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Optimal Spacing Problems

-Let Xl:l""’xn:h denote the order statistics for a ran-
dom sample from a distribution of the form F(§§E), where

T is a known distributional form and u and ¢ are, respectively,
location and scale parameters. Estimates of uw and/or o

are often obtained by using linear functions of k < n

order statistics. Such estimators have received considerable
attention in the statistical literature primarily due to

their computational simplicity, high efficiency and frequent
robust behavior under departures from distributional assump-
tions.. The loss in efficiency from using a subset of the
order statistics is compensated, in many instances, by the
decrease in time spent computing estimators and analyzing

data. Moreover, these types of estimators are easy to use

in censored samples where most other estimation techniques,
such as maximum likelihood, are of a less computationally
tractable nature. One particularly simple estimator that

is a linear combination of k samplé quantiles (and, hence,

of k sample order statistics) is the asymptotically best

linear unbiased estimator (ABLUE) developed by Ogawa (1951).

We now discuss this estimator and the associated problem

of optimal quantile (spacing) selection.
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THE ABLUE
Let Q(u) =inf{x:F(x) > u}, 0 < u < 1, denote the

quantile function for F and, assuming that F admits a con-

tinuous density £ =F', define the density-quantile function

£Q(u) =£(Q(u)), 0 < u < 1. Also define the sample quantile

function by -
C~2(u)=xj:n , -:;Ll <u§_%, j=1,...,n.

Given a spacing U=={ul,...,uk} (k real numbers satisfying

0 < Uy <ev o< uk < 1) it was shown by Mosteller (1946) that,

provided fQ is continuous and positive at each of the ugs

the corresponding sample quantiles, 6 (ul),...,Q (uk), have

a k-variate normal limiting distribution with means

u+ cQ(ui), i=1,...,k, and variance—covariancg patrix

composed of the elements ozui(l-uj)/[an(ui)fQ(uj)], i< j,

i,j=1,...,k. Thus, asymptotically, the Q (ui) follow a

linear model with known covariance structure so that asymp-

totically best linear unbiased estimators (ABLUE's) of u and

o may be constructed using generalized least squares. Motivated

by the work of Mosteller (1946) and Yamanouchi (1949),
Ogawa (1951) develoved ekplicit formulas for these estimators

and their asymptotic relative Fisher efficiencies (ARE's)

(see also Sarhan and Greemberg (1962, pgs. 47-53)).
These formulae, for the variocus estimation situations, can

be summarized as follows:
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Case 1: o known. The ABLUE of u when ¢ is known is

uk(U) = [X(U) - oK, (0)]/K, (U) (1)
where, taking u0==0, uk+l==l and assuming £Q(0)=£Q(1)=

£Q(0)Q(0)=£Q(1)Q(1) =0,

2
k+l [£Q(u,)-£fQu, )]
K, (U) =) L i-1 (2)
1 i=1 Uity
(U= k+1 [fQ(UQ-fQ(ui_l)][fQ(ui)Q(ui)—fQ(ui_l)Q(ui_l)] (3)
3 1=1 YiTUi1
and

() =k§1[fQ(ui)—fQ(ui_i)HfQ(ui)Q (u)-£QCu; ;)8 (u;_)] .(4)

i=1 Ut
The ARE of u*(U) is given by
ARE (u* (U = K. (U 5
() =K /T, | (%)

with qu denoting the Fisher information for location para-
meter estimation, i.e.,
1
f'(X)z] )12
e[(ZOT] - o @it
o[58 [ 1w
Case 2: 1 known. The ABLUE of 0 when y is known is

o (U) = [Y(U)-uK4(0) 1/K,(0) (6)
where 9
o - k+1 [fQ(ui)Q(uf—fQui_l)Q(ui_l)] -
2 i=1 Uiyl
and
k+l 7
Y (U) fizl [£Q(u)Q(u)-£QCu;_1)QCu; )]

[£Q(u)Q (u)=-£QCu;_)Q (uy_ )1/ (uymuy . (8
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The ARE of this estimator is given by .
ARE(0%(U)) = K,()/1__ (9

with I 5? the Fisher information for scale parameter estimation,
deflned by

- Xf '(X)
Iss [ £ 00 ):I [(fQ Q' (u)]

and £Q°Q denotes the product of £Q and Q.

Case 3: Both u and ¢ unknown. The ABLUE's for uand care

w*(U) = [K,(DX(W)-K43 (W)Y (U) 1/4 (V) (10)

o*(0) = [-K3(W)X(W)+K, (WT(W)]/4(0) | (11)
where S :

B(D) = K (DR 0K, . (12)

The joint ARE for these estimators is

ARE (u*(U) ,0%(U)) = a(0)/|I(k,0) ]| | (13)
with II(u,c)l denoting the determinant of the Fiﬁher infor-
métion matrix for location and scale parameter estimation, i.e.

