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ABSTRACT

The literature pertaining to splines in regression analysis
is reviewed. Spline regression is motivated as a simple exten-
sion of the basic polynomial regression model. Using this
framework, the concepts of fixed and variable knot spline re-
gression are developed and corresponding inferential procedures
are considered. Smoothing splines are also seen to be
an extension of polynomial regression and various optimality
properties, as well as inferential and diagnostic methods, for

these types of splines are discussed.

1. INTRODUCTION

In recent years spline functions have enjoyed increased
popularity as a tool in both theoretical and applied statistical

research. They have been found useful for handling prcblems



such as nonparametric regression and data smoothing, analysis of
segmented regression models, nonparametric density estimation
and numerical differentiation of data. Splines have been uti-
lized for such diverse purposes as analysis of response curves
in Agriculture, Economics and Pharmacokinetics (Fuller (1969),
Poirer (1975) and Wold (1971)), estimation of the liquidity
trap in economics (Barth, Kraft and Kraft (1976)), determining
the base temperature in heat accumulation models (Gbur, Thomas
and Miller (1979)), calibration of nuclear materials processing
tanks (Lechner, Reeve and Spiegelman (1982)), analysis and
estimation of meteorological fields (e.g. Wahba and Wendelberger
(1980)), estimation of aerodynamic models for airplanes from
flight data (Smith and Klein (1982)) as well as a variety of
applications in Geophysics and Astrophysics (see e.g. Jupp and
Vozoff (1974) and Holt and Jupp (1978)) to name but a few.
This illustrated diversity of applications for splines is due,
in part, to their ability to provide simple approximate models
for complicated phenomena which are either difficult or impos-
sible to model precisely. 1In fact, spline regression models
are an extension of polynomial regression models which have long
been utilized for this purpose. In this paper an overview of
the role of splines in regression analysis will be provided
which focuses on the connection between these two types of
regression models.

Consider the classical input-response model where, for
given inputs tl,...,tn in some interval [a,b], the corresponding

outputs satisfy,
y(ti) = n(ti) + e(ti) , i=1,...,n, (1.1

for n some smooth response function and e(tl),...,e(tn) zero

. . 2
mean uncorrelated random errors with common variance ¢°. If the
form of n is unknown or very complicated it is often feasible to

use an approximation to model (1.1) of the form

y(ti) = p(ti) + E(ti) , (1.2)



where p is a polynomial of order m, i.e.,
m-1 i
p(t) = } o.t
.=0 J

This has the advantage that the unknown parameters in the
approximate model, namely ao,...,am_l , enter in a linear
fashion and, hence, may be estimated by least squares. Moreover,
p is known to be a good choice since, for example, polynomials
provide a rich class of approximating functions which are, in
fact, dense is the set of all continuous functions on [a,b]

(see, e.g. Royden (1968, pg. 172)). 1If we are willing to

assume that n is m times differentiable in [a,b] then, by
Taylor's theorem with integral remainder, (1.1l) can be written

as

y(t)) =p(ty) + () +e(ty) (1.3)
where the aj are constants which involve a, but not t,

t _(m) _ (m)
(0 - [ e 0T -7 =5 o,
a

(1.4)
and (1.4) uses the "+" function notation

Kk { xk »y x>0

xS 0 , otherwise.
By further assuming that r(t) is so small on [a,b] as to be
inconsequential one can then justify using model (1.2) in lieu
of (1.1). These and other justifications for polynomial re-
gression models are well known and, in many cases, such models
will provide an entirely satisfactory description of a set of
data. Such is not always the case, however, as will now be
“illustrated.

Figures 1 and 2 provide, respectively, plots of the best
yvearly times for the 800 meter Amateur Athletic Union (AAU) races
from 1930-1972 (see Nougues and Sielken (1980, pg. 25)) and a
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FIGURE 1. AU Race Data
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data set representing a property of titanium as a function of
heat that will hereafter be referred to as the titanium heat
data (see de Boor (1978, pg. 222)). Examination of the AAU race
data suggests the possibility of a change in the structure of
the underlying regression function occurring in the early 1950's.
This possibility is made even more likely by the fact that new
rubberized tracks were first utilized during this time period.
. Thus we might postulate a model for this data which allows for

a structural change in the 1950's. Polynomials are inadequate
for this purpose since they are globally determined by their
values in'any small interval and, hence, cannot adapt to model
shifts. Furthermore, the use of a polynomial model for this
data would make the hypothesis of most interest, namely the
presence of a structural change in the early 1950's, difficult
if not impossible to test. This example illustrates an impor-
tant shortcoming of polynomial regression models; they are not
well suited for modeling phenomena whose structure changes as

a function of~the independent variable.

