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Abstract

Linear structural models are linear relationships between two
stochastic (random) variates in which both of the variates are subject to
measurement errors. Structural models are common in experimental work but
are typically fit using least squares. In this paper maximum likelihood
estimators for linear structural models are presented and contrasted with
the corresponding least squares estimators. Practical suggestions are made

for application of the proposed techniques.
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Introduction

Analysis of experimental results frequently requires the fitting of
straight lines to data in which both the response and the predictor
variables are measured with error. While least squares 1is most commonly
used to estimate the slope and intercept parameters, such estimates are
known to be biased when the predictor variable is measured with error. In
this article we discuss maximum likelihood estimation of slope and
intercept parameters of linear models which are subject to measurement

errors.



In order to focus on the complications which arise when linear
regression models are subject to measurement errors consider the scatter-
gram shown in Figure 1. Displayed in this graph are 96 100-minute
radiation counts from the Carbon-14 decay of a 650 year-old sample of
charcoal. The measurements on the vertical and horizontal axes represent
counts from two channels of the same decay counter; however, Channel B
obtains decay counts over a narrower energy band of radiation than does
Channel A. The scatterplot suggests that the two sets of measurements are
linearly related and one is tempted to use least squares to obtain a
straight line fit to the data.

[Insert Figure 1]

Least squares estimators are usually justified either by reference to
the Gauss-Markov theorem or by their derivation using maximum likelihood
under normality assumptions on the error term of the model (e.g., Draper
and Smith (1981, Chapter 2), Gunst and Mason (1980, Chapter 6)). In either
case the predictor-variable values must be assumed to be known constants
which are measured without error or one must be willing to make inferences
conditional on the observed predictor-variable values (which reduces this
latter situation to the former one of known, error~free constants).

Suppose now that two variates (Y,X) are linearly related as

Y, = o + BX i=1,2, ..., n (1)

i i’
but that each of these variates is only measureable with error; i.e., (y,x)

is observable, where

y, = Yi + vy and x; = Xi + ug i=1,2, ..., n. (2)



Substituting (2) into (1) yields the observable regression

(3)

yy < a + Bxi + ei, ei = vi - Bui .
Although equation (3) appears to be that of the usual regression model,
neither the Gauss-Markov theorem not traditional maximum likelihood
derivations constitute theoretically correct justifications for using least
squares. These arguments are not valid because the predictor variable xj
in (3) is stochastic and is correlated with the error term ej; (both xj and
e contain uy). These statements suggest that the least squares estimator
no longer enjoys the properties of unbiasedness and minimum variance (among
unbiased estimators) which accompany its use when the predictor variable
values are error-free constants. We demonstrate below that these
properties are lost when both variates are measured with error.

Before discussing the estimation of the model parameters in (1), a
further specification of the nature of the true, unobservable predictor
variable X must be made. In this article we assume that X 1s stochastic.
This assumption is reasonable for the data in Figure 1 since the 100~minute
Carbon-14 decay counts (Xj) for a single sample, apart from any measurement
error due to the counting equipment, fluctuate around some constant mean
decay rate uy.

These data can be contrasted with the average counts per minute of 32
different samples displayed in Figure 2. A straight line fit to these
points might be made in order to calibrate one of the channels relative to
the other, with the samples intentionally chosen to cover the useful range
of the counter. In this case one might consider the unobservable Xj to
be the (constant) mean decay rates pj for each sample. This latter type

of model was discussed by Mandel (1984).



When the unobservable X; are assumed to be random variables as in
Figure 1 the model defined by (1) and (2) is referred to as a "linear
structural model.”" When the Xj are considered to be unknown constants as
in Figure 2, the corresponding models are called "linear functional

' In the discussions below we concentrate attention on linear

models.’
structural models, with reference to similarities between functional and
structural models when appropriate. More detailed discussions on
functional and structural models can be found in Kendall and Stuart (1977,

Chapter 29), Madansky (1959), and Moran (1971).

[Insert Figure 2]

Linear Structural Models
We now add to the model defined by equations (1) and (2) the assumption

that X is distributed independently of (u,v) and that

2

g po O
2 v 0 v uv
X~N(ux,ax)and( )~N{( ),( 2 )}-(4)
u 0 pouu o

v u

If the measurement errors are‘themselves independently distributed then p = 0
in (4). With these assumptions the joint distribution of the observable

variates x and y is

22 2 2 2

y o - Bpx 8 Oy + o, Box + eau
~ N ’ s (5)

X Lo’ Bdi + eoi oi + 63

where 6 = pk% and A = 02/05 is the ratio of the error variances. The

maximum likelihood estimating equations for the parameters in this joint



distribution can be obtained by equating sample moments to the respective

parameters:
y o + Bpx syy 8 ax + av sxy = ch + Gou
(6)
= s, =0k + a0
Uy XX X
- -1 - -1 -1 -2 -1 -2
where y = n Eyi, X=n in, syy =n E(yi -, Sy = 1 E(xi - x)7,

-1 - -
and sxy = n E(xi - x)(yi -y).