I(u,0) is the 2x2 symmetric matrix with diagonal elements qu

and I, and offdiagonal element

2 1
£'(X) _ ' o) !
E[% (-§?§7') :]— é (£Q) " (u) (£Q*Q) ' (u)du.

.Upon examination of the ARE expressions (5), (9) and (13)
it is seen that they are all functions of the spacing U.
Thus, an estimator based on optimal quantiles can be obtained
by choosing U to maximize the ARE for the estimator of interest.
A spacing that maximizes one of (5), (9) or (13) (or, equiva-

lently, (2), (7) or (12)) will be termed an optimal spacing.
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The determination of optimal spacings under various choices
for F, e.g., the normal, Cauchy, etc. has been a popular
area of statistical research and is the subject of the next
.section.

Optimal Spacing Selection

Early work on optimal spacing selection (although not
explicitly discussed as such) dates back at least to papers
by Sheppard (1899) and Pearson (1920) who considered the
use of certain simplified estimators (that were, in fact,
ABLUE's) for the mean and standard deviation of a normal
distribution. Both Sheppard and Pearson examined the
problem oé estimating u 6r 0 using estimators of the form

~

U = %[é (l-ul)+(~1 (ul)] and (; = b[é (l—ul)_é (ul)] for u]_ .<_ -3

and b > 0. They found the optimal value of u, to be approxi-

1

mately .27, for estimation of Y, and took u .069 with

13
b ¥ .34 for the estimation of 0. These values are in
agreement with those later obtained by Kulldorff (1963) for
optimal spacings for the normal distribution. Pearson (1920)
also considered the estimation of py and ¢ using ABLUE's
based on four quantiles. The approximations he gave for the
optimal spacings are also quite close to the exact values
given by Kulldorff.

The majority of progress on the optimal spacing problem

has, however, been made since the development of the ARE

expressions (5), (9) and (13), that are applicable to
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general F, by Ogawa (1951). As these expressions are non-
linear functions of the ui's the computation of optimal
spacings has also been facilitated, in recent years, by the

advent of high speed computers.

Spacings that satisfy a necessary condition for optima-
lity may be obtained by differentiating expression (5), (9)
or (13), with respect to the ui’s, and equating the resulting
system of simultaneous equations to zero. The usual approach
to this problem has been to examine the solutions to -these
equations (there may be many solutions) for a particular
probabiiity law of interest. The solution that provides
the highest ARE is then taken as the optimal spacing. For
location parameter estimation this procedure, for mostldis-

tributions of practical interest, reduces to solving

fQ(ui)-fQ(ui_l{_fQ(ui+l)-fQ(ui)

u,=-u, u,, .-u,
i "i-1 i+l i

2(fQ)'(ui) -

=0, i=1,...,k, (14)

éhd, for scale parameter estimation, a similar necessary
condition is ,
£Q(u;)Qu)~£Q(u; _1)Q(u, ;)

u.-u,
i i-1

2(£:Q) " (u)-

By, )00, )-FA (A0,

0, i=1,...,k, (15)

-

Y1417
where fQ+<Q denotes the product of £fQ and Q. 1In some cases
‘it is possible to show that (14) and (15) have unique solu-

tions. However, aven when this is not the case, their

solutions provide a set of optimal spacing candidates that
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may be examined to locate a spating providing high ARE.
Important early references that utilize (14) and (15) for
spacing selection are Higuchi (1954), Saleh and Ali (1966),
and Chan and Kabir (1969). General methods for
determining when (14) and (15) are'necessary conéitions for
an optimal spacing can be found.in Cheng (1975) and Eubank,
Smith and Smith (1982). 1In particular, if (£fQ)" and (fQ-Q)"
are continuous and positive on [0,1], (14) and (15) are
satisfied by optimal spacings and if, in addition, log(fQ)"
and log(fQ+Q)" are concave on (0,1) these equation systems
¢have unique solutions for each k (see Eubank, Smith and
Smith (1982)). For simultaneous estimation of y and o the
ma%imization of (13) is usually mathematically, and fre-
quently even numerically, intractable. A notable exception
is the Cauchy distribution for which the optimal spacing
consists of the uniformly spaced points i/k+l, i=1,...,k.

For a’'discussion of some of the early work on optimal
spacing selection see Harter (1971) and Johnson and
Kotz (1970a,b). A bibliography containing many of the more
recent references -is provided in Eubank (1982).

