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Abstract
Through use of a regression framework, a general technique is developed

for determining test procedures based on subsets of the order statistics
for both simple and composite parametric null hypotheses. Under both the
null hypothesis and sequences of local alternatives these procedures are
asymptotically equivalent in distribution to the generalized likelihood
ratio statistic based on the corresponding order statistics. A simple,

approximate method for selecting quantiles for such tests, which endows the

corresponding test statistics with optimal power properties, is also given.

KEY WORDS AND PHRASES: Order statistics, generalized likelihood ratio
test, power, nonlinear regression.

AMS 1980 subject classification: primary 62F03, 62F05; secondary 62K05.



1. Introduction

It is often useful to base initial or even final analyses of data sets
on information obtained from only a subset of the sampled observations. An
important example of this is the use of 7 or 9 number data summaries to
obtain transformations which make the data set approximately symmetric or
normally distributed (see, e.g., Tukey 1977 or Parzen 1979). Other
examples, more closely related to the subject of this paper, are the
various methods for estimating location and scale parameters using subsets
of the sample quantiles or order statistics (see, e.g., Sarhan and
Greenberg 1962). The use of observation subsets in the latter setting is
known to provide considerable savings in the cost and time of analysis with
very little loss of efficiency, provided the subset to be utilized is
selected correctly. In a few cases test procedures corresponding to these
estimators have also been considered (eg., Chan and Cheng 1971, Chan, Cheng
and Mead, 1972, Chan, Cheng, Mead and Panjer 1973 and Cheng 1980, 1983,
1984).

In this paper we defive test statistics, computed from subsets of the
sample quantiles, that are appropriate for several types of hypotheses.
These include hypotheses about location and/or scale parameters as well as
other composite null hypotheses of interest. The proposed statistics are
easily computed quadratic forms in the selected sample quantiles and are
asymptotically equivalent in distribution to the generalized likelihood
ratio statistic (GLRS) based on the corresponding order statistics. The
problem of optimal quantile selection is also addressed and a simple

approximate method for selecting optimal quantiles for the tests is



provided. In addition, it is found that for a simple null hypothesis the
optimal set of quantiles corresponds to the one required in the related
parameter estimation problem, This has the consequence that, for tests
about location and/or scale parameters, tables already exist which contain
the required optiﬁal percentage points for many distribution types.

Let X .,Xn be independent identically distributed random variables

10
with common distribution function (d.f.) Fx. Consider the case where Fx(x)
= F(x;0), with 8 € 6, an open subset of lp, for some known distri-

butional form, F. It is often of interest to test the null hypothesis

HI: o= 20 (specified) (1.1)

against the composite alternative

iyt @58

an important special case being 8' = (u,0), where p and o are, respectively,
a location and scale parameter. In the next section a regression framework
involving the sample quantiles is utilized to derive test statistics for

H The basic approach in this case, and others that follow, has its

1
foundation in techniques for testing the specification of a nonlinear

regression model which stem from work by Hartley (1964).

An extension of the previous model assumes that Fx(x) =

F ( x; 3 8 ) , with 8 € 8, ~ @ ( y (@, and ¢ > 0. In this case we
consider testing

H,: 8 = go(specified) s 050, =@ pu o, (1.2)

2

against the alternative

HZA: o ¥ 20’ ¢ >0, o (po,



The techniques utilized to obtain a test for H2 are also found adaptable

to the derivation of tests for the location and scale parameter model,
Fx(x) = F ( Eiﬂ ) . We then obtain test statistics for hypotheses such as

H3 I (specified), ¢ > 0 ,

versus
HBA: TR Bg > O >0,
and
HA: o =9, (specified) , =@ ¢y ¢ @,
versus
HAA: (L 60 s =~ (p (@,

Finally,in Section 3, a simple, approximate method is provided for selecting
gquantiles for tests of Hi’ i=]l,...,4. This procedure is shown to endow the

corresponding tests statistics with optimal power properties.

3. Test Procedures.

Denote the order statistics associated with Xl,...,Xn by X1 n’"
. 9

and define the sample quantile function by '

iil < u g 1 j=l,...,n.

=h’

6(“) = Xj,n’

Throughout this section we assume that a set of percentile points U =

{uo,...,uk+1}, k<n, satisfying



0= ug < vy < ... € “k+1 = ]

has been chosen. A set of this form is frequently termed a spacing.

Inference is then to be conducted using only the observation subset

q; = (Qup),...,8u)))

3.1 A test for Hl.

Consider testing H

An

in (1.1) against the alternative H,,: 6 # 6

1 -0’

important role in what follows is played by the quantile function asso-

1A

ciated with FX’
Qx(u) = inf {x: Fx(x) 2 u} # Q(u38), 0 <u<l,
and its partial derivatives

D,(u38) = 3Q(u3;6)/36_ , i=1,...,p, 0 < u < 1.