Immediately a problem arises in attempting to solve for the maximum
likelihood estimators: there are only five estimating equations for the
seven model parameters. Even if the correlation between the measurement
errors is assumed to be zero there are six parameters to be estimated from
the five equations. This difficulty arises because of the additivity of
independent normal distributions. For example, the observable predictor

variable x is the sum of two independent normal variates. Its mean and

2 2 -
variance are, respectively, By and Oy + o, Thus the sample mean x can be
used to estimate Py and the sample variance S .x €an be used to estimate the

sum of 62 + ai but the individual variance components 02 and ai cannot be

X X
estimated using only the marginal distribution of x.1

Since o, B, My and oi are the parameters of primary interest in

fitting the structural model, one is required to know some information

about the error variances and the correlation between the errors in order



to obtain appropriate estimators of the remaining model parameters. We
focus attention in this discussion on the assumption that the ratio of the
2

2
error variances A = uvlau and the correlation p are known.

Knowledge of the ratio of the error variances does not necessarily
require explicit knowledge of either of the individual error variances.
For the Carbon-14 dating examples of the previous section it is reasonable
to assume that the error variances are equal (A = 1) since the counts are
from two channels of the same counter. It is also reasonable to assume
that the measurement errors made by the two counters are not correlated.
Mandel (1984) presents an example on interlaboratory testing in which a
functional model is assumed and the ratio of error variances and the
correlation are known. These are but two examples demonstrating the
applicability of assuming known values for the ratio of the error variances
and the error correlation.

With the assumption that A and p are known the solution to the likeli-

hood equations (6) for o and B are

i -
and (7
F=s:{s?s+mt,
where
S = (syy - lsxx)/ZU T = (szy - esyy)/U
U= g - Os 0 = pk%
Xy XX

and the sign (+ or ~-) in the expression for g is the same as that of U.

The estimators of the remaining model parameters are



~2 ~ ~2 ~2 ~

o (syy - ZBsxy + 8% /(B + ) - 28e) (8)
~2 ~2 ~2 ~2 ~ -

oy = Syx = % o, = qu and By = X .

Estimates of the variance components obtained from equations (8) are non-
negative, a property not necessarily guaranteed if one makes an alternative
assumption that one or both of the error variances are known instead of
their ratio. Frequently a degrees of freedom adjustment is made in the
estimation of the variance components by dividing the sample variances and
covariances by n-2 rather than n.

The estimators of o and B given in equations (7) are the same for
functional and structural models (e.g., Patefield (1978))2. Appendix A
contains formulae for approximate asymptotic variances for the maximum
likelihood estimators o and B. These asymptotic variance formulae differ
slightly for functional and structural models; the differences are pointed
out in the appendix.

Least Squares Estimators
The usual least squares estimators of the intercept and slope

parameters are § = ; ~-Bxand 8 =s /s While the maximum likelihood

xy' “xx’

estimators a and E are consistent (i.e., a o a and § 3 B8 as n P o), the
least squares estimators are not consistent for the parameters in model (1)
when the predictor variable is subject to measurement error. The least
squares slope estimator tends to underestimate the true slope, thereby biasing
the intercept estimator as well. Appendix B contains asymptotic limits for
the least squares estimators & and B as well as approximate asymptotic
variance formulae.

Reilman, et al. (1985) compare the large-sample performance of the

least squares estimator and the maximum likelihood estimator by deriving an



expression for R = var(a)/mse(ﬁ).‘3 They show that R > 1 when

V<L + )2+ 7)/(n=-2=-7%), (9)

where ¢ = (¢ - 9)2/(1 - pz), ¢ = Bl-% is the "sensitivity" measure defined
by Mandel and Stiehler (1954), and y = aﬁ/ai is the "noise-to-signal
ratio" of the observable predictor variable x. Thus the asymptotic
variance of the maximum likelihood estimator exceeds the mean squared error
of the least squares estimator when inequality (9) is satisfied. Denote
the right side of (9) by c(n). Then least squares is preferable to the

maximum likelihood estimator when
p = 11 - pHem}? <o <o+ {U - pDem)? . (9"

Note that when p = 0, inequalities (9) and (9') quantify Mandel's
(1984) condition |¢| << 1 for the appropriateness of least squares
estimation when errors occur in both y and x: ¢2 < c(n). Note too from
inequality (9) when p = 0 that ¢2 < 2/(n - 2) is a sufficient condition for
least squares to have a smaller mean squared error than the maximum likeli-
hood estimator for all values of the noise~to~signal ratio y. This is the
same condition cited by Anderson (1976) for the distribution of the least
squares estimator to be more concentrated about B than that of the maximum

likelihood estimator.