Another difficulty frequently encountered in polynomial

regression is illustrated by the titanium heat data in Figure 2.
To obtain an adequate fit, successively higher order polynomials

have been fitted to the data. Unfortunately, this results in

estimators of n exhibiting oscillatory behavior that belies the
smoothness visual perception would attribute to the underlying
regression function. Such behavior can be explained, heuristi-
cally, by noting that the derivative of a polynomial is also

a polynomial whose leading coefficient is a multiple of m.

This implies the possibility of steep derivatives and, hence,
increased oscillation for larger values of m.

A more general model, which alleviates many of the diffi-
culties inherent in polynomial regression, can be obtained by
dealing with the remainder term in (1.3). Rather than dis-
carding it to obtain (1.2) let us instead approximate it by

use of a quadrature formula. More specifically, for k suitably



chosen values, El,...,Ek, satisfying

a < gl<-~-< £, <D (1.5

and constants Bl,...,Bk which depend on El,...,Ek, but not on t,

we can write

r(t) = z B (e-E, T

where = means '"approximately equal to." This provides a new

approximate model

y(t,) = s(t) + e'(ti) , i=1,...,n (1.6)
where
m-1
s(t)—zac3+23(tg) (1.7)
—-O j= =0 J

The function s is what is known as a spline of order m with
knots at El,...,ik. For a fixed set of knots § = (El,...,Ek)'
the collection of all functions of the form (1.7) will be
denoted by S?. It is well known (see de Boor (1978)) that

S? is a linear space of dimension mtk for which the functions,

Ift,...,tm-l, (t—El)z— . , (t- E ‘m 1 provide a basis.

Examination of model (1.6) reveals that i) the polynomial

model (1.2) corresponds to the special case of Bl="'=8k=0,
ii) for fixed § this is a linear model so that the unknown
parameters Cgseeesl 15 Bl,...,Bk can be estimated by least
squares and iii) the regression function, s, consists of

k+1l polynomial segments that are tied together at the knots,
El,...,Ek, in a fashion which insures the existence of m-2
continuous derivatives. The piecewise nature of s makes it

a reasonable approximation for models with changing structure
and, by providing more locally adaptive fits, the order of
each segment can usually be kept small, often resulting in
smoother estimates of n. This latter point is illustrated by
comparing the fit of the cubic spline (m=4) with five knots

to that of the polynomials in Figure 2.



The knots, gl,...,gk, in model (1.7) may or may not be of
interest in their own right. In certain instances, e.g., when
n is postulated as having a segmented nature, they may be the
parameters of principal interest. In these situations our ob-
jective will usually be to test hypotheses about their values
or, perhaps, to construct point or interval estimates. On the
other hand, for data summary or prediction purposes the precise
values used for the £'s may be unimportant as long as they re-
sult in a good fit to the data. Consequently, the &'s in (1.7)
might be i) specified a priori through hypotheses to be
tested, ii) considered as unknown parameters in the model or,
iii) candidates for their values might be selected through
initial data analysis using some ad hoc methods. Both the first
and last of these possibilities will be termed a case of fixed
knots since, in either event, when Ogseveslp 15 Bl,...,Bk are
estimated the £'s are treated as being known. Fixed knot
spline regression is the subject of Section 2. If the &'s are
included in the model specification as parameters to be esti-

mated this is called variable or free knot spline regression

and is discussed in Section 4.

A special class of splines, known as smoothing splines,
also arises from model (1.3) as a result of certain smoothing
and prediction considerations. An extensive literature haé
evolved on these types of splines which is discussed in Section
3.