3 3

Assuming that FX admits a density function fx(x) = BFX(x;Q)/Bx s f(x%3;8), we

also define the density~quantile function
£Q(u30) = £(Q(u30); 8) , 0 Cu <1,

and adopt the notational conventions

Q) = (Qu380), -+ y Quy380))

and



Dij - Dj(ui;go), i=l,...,k, j=1,...,p,

U
When fQ(u;8) is continuous and positive at the u

with D used to denote the kxp matrix having (i,j)th element Dij'
i's, it is well known

that under Hl

A @y -9 9 N vy,

vhere "3" denotes convergence in distribution and N (Q,VU) is a k-
variate normal distribution with mean 0 and variance-covariance matrix VU

having (i,j)th element

vij = ui(l-uj)/lfQ(ui;ﬂo)fQ(uj;90)J, isgj.

Thus, under Hl, an approximate model is
5 o -4 2.1)
Qy=Q;*+n’e, (2.1

where e ~ Nk(Q,VU) and "~" indicates "is distributed as".
To detect departures from Hl we fit (in a figurative sense) the
alternative model

_ -4
Q; =9t Dy +n ‘e, (2.2)

where § is a pxl vector of unknown parameters. This approach is a direct
parallel of the goodness~of-fit approach to testing the specification of a
nonlinear regression model due to Hartley (1964) and others (see Gallant

1975). The usual least-squares estimate of § in (2.2) is



o -1, -1, =~
8y = I3 () "Dy Vi 19y - 9yl (2.3)
where

. o=l
Ill(U) =D Vy Dy - (2.4)

To test the hypothesis that § = 0, equivalently Hl’ standard results from

regression analysis lead to consideration of the test statistic

T,(U) = n §ﬁ 1,,(0) 3, (2.5)
=n 1 - QUJ'VGIDU Ill(U)-bﬁ Vﬁllﬁu - 9yl s

with Hl rejected at level o if Tl(U) exceeds its upper ¢ percentage point.
To compute TI(U) it is helpful to note that, since VU is a patterned
matrix, explicit formulas for the elements of Ill(U) and Dﬁvallgu -QUJ
exist. Specifically, the (1,j)th entry of Ill(U) is given by
k+1

= 1 - . ' .
r§1 (u=wu__,) "(£Q(u_38,)D , - fQ(ur_l,QO)D(r_l)i)(fQ(ur,Qo)Drj

- fQ(ur_l;go)D(r_l)j) (2.6)
and, similarly, the ith element of D Val IQU - Q,l is
k+1 "
r§1 (ur-ur—l) {fQ(ur;QO)Dri- fQ(ur—l;9-0)1)(r--1):l.”
(2.7)

x {£Q(u_38) (B(u) - Q(u_38)) = £Q(u__,580)(Fu__) - QCu__;380)},



+ + - -
where it is assumed that fQ(O ,QO)D (0 ,go) = fQ(1 ,go)Dj(l ,go)-

3

0 for j=l,...,p and, as a result, Q(0) and §(1) can be arbitrarily

defined to be X and Xn n’ respectively.

1,n

The asymptotic distribution theory for Tl(U) will be investigated
under both the null hypothesis and a sequence of local alternatives.
Consequently, the following definition is provided.

Definition 2.1.1. Let B be a fixed, but arbitrary, element of *p -{0}

(n),n

+ gn_% € @ for all n 2 1. A sequence {Xi }i-l’

which satisfies 90

where for each n2l the Xin)'

8 are independent random variables with

common d.f. F(-;g0 + gn-%), is termed a sequence of local alternatives
(SLA) to Hl'

The following assumptions are required for Theorem 2.1:

(Al) Ill(U) has rank p.

(A2) For i=l,....,k, £Q(u 38, > O.

(A3) For j=1,...,p, the Dj(u;go) are continuous in u for u € (0,1)

+ + - -
with £Q(0 ,QO)DJ.(O 385) = £Q(1 38,) Dj(l i95) = 0.

i, j=1,...,p, are

(A4) The functions D, (usf) = 3Di(u;g)/30

3 i’
continuous in (0,1)xN, where N is an open neighborhood of go.

Theorem 2.1. Assume k 2 p and Assumptions (Al) - (A4) are satisfied. Under H1

T, () | X2(0),

and, for an arbitrary sequence of local alternatives to Hl’



T, 3 xZ@'T W8

where x;(l) is a noncentral chi-squared random variable with p degrees
of freedom and noncentrality parameter X.

