals.
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