Before proceeding it should be noted that this paper fo-
cuses entirely on splines which arise from or are used in re-
gression problems. Whereas this limitation in scope provides
for a more detailed development of the area it does not allow
us to exhibit the breé&th of applications for splines in statis-
tics. For example, there is a voluminous literature on the
use of splines in density estimation that will not be discussed
here. For many of the important references in this area we

refer the reader to the excellent review paper by Wegman and



Wright (1983). Some important discussions on the use of splines
in the closely related problem of nonparametric regression can
be found in comments by Wahba to Stone (1977) and the references

she cites therein.

2. SPLINE REGRESSION: FIXED KNOTS

Throughout this section it is assumed that values to be
utilized for the knots have been specified. Although these
values will frequently arise from hypotheses to be tested,
certain rules of thumb for knot placement, when this is not the
case, can be found in Wold (1974) and Lenth (1977). Other ad
hoc knot selection techniques will be discussed subsequently.

Since for specified § = (gl,...,gk)' (1.7) is linear
in ao,...,am_l, Bl,...,Bk, the unknown parameters in model
(1.6) can be estimated by ordinary least squares. Equation
(1.7) is known as the "+" function or truncated power basis
representation for s.. Fuller (1969) was apparently one of
the first to utilize "+" functions in connection with spline
and other types of piecewise polynomial regression. As we will
see, the "+" function basis has advantages from the point of
view of statistical hypothesis tesfing. However, it is not the
best suited for estimation and evaluation purposes since the
design matrix for this form of the model can be poorly condi-
tioned and the number of arithmetic operatioms requiréd to
evaluate s(t) depends on the location of t relative to the
knots. These properties may lead to numeric inaccuracies,
especially when many knots are use..

The problems inherent in the truncated power basis repre-
sentation for s can be eliminated, in part, by using a piece-
wise polynomial basis for Sg. It can be shown (see, e.g.,

de Boor (1978)) that any function of the form (1.7) can be

written as

m-1 .
= J =
s(t) = .ZO 5jrt s telEL,E ), t=0,....k (2.1)



where EO =a, &

= 1 . . .
1 b and the sjr s satisfy the linear (continuity)

constraints
s“)Gfﬁ =s“)@£ﬂ , 2=0,...,m-2, r=1,...,k. (2.2)

The converse to this can also be established so that functions of
the form (2.1), subject to (2.2), provide an alternative basis for
Sg. This segmented definition of s alleviates the evaluation
difficulties associated with the "+" function representation.

The piecewise polynomial basis for splines was utilized for
spline regression by Buse and Lim (1977) who related their ap-
proach to an alternative representation used in the pioneering
work of Poirier (1973). In view of the constraints (2.2), it is
seen that estimation using this representation for s must be ac-
complished by restricted least squares. Thus, explicit forms
for the estimators as well as techniques for their computation
can be obtained, for example, from Gerig and Gallant (1975) who
also provide a spline oriented example. However, the restricted
least squares procedure is cumbersome and a total of mk + m
parameters must be estimated as compared to the "correct number,"
mtk, which is the dimension of Sg.

A compromise between the "+' function and piecewise polynomial
basis that provides for both ease of evaluation and a well con-
ditioned design matrix is obtained through use of B-splines.

Define 2m "additional knots"

@)™ g

and

Then, the values for B, o’ the B-spline of order m with knots at

9

gi""’£i+m’ can be obtained via the recurrence relation

t-§ £, -t

i+m
Bi,m—l(t) + -g—-‘-—:g—'—"' B (t) (2.3)

B, (t) = .
m 3 i S 441 i+l,m-1

s im-1"01



0 , otherwise

1, &.<t<g,

_ i— i+l
By,1(8) = { (2.4)

’
for i=0,...,k. In using (2.3) we employ the fact that a B-spline
of order q with g+l coincident knots vanishes identically. It can
be d ' -
e demonstrated (s;e de Boor (1978)) that B-(m—l),m’ ’Bk,m pro

vide a basis for Sg on [a,b] and, hence, there are constants

Y—(mrl)""’Yk such that

k
s(t) = Y
j=~(m-1)
It follows easily by induction from (2.3) and (2.4) that Bj m(t)==0

if t ¢ [Ei’€i+m]' Consequently, B-splines have local support and

evaluation of s(t) for any t € [a,b] will involve only m of the

ij,m(t) , te[a,bl]. (2.5)

B-splines. Perhaps of more importance is the fact that the design
matrix for model (1.6), with s expressed in terms of B-splines, is
well-conditioned for moderate m. Infact,sinceZ:=lBi,m(tr)Bj’m(tr)
vanishes for [i—jl > m, the normal equations for this case are
banded with only m~1 non-zero offdiagonal bénds. An early example
of the use of B-splines in spline regression can be found in Fuller
(1969) who considered quadratic (m=3) cardinal (equally spaced
Ej's) B-splines for trend removal from time series.