Proof: The asymptotic distribution theory for Tl(U) under H, is an
immediate consequence of the facts that (i)vn VB#IQU-QUJ S Nk(Q,Ik),

where Vé is the symmetric square root matrix of VU and Ik is the kxk

identity matrix, and (ii) V;%DUIII(U)-IDéva% is an idempotent matrix
of rank p.
- -4 3 - .
Letting gn go + Bn ° note that, in distribution, Q(ui) Q(Wni,n,gn),
where Wl n,...,wn o 2re the order statistics associated with a random
9 9

sample of size n from a uniform (0,1) random variable and n, = lnuij + 1.
For n sufficiently large gn € N, so that a Taylor series expansion gives
-4 P
Wy i O =, o 589) + 0™ T 8D, s0)

1% 3 ( *)
+ .8 D W 38 s
; j§1 r§1 I ngen’T

with 8% ¢ N. Thus, in distribution, we have

/n 18(uy) - Qug580) ] = VR TQ(Wni,n;go) - Q(u;58.))

5 45§ (W o%)
* j§1 Bij(wnisn ,20) +n j§1 rEIBjBrDjr nisn 1= *

) - -4
Conditions (A2) - (A4) then imply that vaVy’lQ,-q,! 3 N (V5ID8,1,),

which establishes the theorem. n



Remark 2.1.1. An approximate test for H1 is provided by: Reject H1 at
level o if TI(U) 2 x;;a, where X;;a is the upper o percentage point of

a chi-squared distribution with p degrees of freedom. The asymptotic power
of this test depends on both 8 and U. The selection of a spacing to

maximize power is discussed in Section 3.

Remark 2.1.2. The asymptotic distribution of the (~2 times log trans-

formed) generalized likelihood ratio statistic for testing Hl based on the
observation subset QU can be determined from results in Dzhaparidze
(1977). Subject to the conditions specified in his paper and Assumptions

(Al) - (A4) it can be shown that Tl(U) and the transformed generalized

likelihood ratio statistic are asymptotically equivalent in distribution

under both H, and any sequence of local alternatives.

1
Remark 2.1.3. Let Ill(U)% denote the symmetric matrix square root of

k
Ill(U) and define the L-statistic L, = Jnigl bij(Q(ui)-Q(ui;go)),

k|

- -4 -1 = 4 2
where bij is the (i,j)th element of B III(U) DUVU . Then, TI(U) jEI Lj’
i.e., Tl(U) has a representation as a sum of squared L-statistics. It is,
in fact, the k-quantile version of a statistic based on all n quantiles

considered by Eubank and LaRiccia (1984) for testing Hl'

Remark 2.1.4. QU and VU are asymptotic approximations to the expectation

and variance-covariance matrix of QU' Thus for small n it may be useful
to replacé them by the actual mean vector and variance-covariance matrix.
Tables from which these can be obtained, in certain special cases, are
available in the literature (see, e.g. David 1981).

To conclude this section several examples illustrating the use of

Theorem 2.1 are presented.
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Example 2.1.1. An important special case occurs when 8' = (y,0), F(x;0) =
F ( EiE ) » and vwe wish to test Hy: (,0) = (pj,0,). In this instance

Q(u;8) = p+oQ(u) and £fQ(u;6) = £Q(u)/o, where F(:), Q(-)and £Q(-)
are known functions which do not involve the unknown parameters.

= = 2
Defining f fQ(ui) and Qi Q(ui), it is seen that UOIII(U) has

i

diagonal elements

k+l
2
im]

-1

K0 = 2 (oymuy y) “LE-£, 1

k+l -1
= - - 2
ALY 1§1 (ugmuy ) LEQ-F 105 1%,
and off-diagonal element

k+1
Ky(0) = 3

-1
2 ) VRO L

1

The test statistic is then found to have the form
= = - 2 % - -
T, (V) = Gz AR Ky (V) + 2(R0) = 4p) (B(0)-0)Ry(V)

+ (3(W)-0))? Ky (D)} ,

where

() = IK,(0) ¥,(U) - Ry(D)Y,(0) 174, (V) ,
3(U) = |-Ry(D)Y, (04K, (D)Y,(V) /4, (V) ,

4,(U) = K, (DK, (V)-K4(U)? ,
k+1 -1 - _
YI(U) = 1§1 (ui-ui_l) lfi-fi-lJlfiQ(ui)-fi-IQ(ui—l)J'

and
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T, = :%1 (ui-ui—l)-llfiQi-fi-IQi—lJlfié(“i)-fi-lé(ui-l)J'

Note that the quantities {i(U) and &(U) which appear in this example
are the asymptotically best linear unbiased estimators (ABLUE's) of u and ¢
derived by Ogawa (1951)'that have received considerable attention in the
literature (see Cheng 1975 and Eubank 1981a). Tests for Hl against a

simple (rather than composite) alternative based on subsets of sample

quantiles can be found in Eisenberger (1968) and Cheng (1984).

Example 2.2.2. 1In the previous example assume that ¢ is known. The test

for H.: B=Hg against HIA: p#po derived from Theorem 2.1 is equivalent to:

1
Reject H0 if
Y,(U) 2 0Ry(U)-pgk, (V) + (ximxl(u)/aZ)?k (2.8)
or
Y,(U) S aR (U)K (V) = (xi;aKl(U)/oz)* : (2.9)

The use of critical region (2.8) (respectively (2.9))for the one sided
alternative HlA: Wy, (respectively p(po) was shown to give an asymp-
totically uniformly most powerful «/2 level test for Hl by Cheng (1980).