Approximate solutions to the problem of optimal spacing
selection that are based on spacings generéted by density
functions on [0,1] have been considered by Sdrndal (1962)
and Eubank (1981). Assuming that (fQ)" and (£Q-Q)" are
continuous let w(u)==((fQ)"(u),(fQ-Q)"(u))t; then, Eubank (1981)

showed that asymptotically (as k - =) optimal spacings are
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provided by the (k+l)-tiles of the densities

| (£Q)"" (u) |23

1 .
/f l(fQ)"(s)|2/3ds, o known,
0

1
(= { | Q-9 " @) | 2/3/f | (£Q-@"(s)|*/3ds, u knowm, - (16)
0

1’3/j [0() "1 u,0) u() 1 s,

[ () (o) () ]
both u and ¢ unknowm.
Letting H?l denote the quantile function for h in the
parameter estimation proﬁlem of interest, an approximate
solution is then provided by the spacing Uk={H-l(kil),..

(E;I)} Examples of these solutions are given in Table 1.

This approach provides spacings that are optimal in an asymp-
totic (as k + ») sense. For instance, if {Uk} denotes the

sequence of spacings chosen from the density proportional

3 .
to l(fO)"(u)IZ/', by successively increasing k, and {Ui} is

.a corresponding sequence of optimal spacings, then

lim l-ARE(u*<Uk)) )
ke 1-ARE(u*(U})) ~

This has the interpretation that the sequence {Uk} and {Uﬁ}
have identical asymptotic properties, in terms of their ARE
behavior, and suggests that, for large k, Uk might be used as
a computationally expedient alternative to the optimal
spacing Uﬁ. Similar results hold for the other estimation

situations. The approximate solutions provided by the

densities in (16) have been found to work surprisingly well
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Table 1. Asymptotically optimal spacings for various

distributions

Distribution

‘Cauchy
Exponential

Extreme Value
(largest value)

Logistic
Normal (F=9)

Pareto (F(x) =

1-(14x) "7, x,v > 0)

Unknown

Parameter(s)

u'and o
o

u

H-l(i/k+1)

i/k+1
1-(1-1/k+1)>

(i/k+1)3

i/k+1

8(/3 0”1 (i/k+1))

1- (1-i/k+1) Y/ 2
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even for k as small as 7 or 9. For example, when k=7 the
optimal spacing for the estimation of the scale parameter
of the expomential distribﬁtion is given by Sarhan, Greenberg,
and Ogawa (1963) as U§=={.3121, .5513, .7277, .8506, .9297,
.9746, .9948} with a corresponding ARE of .969. 1In contrast,
the approximate solution U7, obtained from Table 1, consists
of the points l—(l;i/8)3 and provides an ARE of .958.
Consequentiy, the loss in ARE from using the approximate
solution (16) is, in this case, only .0ll. Such comparisons
for the other laws’'in Table 1 provide analogous
results. See Eubank (1981) for further comparisons and
details regardiﬁg the computaﬁion and computational savings
available from the use of the densities in (16).

The spaciﬁg densities in (16), or equivalently their
H-l functions, may be viewed As descfibing (asymptotically)
the areas of concentration of the optimal spacings for a
distribution and, hence, are useful for the purpose of
comparison between distributions. There are at least three
common shapes for the H“l functions, namely i) uniform
(H—l(u)=u), such as for the logistic (¢ known) and Pareto
(¢ known) when v=1, ii) skewed (H—l(u) frequently behaves
like u3) e.g., the exponential (U known) and extreme value
(0 known) and iii) symmetric (H-l(u)=H-l(l-u)) as illustrated
by the normal distribution. In contrast to uniform or

symmetric shaped spacing densities, those which are skewed



Randall Eubank

Optimal Spacing Problems -

11

indicate that, for large k, estimators will be composed of
quantiles corresponding to predominantly large or small
percentage values. Thus, for instance, since H_l(u)=u3
for the extreme value, it follows that estimators of u for
the extreme value distribution will be based predominantly
on data values that are below the median., for k sufficiently
large.

For many problems, such as those arising from the study
of survival data, the object of interesﬁ is the p-th
population percentile for some 0 < p < 1. Under the assumed

location and scale parameter model the p-th percentile is

u+0Q(p) for which an asymptotically best linear unbiased
estimator is u*(U)+o*(U)Q(p). This estimator has asymptotic
(as n » ») variance

o2 IRy (1)+Q(p) 2K (1) =20 (p)K3 (1) ] /mA (V)
which may be minimized as a function of U to obtain spacings
that are optimal for percentile estimation. Optimal spacing
selection, in this setting, is discussed by Ali, Umbach
Saleh, and Hassanein (1983). A general approximate solution,

similar to those discussed previously, is given in Eubank

(1981).