B-splines are most readily evaluated by means of computer, with
FORTRAN code for this purpose available in de Boor (1978). They
appear to be the basis best suited for computational purposes,
particularly in large data sets or when many knots are utilized.
The principal difficulty with their use is-that they wvanish out-
side of [a,b] and, hence, provide a representation for s only on
this interval. Consequently, to extrapolate beyond [a,b] one must
convert the fitted spline to either the piecewise polynomial or
truncated power basis representation and use the first or last
polynomial segment, as appropriate, for this purpose (see de Boor

(1978) for the details involved in such conversions.) This is



only a minor drawback since extrapolation from a segmented model
would seem ill advised in most cases.

For further discussion of the three bases for splines presented
here see Cox (1971) who also considers another basis derived using
Chebyshev polynomials. A more statistically oriented comparison
of alternative spline bases can be found in Nougues and Sielken
(1980).

Assuming normal errors in model (1.6), hypothesis tests and
confidence intervals based on the least squares parameter estimates
can be obtained using standard linear model methodology. However,
some of these hypotheses for splines have special interpretations
which merit further discussion.

A hypothesis that is frequently of interest in spline models
stems from the belief that the true regression function, n, has a
segmented nature with the £,'s being postulated points at which
the different segments are ionnected. If s provides a close ap-
proximation to n a hypothesis of interest is, for example, that
Ej is active in the sense that s has a jump in its (m-1)-st deri-
vative at Ej. If this were not the case then s would consist of
a single polynomial segment on [gj-l’gj+l
to reject the hypothesis that Ej is not active would lead us to

). Consequently, failure

suspect that the same functional relationship governs input and
output on both [gj—l’£j+l) and [gj’gj+l)' This hypothesis is
easily tested using the "+" function representation since it is

equivalent to

HO : Bj = 0. (2.6)

The required t-statistic for this test is standard output from
linear models packages which, as noted by Smith (1979), is an
important advantage of this basis. Generalizations orf this
idea to more than one knot follow immediately. For example,
the hypothesis of a global model, i.e. that the model is (1.2),

. . t -
is tantamount to HO : (Bl,...,Bk) 0.



To- test the hypothesis that £, is not active using piece-
wise polynomials we must test HO :%j—l,m=6j,m' This can also
be accomplished using a t-statistic, given the estimated G,r‘s
and their estimated variance-covariance matrix (see Gerig and
Gallant (1975)). Since this requires a statistical package or
programs that can perform restricted least squares, the required
test statistics may be difficult to compute in practice.

For the B-spline basis (2.6) is equivalent to

i-1
S et O B e e RO RS M RN

0 1 m,m j=i-m+1 ?
(m-1) - ‘ -
Bi,m (£i+)Yi = 0. 2.7)

Smith (1982) has shown that the coefficients for the Yj's in
(2.7) form a contrast and provides an algorithm for computing
the t-statistic required for the test.

As an illustration consider the AAU race data discussed in
Section 1. Figure 3 shows the results of fitting a cubic spline
(m=4) to this data with a knot at £l==52.5. To test the hypo-
thesis that the introduction of rubberized track in the early
1950's resulted in a structural change in the relationship gov-
0° Bl==0.
The resulting t-statistic is found to be significant at the

erning yearly race times we might test the hypothesis H

.0003 level which leads us to believe such a change did, in
fact, occur.

The diagnostics utilized for spline regression models in-
clude those available from standard regression analysis. Thus,
one examines residuals, deleted residuals, Cook's distance mea-
sures, etc. to ascertain any modeling errors or overly influential
observations (see Chapter 7 of Gunst and Mason (1980) for an ac-
count of these topics). An important modeling error, which is
peculiar to spline models, results from the omission or misspe;i-
fication of one or more knots. Such errors are frequently mani-
fested through periodic or patterned behavior for the residuals

(see Lechner, Reeve and Spiegleman (1982) for an example of this
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FIGURE 3. Cubic Spline Fit For PAU Race Data
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in the simple case of m=2). However, the problem of developing
diagnostics tailored to the detection of knot specification errors
has not, as yet, received much attention.