If we instead consider the case where j, instead of g, is known, the
test statistic for HI: a=0 is given by

5L, ¢ .
TI(U) = m - 9, KZ(U)/G(‘) . (2.10)
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where, without loss of generality, u has been taken as zero. This statis-
tic is asymptotically equivalent to one considered by Ogawa (1974), Chan,
Cheng and Mead (1972), Chan, Cheng, Mead and Panjer (1973) and Cheng (1980)
who replace 06 in the denominator of (2.10) by a consistent estimator of
6%. An asymptotically most powerful test of le g=0, against a simple

alternative that utilizes a subset of the sample quantiles has been derived

by Cheng (1983).

Example 2.2.3. Assume the Fx has positive support and that Qx(u)= oQ(u)e

for some known quantile function Q(:) (e.g., the two parameter Weibull -

or lognormal distributions.) Consider testing Hl: (0,0)= (00,90) versus

HIA: (g,8) # (00,00).
Let fQ(u) = 1/Q'(u) denote the density-quantile function associated

with Q(+) and, in notation similar to that of Example 2.2.1, define Qi =

Q(ui)! fi b fQ(“i)s

k+1 o
= - - 2
Ky () 1§1 (ug=uy ) UEQ-F, Q0
k+1 I |
Rg(U) = 2 (ujmuy y) 1£,0,-F; ,Qy HEQ1n Q-F, 10, ,In Q)
k+1 .
= - - 2
Kg(0) 121 (uy-u, ;) "1£5Q; In Q-f, ,0Q; 41n Q)% ,
8,(V) = R (WE (V) - R(W)?
k+1 0 1-0, _
¥4(0) = i§1 (uy-uy ;) LE,Q-F, ,Q, ILE.Q Quy) -
1-0,

£ Qu Pl
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and

kel
-1
L0 = 2 Cugmey ) T dn Qy-Ey 10 in Q) ]

1-90~ 1-90~

It can then be shown that the test statistic for Hl is

n -~ P a A P ~ p
TI(U) = ;g;g 1K4(0)61(0)4 + 200K5(U)61(U)62(U) + oéxs(u)sz(u)‘l ’

where
cl(U) = 1K6(U)Y3(U)-K5(U)Y4(U)J/AZ(U)-GO
and

8,(U) = [-Rg(D)Y5(D+K, (DY, (V) /(8,(V)o,) -

2.2 Tests for Hzand other location/scale composite hypotheses.

Attention is now focused on the case where Fx(x) s F ( Eik 38 )

"and we wish to test

HZ:Q = go y @ (p <o, 0>0,
versus
HZA: [ 20 y @ (p<®,a>>0.

Note that the quantile and density-quantile functions in this setting have

the form

. Qx(u) = n+ 0Q(u;8) , 0 Cu<l

and
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£,0,(u) = a'lfQ(u;g) , 0 Cu<l.

Under H2, asymptotic distribution theory for sample guantiles can be

used to justify the approximate model
G(u,) = wroQ(u;300) + n e, ds1,... .k, (2.11)

= U ~
where e (el,...,ek) Nk(Q,VU) with VU defined as before. To detect

departures from (2.11) we then "fit" the model

3(u,) = proQu 30,) + 3 (oD, )4n e, (2.12)
i=1

with

Dy = 3Q(u,38)/96

3 le=e,
and

8= (8)50008)" = 00,

Let Q '_(Q(ul;go),...,Q(uk'e »',C [lk,gu], where 1, is a kx1
vector of unit elements, and let DU be the kxp matrix with (i,j)th element

D,,. Define the matrices

ij
v
1,,(0) = DV Dy (2.13)
1 '
IIZ(U) U U Cy = 21(U) s (2.14)
20 = € UlcU , (2.15)

and
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~1
111.2(0) = 111(U) - 112(0)122(0) 121(0) (2.16)

Thus, as before, results from regression analysis suggest that an "esti-

mator"” of § in Model (2.12) is
-1 1
§(u) =1, (V) IDy - I,,(V)I,, (V) cUJvU QU/a , (2.17)

and that the quadratic form n_E_(U)'I11 2(U)E(U) could be used to test H,.
This quantity involves the unknown parameter ¢%, which we replace with any

consistent estiamtor 0% to obtain the proposed test statistic

-1 . =1, vl =2
T,(W)=3 vy [D =CyL, o (1) 1, (W T ,IDy-1,, (DI, (V)T Cylvy Gy 877 (2.18)

The asymptotic distribution theory for T2(U) is summarized in the
following theorem. For this case a set of random variables is called a SLA
to H2 if, for each n 2 1 and arbitrary pu, o, and B satisfying -® < p < @,

(n) (n)
’n

¢>0, 8¢k - {0}, and 8y + %B e 8, X| B ¢ are independent

identically distributed random variables with distribution function
.S S 4
F ( p ,Qo+n B ) .