Radiocarbon Dating Example
The sample statistics for the n = 96 100-minute Carbon-14 counts

plotted in Figure 1 are:

y = 3111.95 s, = 2525.65 s__ = 2103.02
Yy Xy

X = 2326.47 s__ = 2467.94 .
XX

The least squares estimates are & = 1129.47 and B = 0.8521 while the



maximum likelihood estimates with A = 1 and p = 0 are o = 753.34 and

B = 1.0138. The straight line fits corresponding to these two sets of

estimates are shown in Figure 3. Both fits appear to represent the
observed scatter of points well, although there are obvious differences at
the extremes of the scatterplot.

[Insert Figure 3]

Geometrically, the least squares fit minimizes the sum of the squared
residuals, I(y; - §1)2, measured in the vertical direction. The ratio
of the sum of the squared residuals for the maximum likelihood fit to that
for the least squares fit is 1.09. Since A = 1, the maximum likelihood
estimator minimizes the sum of the squared residuals measured perpendicular
to the fitted line (e.g., Hawkins (1973), Malinvaud (1970)). The ratio of
the sum of the squared perpendicular residuals for the maximum likelihood
estimator to that of the least squares estimator is 0.93. Since both of
these ratios area close to 1 for this data set, the two fits again appear
to be about equivalent.

A convenient way to assess differences between maximum likelihood
estimates and least squares estimates, especially when there is some
uncertainty about the correct value of the variance ratio A, is to
calculate estimates of the intercept and slope parameters for a range of
values of X and/or p. When p = 0, the two extremes are least squares
(A = ®©) and "reverse least squares" (A = 0). The latter estimator is
obtained by regressing x on y and solving the resulting least squares fit
for y, ylielding o' = ¥ - B'%X and B' = syylsxy'

Table 1 displays estimates of the intercept and slope parameters for a

range of values of A, assuming p = 0. The estimated standard errors are
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obtained by taking the square roots of the variance formulae in Appendices A
and B after inserting the parameter estimates from each fit into the
respective equations. While the estimates and their standard errors
clearly change as A is varied, the estimates do not appear to be
drastically different for this data set. In such circumstances one might
elect to use least squares unless the differences in the predicted
responses for extreme values of predictor variable are judged to be sub-
stantial from a practical viewpoint.

[Insert Table 1]

Another assessment of the choice between least squares and maximum
likelihood estimates can be made by estimating the quantities in inequality
(9). TFrom the summary information in Table 1 corresponding to A = 1,

32 = 82 = 1,028 and c(n) = .0278. This comparison suggests that the
least squares estimator is inappropriate for these data. While appearing
to be in conflict with the previous conclusions, this recommendation is
based on a comparison of the theoretical properties of the two slope
estimators while the discussion of the previous two paragraphs focused on
practical differences in the predicted responses and parameter estimates.

A final comparison between the two fits is made in Figure 4. In this
figure 356 100-minute counts from several samples are combined. Those
samples combined in Figure 4 correspond to the samples in the upper right
corner of Figure 2, samples which have similar radiocarbon decay activity.
The two fits are superimposed on the scatterplot and while both appear to
lie below the middle of the swarm of points, the maximum likelihood fit
appears to be somewhat closer to the center than the least squares fit.

Indeed, the ratio of the sum of squared residuals for the two fits indicates



11

that the maximum likelihood fit is better in both the vertical (ratio =
0.84) and the perpendicular (ratio = 0.72) directions.
{Insert Figure 4]

The foregoing discussions demonstrate the importance of carefully
evaluating several measures of the adequacy of least squares and maximum
likelihood fits when errors occur in both variables. Generally, least
squares will provide a visually acceptable fit to the data from which the
model estimates are obtained, in this case to the data for Sample #1277.
Note, however, that the maximum likelihood estimator not only provides a
visually acceptable fit to the estimation data but it also provides a
better fit than least squares to the enlarged prediction data set. This
empirical evidence of a superior fit coupled with the evaluation of
inequality (9) leads one to prefer the maximum likelihood fit for this

data set.
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Footnotes

lRiersol (1950) showed that no consistent estimators of the model
parameters exist under the normality assumptions (4) unless one or more of
the model parameters is known. Exceptions to this general result occur if
(a) the true predictor variable X has a nonnormal distribution, (b)
replicated observations are available, or (c) one or more additional
"instrumental variables" is available. It is beyond the scope of this
paper to discuss these alternatives but the interested reader is referred
to Kendall and Stuart (1977, Chapter 29) for a survey of some of the more
important alternatives.