Tests regarding certain hypotheses about p and o that are

based on the ABLUE's have also been developed. When both
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U and o are unknown a test of H U= against Ha:u#uo can be

0

conducted using the statistic
R TO) (u* (0 -1) /Y2, (0 7 (k=2) , ”n

where, for a symmetric spacing (i.e.,u =l—ui),

k-i+1
: 2
2, (0)=8 (0) - [K, (U)+K, (0) Ju* (V)

and 2

K+l [£Q(u,)Q (u,)=-£Q(u, )Q (u, ,)]
SU) = z i i i-1 i-1

i=1 %17%-1
(c.f. Ogawa (1951) or Sarhan and Greenberg (1962, pgs. 291-
299)). This statistics has a Student's t limiting distri-
bution with k-2 degrees of freedom, when HO is true, and an

asymptotic noncentral t-distribution, under Ha’ with

noncentrality /Ezfﬁj(u—uo)/c. Thus, the power of this test
is an increasing function of Kl(U) and, consequently,
optimal spacings, for testing purpdses, may be‘dbtained by
maximizing Kl(U) over all symmetric spacings. In some
(although not all) cases this is equivalent to optimal spacing
selection for u*(U). A test for HO:0=00 against Ha:c#GO,
when u is known and, therefore, taken as zero, can be ob-
tained from f

7Ky (0) (o* (0)-0) /YR, () ] (k-1) (18)
where Qz(_U)=S(U)-K2(U)c*(U)2 (c.f. Sarhan and Greenberg (1962,
pgs. 380-382)). This statistic also has an asymptotic

0

and has (asymptotically) a noncentral t-distribution under

t-distribution under H,., except with k-1 degrees of freedom,

Ha with noncentrality VK7(U)(G-GO)/G. As the power of the
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test increases with KZ(UL it follows that selecting optimal
spacings for testing hypotheses about ¢ and for the estima-
tion of ¢ are equivalent problems. The use of (17) and (18)
with the Cauchy, logistic and normal distributions has Eeen
considered by Chan and Cheng (1971) and Chan, Cheng, Mead and
Panjer (1973) who have also investigated the problem of
spacing selection and some small sample behavior. Similar
results for (18), are given by Ogawa (1951) (see also

Sarhan and Greenberg (1962, pgs. 380-382)), Chan, Cheng and
Mead (1972), and Cheng (1980) for the exponential, extreme

value and Rayleigh distributions respectively.

in previous discussions it has been assumed that the
quantiles utilized in estimation were selected from complete
samples. However, the ABLUE is also readily adapted for use
with censored samples. For instance, if the sample is
censored from the left, with censoring proportidn o, then
this may be viewed as observing Q (u) only on [a,1l]. Conse-
quently, the ABLUE may be computed as before except now the
spacing must satisfy o Sy <,y <eees u < 1. Optimal
spacings are then obtained by maximizing (5), (9) or (13)
over spacings of this form. Similar comments hold for right
and both left and right censored samples. Most of the
previous results, such as the necessary conditions (14) and
(15) and the approximate solutions (16) are found to also
hold for censored samples after appropriate modifications

(c.f. Cheng (1975) and Eubank (1981)), References



Randall Eubank

Optimal Spacing Problems

14

containing the optimal spacings for censored samples from
various probability distributions can also be found in
Eubank (1982). A closely related problem where the ABLUE
is used to predict future observations in what may be
viewed as right censored samples is discussed by Kaminsky

and Nelson (1975). .
The distributional form, F, is not always known in

practice. Frequently, our knowledge is only sufficient to
restrict attention to several possible candidates for the
underlying probability law. In such instances it may be

advantageous to use spacings that are robust relative to

the various models that are being considered. One measure

of robustness for a spacing is its guaranteed ARE(GARE), i.e., its
minimum ARE over all the candidates for F. An .approach to

robﬁst spacing selection for location parameter estimation

that is based on GARE has been developed by Chan and

Rhodin (1980) (sece also Eubank (1983)).
Related Problems

The problem of optimal spacing selection for the ABLUE's
is closely related to a variety of other statistical problems.
In the one parameter case, the problem of optimal spacing
selection is equivalent to ij optimal grouping for maximum
likelihood estimation of u or o from grouped data (Kulldorff (1961)),

ii) optimal grouping for the asymptotically most-powerful

group rank tests for the two sample location and scale



Randall Eubank

Optimal Spacing Problem

problems (Gastwirth (1966)), and iii) regression design
selection for time series models with regression function
fQ or £Q*Q and Brownian bridge error (Eubank (1981)).
In addition, there is a structural similarity between these
problems and i) optimal strata selection with proportional
allocation (Dalenius (1950)), ii) problems of optimal
grouping considered by Cox (1957), Rade (1963) and Ekman (1969)
and iii) certain problems of optimal grouping for chi-squared
tests of homogeneity and for multivariate distributions
(Bofinger (1970, 1975) and Hung and Kshirsagar (1984)).

The connections and relationships between these problems
have been examined by Adatia and Chan (1982) and Eﬁbank (1983).
Under appropriate restrictions all these problems are equi-

valent for normal and gamma distributions.
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