Theorem 2.2. Assume that i) for any S.L.A. to Hz, 8¢ converges in pro-
bability to o¢, 1i) 111 2(U) has rank p, and iii) Conditions A2 - A4 are

satisfied. Then, under H2,

T,(1) 3 x2(0)

and, for any sequence of local alternatives,
d
2 (]
T2(U) d Xp(ﬁ Ill-Z(U)E)'
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Proof. Since the proof parallels that of Theorem 2.1, only a sketch of the
details will be given. The principle step is to note, as before, that for

8, =8+ n’%g, n large, and some 6% ¢ N, Q(ui) has the same distribution

as

. 12 P .
(wn n,go)jm >y 3 B'BrDjr(wni,n’g*)'

loD
i i’ j=1 r=l J

_%p
ptoQ(W_  385)+n 3 B

: 2 By
1 j=1 (2.19)

Since lDﬁ-Ilz(U)IZZ(U)-106JV;ICU vanishes, we see that T2(U) can be

expressed in terms of §U - plk - UQU, rather than QU' The proof then

proceeds along the lines of that of Theorem 2.1. o

Remark 2.2.1. One consequence of (2.19) is that for any S.L.A. to H2
(0. - - 2
Jn(gU Bl oQU) 9 Nk(uDUg,u VU). Thus

~ "1 -1 ] -1 ] "1~
G, = lo’lJlIZZ(U)_IZI(U)Ill(U) IlZ(U)J lC _IZI(U)III(U) DUJVU 9y (2.20)

is a consistent estimator of ¢ for any S.L.A. to H2 and can therefdre be

used to compute T2(U).

Remark 2.2.2. Only slight modifications of T2(U) are required to obtain

tests for the case where Fx(x) has the form F(x/0;8) or F(x-u3;8). Specific

examples of such tests are given below.
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Remark 2.2.3. As was the case with TI(U)’ one can show that, subject to

regularity conditions, T2(U) is asymptotically equivalent in _distribution,

under both H2 and any S.L.A. to H2, to the corresponding generalized

likelihood ratio statistics based on QU. Further, T,(U) also has a
representation as a sum of squared L-statistics. When viewed from that
perspective it is seen to be the k-sample version of the optimal L~
statistic test considered by LaRiccia and Mason (1984) for goodness~of-fit

tests for location/scale families of distributions.
Some illustrative examples follow.

Example 2.2.1. Let Fx have positive support with Qx(u)-= oQ(u)e for some

known quantile function Q(-). We wish to test

H2: 0= 90, ¢ >0

against

Hy,t 6 %8,, 0>0.

2A

Using the notation of Example 2.2.3 and Remark 2.2.2 it is seen that

T,(U) = nlR, (DY, (1) = Ry(V)¥,(0) }/1K, ()4, (V)82 |,

for 8¢ any consistent estimator of ¢%. By Theorem 2.2, T2(U) g xi(h)

with A = B’Az(U)/Ké(U). Also, for this case, Gi of (2.20) is given by

82 = IR (DY,(0)-Kg(D)Y, (V) J2/A,(V)*

Example 2.2.2. Let Fx(x) = F( Eik ) , with F(+) a known distribution

function, and consider the following two testing situations:
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H3: H=ys © > 0, versus H3A: p#po, o >0,

and

Hh: 6-00, ~© { p { @, versus HAA: 0#00, - (p o,

Straightforward modifications of the proof of Theorem 2.2 show that
appropriate test statistics for H3 and H4 are,in the notation of

Example 2.1.1,

T,(U) = (i) - py)? A, (V)/IR, (V)3 |

and

T,(U) = (3(V)-0) A (V)/(K, (D)o},

respectively. It is readily verified that Tj(U) g xi(lj), where Xj =

4 =

] AI(U)/KS-j(U) for j=3 and 4.
For various distributions the statistic T3(U) has been studied by

Ogawa (1951) and Chan and Cheng (1971) (see also, Sarhan and Greenberg

1962) with the choice

k .
82 = 3 (¥u) - f(U) - B(VQ(u,))?/(k-2)
i=]

2
for their consistent estimator of ¢%. Also, note that, for a symmetric
distribution and a symmetric spacing, K3(U) = 0. Thus, in this case, Ta(U)
is closely related to the statistic for testing Hl: om0, when p is known

that was discussed in Example 2.2.2.
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3. Selection of Quantile Subsets.