2Estimators for some of the other model parameters differ from those
shown in equations (8). For example, one does not estimate py and 0%
in the functional model but one must estimate the n unknown constants Xj.

The estimator (7) is also the solution to equations (10a) and (10b) of

Mandel (1984).

3'.I‘he asymptotic mean squared error mse(8) is compared to the
asymptotic variance var(f) because the estimator B is consistent; there-

fore, asymptotically mse(B) = var(B).
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Appendix A: Maximum Likelihood Large Sample Properties

The maximum likelihood estimators in equations (7) and (8) are
consistent for their respective parameters; e.g., @ 9 o and E 9B asnd o,
Approximate asymptotic variances for the estimators of o and B are given in

Reilman, et al. (1985):

var(s) = n_lai(az + A - 280) + pf(var(ﬁ) (A.1)
and
~ -1 2 2
var(B) = n "y{(B -0)" + (1 + y)(A - 87)} , (A.2)

where 7y = cﬁ/ui is the "noise-to-signal ratio" for the observable predictor
variable x. Lakshminarayanan and Gunst (1984) and Reilman, et. al. (1985)
report on simulation studies which investigate the adequacy of the asymptotic
variance formula (A.2) for the slope parameter. These simulations indicate
that relatively large sample sizes (say, n = 200) are usually needed before
the asymptotic variance formula is an adequate indicator of the variation of
the maximum likelihood estimator over a wide range of model parameters.
However, if the models of interest have relatively small noise-to-signal
ratios (say, ¥ € .1) and the scaled slope (sensitivity) parameter ¢ = Bk—%

is not too small (say, |¢| > 1), samples of size n = 50 generally result in
ratios of sample mean squared errors to the variance formula (A.2) which are
less than 2.

Asymptotic variance formulae for @ and B for functional models (e.g.,

Patefield (1978)) are very similar to those shown in equations (A.1l) and
(A.2). The main differences are that By and c§ are replaced by,

respectively,
vy = lim n‘IEXi and 1§ = lim n_IZ(Xi - i)z .
no nyo



Appendix B: Least Squares Large Sample Properties

The least squares estimators & and B converge to the following limits
when p = 0 and the predictor variable is subject to measurement error:

a-2a+ Br(l + 7)_lpx and B 9 B(1 + 7)_1.

The usual estimators of var(@) and var(B) are not valid when the predictor
variable is subject to measurement error. The variance of & is given by
equation (A.1l) with var(B) replaced by var(8). An asymptotic expression
for the latter variance can be obtained from the mean squared error formula

of Reilman, et. al. (1985) as

var(B) = n ly(1 + » HGB - 0% + (1 + (L - 09}

= (1 + 7)_2 var(g) . (B.1)

The corresponding expression for the functional model is derivable from the

results of Halperin and Gurian (1971) and Richardson and Wu (1970). With Yy

and ti replacing By and ai, the only change in (B.1) for functional model

estimators is the insertion of -2(B - 9)272(1 + 7)“4 within the braces {-}.
The asymptotic mean squared error of the least squares slope estimator is

var(B) + (B - 9)272(1 + 7)—2-



Table Title

Table 1. Maximum Likelihood Fits to Carbon-14 Data, Sample #1277.

Figure Titles
FIGURE 1. Scattergram of Carbon-14 Data: Sample #1277.
FIGURE 2. Scattergram of Carbon-14 Data: Sample Averages.
FIGURE 3. Regression Fits From Sample #1277.

FIGURE 4. Tits From Sample #1277 on Combined Sample.



TABLE 1. Maximum Likelihood Fits to Carbon-14 Data, Sample #1277.
Estimator Intercept Std. Error Slope Std. Error
Least Squares 1129.47 130.85 .8521 0562
A = @
Max. Likelihood
A =10 1073.08 133.17 .8764 .0572
A= 8 1059.77 134.04 .8821 0576
A= 6 1038.29 135.44 .8913 .0582
A= 4 997.85 138.08 .9087 .0593
A= 2 895.14 144.78 .9529 .0622
A= 1 753.34 154.04 1.0138 .0662
A= 0.8 703.93 157.27 1.0351 .0676
A= 0.6 641.51 161.35 1.0619 ,0693
A= 0.4 561.23 166.59 1.0964 .0716
A= 0.2 456.35 173.44 1.1415 .0745
Reverse L.S.
A= 0 317.95 182.48 1.2010 .0784
Estimates for A = 1
o = 753.34 g = 1.0138 o, =9, " 393,57 ¢, = 2074.36
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