In the previous section tests were provided for hypotheses H1 through
H4 which were based on subsets of the sample quantiles. It will often be
possible to select, a priori, the quaﬁtile subsets to be utilized. When
this is feasible, it should be done in a fashion which insures good
properties for the test. 1In particular the spacing selected should be
chosen to maximize (asymptotic) power in some sense. We now turn our
attention to the selection of spacings with this property. It should be
noted that, since the above test statistics are asymptotically equivalent
in distribution to the GLRS based on §U for any SLA, the following results
are applicable to the selection of optimal spacings for tests based
upon the GLRS as well.

All the tests considered in Section 2 had asymptotic noncentral
chi-squared distributions, under local alternatives, with noncentrality
parameters of the form B'A(U)B, for some positive definite matrix A(U)
(e.g., A(U) = Ill(U) or A(U) = Ill.Z(U))' Consequently, their asymptotic
power is a monotone function of B'A(U)B. Thus, if it is possible to choose
the spacing U, it should be selected to maximize some function of A(U) such
as its determinant, JA(U)|, or trace, tr A(U).

An argument for the maximization of |A(U)| (equivalently, the mini-
mization of IA(U)-II) is as follows. Consider the ellipsodial region {B:
B'A(U)B < c*} for some fixed but arbitrary constant, c. Vectors outside
this region correspond to higher power. Thus U should be selected to

minimize the region's size. It is well known (see, e.g., Johnson and
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Wichern 1982) that the volume of this region is proportional to IA(U)I-%,
so an optimal U should minimize IA(U)-II. Similar types of arguments can
lead to the consideration of other optimality criteria such as tr A(U) or
tr A(U)_l. These will not be explored here, but are amenable to analysis
using the basic méthodology developed in this section.

As in the estimation problem, the selection of a spacing to minimize
IA(U)-II is a nonlinear optimization problem that is quite difficult. Thus,
we will instead follow the approach of Eubank (1981a) and provide a simple,
general, approximate solution that will work well for larger values of k,

e.g., k27.

3.1 Spacing selection for tests of Hl.

Let

gi(u) = fQ(u;gO) Di(u;go) , i=1l,...,p ,

and define I, as the matrix with (i,3j)th entry

11

@08, = (f)l g)(w) gi(w) du,  1,3=1,...,p.

The change of variable x=Q(u) can be used to show that for full samples

I.. is the Fisher information matrix for 9 evaluated at 8=8,,. Similarly,

11
Ill(U) is the information matrix for the order statistic subset cor-

responding to U. Thus, from a regret point of view, the character of U can
be evaluated in terms of the disparity between II% and Ill(U)-l.

Let

Sk = {U = (uo,...,uk+1): 0= u, < Uy < ... < u < Ul © 1}
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denote the set of all k-element spacings. An optimal k-element spacing is

one which attains the bound inf jI (U)-ll. We therefore say a
UeSk 11

spacing sequence {Uk}:-l , Uk 3 Sk is asymptotically (as k¥w) optimal for

minimization of IIll(U)—ll if

-1 -1
1T;(0) "1 = 11,1

lim =],
k¥ inf |I

UeSk

NG
Thus, if {Uk}:.I is asymptotically (as k3») optimal, Uk may be used when
k is large instead of an optimal spacing without an appreciable loss in
power. This approach to spacing selection stems from work by Sacks and
Ylvisaker (1968) (see also Fubank 1981a).

The task of constructing asymptotically optimal spacing sequences may

-1
|{. However,

seem equally formidable to that of minimizing IIll(U)
simplifications occur if attention is focused on spacings generated by a

density, h, on [0,1). A spacing sequence {Uk}:.l is said to be a regu-

lar sequence generated by h, denoted {Uk}:-l is RS(h), if Uka

{uOk""’u(k+1)k} has elements satisfying

u
f 1k 1 (u)du = 1/(k+1), i=l,...,k.

0
The following theorem provides a density which generates an asymptotically

optimal spacing sequence for minimization of IIll(U)-ll.
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Theorem 3.1.1. Assume that the g, are twice continuously differentiable on

10,1] with g, (0") = g (17) = 0, 4 = 1,...,p. Let y,(uw) = (2](w), ... gh(w)" and

define the density

1/3

vyl 1 v 5
hy(@) = Ly @ T @1 1 Ly 171y, ()1 28, (3.2)

The sequence {Uil)}:sl that is R.S.(hl) is asymptotically (as kw)

optimal for minimization of |111(U)_1| in the sense of (3.1).
Proof. Apply the Corollary on page 62 of Sacks and Ylvisaker (1968).

Remark 3.1. It should be noted that h, will frequently not have a closed

1
form. When this occurs, the approach is to tabulate h1 over a suitably

fine mesh and then interpolate to find the elements of Uﬁl). Since a

single tabulation of hl can be used to obtain spacings for any k, this

-1
I

still provides a savings in time and effort over minimization of lIll(U)
which must be repeated for each new value of k.

The following examples will help illustrate the concepts involved.

Example 3.1.1. Consider the test of HI: (p,0) = (uo,oo) discussed in

Example 2.1.1. In this case AI(U)-I = lKl(U)KZ(U)-K3(U)j-1 is to be
minimized. Let us denote the diagonal elements of 02111 by
1 ' 2
Kl = [ (£Q)'(u)? du ,
0
K, = /' (£Q:Q)'(w)? du ,
0

and off-diagonal entry by
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K, = £1<fq)'<u)(fq-q)'<u) du,

where £Q:Q is the product of fQ and Q. Then, by Theorem 3.1, the approxi-
mate solution is to choose the spacing whose elements are the (k+l)-tiles

of the density proportional to

R, (£Q)"(w)? + 2K (£Q)"(w)(£Q-Q)"(u) + K (£Q-@"(w))/?

In the case of a symmetric distribution, K3 = 0 which provides some simpli-
fication in spacing computations.

Minimizing AI(U).1 is, in fact, equiyalent to minimizing the (asymp-
totic) generalized variance of the ABLUE's ({i(U),¥(U)) discussed in
Example 2.1.1. Both the optimal and approximate spacings for this latter
purpose are available from the literature for several distributions. These
may be used to ascertain the efficacy of the approximate solution provided
by Theorem 3.1. Table 3.1 contains values of the ratio |111(U£1))|/
Gug IIII(U)I for the logistic and normal distributions when k=7

€

and 9. The values required for its construction can be found in Kulldorff

(1963), Hassanein (1974), and Eubank (1981b).

Table 3.1 Efficacy of the Approximate Solution

k Normal Logistic
7 . 9891 . 9951

9 .9936 .9977
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An example of a distribution which admits a closed form solution is

the Cauchy, for which hl(u) £ 1. Thus, in this case, Uil) has elements

i/(k+1). This spacing actually minimizes IIll(U)_ll over Sk (see Balmer,

Boulton, and Sack 1974).

Example 3.1.3. For testing H

1P P=Rg against HIA: p#po when ¢ is known (see
Example 2.1.2) TI(U) has asymptotic noncentrality BiKI(U)/oz. Thus the

optimal density is

2/3

hy () = ()" (w1311 (£0)"(0) 12 2
0

In the case of a normal distiribution (F=®), the spacings generated

by h, have elements ¢(v3 ¢-1(i/(k+1))),i-1,...,k. In contrast, for the

1
logistic distribution, spacings should congist of uniformly spaced points
over |0,1].

Determination of optimal spacings for tests of simple parametric null
hypotheses is equivalent to optimal spacing selection for estimation of []
by an ABLUE. Thus, for tests about u or ¢ separately other examples of
spacing densitites and comparison with optimal solutions can be found in

Eubank (1981la). For a three parameter example reference may be made to

Carmody, Eubank and LaRiccia (1984).

3.2 Spacing selection for tests of H), Hi, and H,.

A method is now provided for constructing asymptotically optimal
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-1

spacing sequences for minimization of |I11 2(U) |. First, define the two

additional functions

Bopy (W) = £Q(u30)

gp+2(u) = £fQ(u;0)Q(us8) ,

-I'

and let I 21

12 and 122 denote the matrices héving elements

<gi’gp+j>’ i=1,...,p, j=1,2 ,

and

STVUR S NI B I

respectively.

We now focus on the disparity between I11 2(U) and I11 5 "=

-1
SRR TS PAP IR
optimal in this case if

A spacing sequence {Uk}:_l is termed asymptotically

(™!

-1
1312 I = 115 !

lim )
o inf 1), J(07 | - (I

Uesk

o
11.2

A density which generates such a sequence is provided by the next theorem,

whose proof is deferred to the Appendix.

Theorem 3.2. Assume that gi, i=l,...,p+2, are twice continuously dif-

ferentiable on |0,1] with gi(0+) = gi(l-) = 0. Let yl(u) =

(gg(u),---,g;(u))', Yp(u) = (g;+1(u),g;+2(u))' and define
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by (W) = () - 11215;342(\1) .

Then, the sequence {Uiz)} that is RS(hZ) for

1/3

-1 1 - 1
hy(u) = 19 (W' H¥y H(w] ’é L¥; ,(9) 11}.291.2(8)J "4

is asymptotically optimal for minimization of |I11 2(U).ll provided the

support of h2 is |0,1].

Example 3.2.1. Consider the test discussed in Example 2.2.1. To maximize

the asymptotic power it suffices to minimize K4(U)/A2(U).
As a specific example consider the case of a Weibull distribution

where Q(u) = oi{-1n(1-w)}® and £.0.(u) = (08) 1 {-1n(1-w)}}"%. Thus Q(u) =

xOx
In(l-u) and fQ(u) = l-u. To test for exponentiality (H2: o=1, o > 0)
against a general Weibull alternative the optimal spacing density is found

to be proportional to
-1 2/3
|(=.577216 + .4228|1n(-1n(1-u)) + (1In(1=-u)) " }/(1=-u)| . (3.3)
In this case h2 must be tabulated numerically.
The efficacy of spacings selected according to (3.3) may be studied by

examining the ratio |K5(U£2)) -K6(U£2))Z/K4(U£2))IIIK5 - K%/Kal.

For k=7 and 9 this has the values 0.91 and 0.97 respectively.
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Example 3.2.2. For the test of H3 and H4 discussed in Example 2.2.1

asymptotic power is maximized by minimizing lKl(U)~K3(U)Z/K2(U)J-1 and
lK2(U)-K3(U)2/K1(U)]-1, respectively. A straightforward modification of
Theorem 3.2 shows that spacings for testing H3 and H4 should be selected

according to

2/3 2/3ds

hy(w) = [(EQ"(w- Ky, (£Q- 0" 1221 /11 (£0)"(8) - RK;' (£Q-@)" ()|
0

and

hy(w) = (200" (KK (20" (w1

/II|(fQ-Q)"(s)—x3KI1(fq)“(s)|2/3ds_
0
For symmetric distributions, K3-O and h3 and h4 reduce to the densities for

testing hypotheses about p or o0 separately (see Example 3.1.3).

Appendix.

The proof of Theorem 3.2 is now given. It relies heavily on the work
of Sacks and Ylvisaker (1968). The reader is referred to their paper for
notation or terminology not explicitly discussed here.

Define the matrices I(U) and I by

V) = (D) I,
| 11 (D) Ty (0)
and
I Iys
I= I I
| Io 22 |
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Also, let C = [Ip,O], where Ip is the pxp identity matrix and O is a px2

matrix of all zeros. Then observe that 111 Z(U)-1 = CI(U)-IC' and

1 1
1.2

asymptotic properties of 111 2(U) from those of I(U). In this regard, we

II = CI 'C'. These last two relations allow us to derive the

need the following lemma.

Lemma. Let B be a positive definite pxp matrix and define P(u)' =
(Ql(u)',yz(u)'), where Y, and ¥, are defined in Theorem 3.2 and assumed to

satisfy the hypotheses stated there. Then, the sequence that is RS(h) for

h(u) = (w1 erBer Yeuy )13,

where

1/3

A = jlly(a)'l'lc'BCI'ly(s)j ds,
0

satisfies

-1 _-1

-1
11.2(Uk) - 111.2)Bj = (12)2) = + o(1) ,

kétr| (I

as k 9 @, provided h has support |0,1].
Proof. Apply Theorem 4.5 of Sacks and Ylvisaker (1968) with M = C'BC.

Proof of Theorem 3.2. Since the determinant is a strict, continuously

differentiable criterion

-1

-1 -1., - -1,
() 7| - 11 51 = lcx(w) “¢'| - |c 1 "c'|

11,2
= |C I'lc'| tr|(C eI 1wy ler-c 1’10')1

s o(ltccxm™t - 1™hep
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where, for any matrix E = {eij}, |IE|| = max Ieij" Now, following Sacks
and Ylvisaker (1968, page 61), first note that it is only necessary to
consider spacing sequences for which ||C(I(Uk)-1 - I-l)C'||90 as k3o, In
addition, a sequence for which kZIIC(I(Uk)-1 - I_l)C'II is not 0(1) can be

ignored since this implies that lim sup kz(ICI(U)-IC'| -|CI-1C'|) = @
k9o

and, as shown below, k2(|CI(U£2))-1C'| —ICI-IC'l) has a finite limit.
If kZIIC(I(Uk)-1 - I-l)C’II = 0(1) we have, using inequality (4.13) of
Sacks and Ylvisaker (1968), that
. . 2 —1’ -1|
lim inf K:(JCI(U) ™ €'} - eI C'|)
k9o

= jc1l¢'| 1lim inf k? trl(I(Uk)_l - 1™heerlen ey
koo

2 |c1'1c'|/12x3 ,

where A is defined in the Lemma with B = [CI-IC'j_l. The proof will

therefore be completed if equality is shown to hold in this last expres-
' (2),»

sion for the sequence {Uk }kcl'

An application of the Lemma reveals that

lim kztr[(CI(Uéz))-lc' - c1'1c')(c1'1c')'11 = (12)3)
kow

Thus, it now suffices to show that k2||C(I(Ul(c2))-1 - I_I)C'|| = 0(1),

(2),-1
k)

which holds if kv'|I(U - I—ljx=0(1) for any v in the range of

c'ccr ey le. By noting that

v (@) - 1y - (- 1P aTpaly



1

v erly' 1 - 1PNl - 1Pty

application of Theorem 4.1, Equation (4.2) and Inequalities (4.15) and
(4.16) of Sacks and Ylvisaker (1968) reveals both terms in the sum to be

O(k-z) and completes the proof.

30
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