Several statistics that can be used, either to indicate rea-
sonable ad hoc knot choices or as model diagnostics can be moti-
vated from the work of Chow (1960) and Brown, Durbin and Evans
(1975). The basic idea is as follows. Consider first the poly-
nomial model (1.2) and, for % > mtl, let ;Q(t) denote the esti-
mate of p(t) based on y(tl),...,y(tz). Then define the recursive
residuals WQ, 2=m+l,...,n by

(egp1) ~ Bty

W, = (2-8)
* \J 1+x', . [X!'X ]'1
R T T S )
where Xg denotes the design matrix corresponding to y(tl),...,y(tg)
_ m-1,, .
and o1 = (l’tl+l"'°’t2+l) . If model (1.2) holds with normal

errors it follows from Brown, Durbin and Evans (1975), that these
will be independent N(O,Gz) random variables and can be utilized
for detecting model shifts. They suggest using measures based

on the WK such as

J A
Djl = 22=m+1 W /o, j=mtl,....n (2.9)

and

Dj2 (j—m)gi/(n-m)gi , j=mtl,...,n (2.10)
where 8%==(j-m)-lyq (y(t.)—;.(t.))z. If the value of one of

| ~i=1 i7 Y3071
these statistics departs from within prescribed bounds (see
Brown, Durbin and Evans (1975)) this would suggest the placement
of a knot near the point of deviation. On the other hand, fail-
ure of this to occur would indicate that an overall polynomial
model was acceptable. If El is a knot selected using one of
(2.9) or (2.10), then the previous type of procedure can now
be repeated, assuming instead a spline model of order m with a

knot at El,by computing the corresponding recursive residuals



and analogs of (2.9) - (2.10) to detect the presence of another
knot, Ez, etc. A procedure similar to the one outlined here
has been used effectively by Ertel and Fowlkes (1976) for the
selection of breakpoints in piecewise linear regression. .Re-
lated statistics which could also be utilized for knot place-
ment can be found in the work of Chow (1960).

Recursive residuals should also be useful for the detection
of model misspecifications such as the omission of a knot. This
can be argued, heuristically, by first noting that, for example,
the error from the Lz[a,b] projection of an m-th order spline
with knots at El,...,Ek onto splines with knots at El,..

£

Consequently, the residuals from a spline fit, where a knot Ej

2B 1
j+1""’£k is an m-th order spline with knots at El""’gk'

has been omitted, should behave like a spline with knots at
El,...,Ek. Thus, by reasoning along these lines it should be
possible to adapt the previous statistics for the detection of
model misspecification as well.

The basic spline model can be generalized in any or all of
several directions. For example, our assumptions regarding the
random errors could be altered to include the case when 02 is
not constant but varies between the different polynomial seg-
ments. Assuming that the €'s are still normal and independently
distributed, the maximum likelihood equations for this altered
model are readily derived and can be solved, in theory, to
obtain variance and parameter estimates. Examples of equations
of this type can be found in Quandt (1958), for piecewise
linear regression models, and Whitten (1971), for the case of
natural splines. In practice it is usually more convenient to
employ some approximate solution such as using the average of a
segment's squared residuals from the usual least squares fit
to estimate that segment's variance. This approach was found

to be quite successfulby Whitten (1971). Another generaliza-



tion of this nature would be to assume the independent variable
is also measured with error. Gbur and Dahm (1982) have consi-
dered estimation for such models in the special case of m=2,
k=1.

.The spline model can also, in some cases, be too smooth in
the sense of admitting more derivatives than n at the Ej's.
Thus, it is frequently more appropriate to use a more general
model with s in (1.6) now defined by

m-z-l J lz( m-z'l J
s(t) = a.t” + B, (t-€), (2.11)
j:o J r:l j:.\)r J’r '+

for v = (vl,

0 and m-1. The parameter vj represents the number of continuity

...,vk)' some specified vector of integers between

constraints (number of continuous derivatives plus one) imposed
on s at Ej' The new model, (1.6) and (2.11), agrees with our
previous model, (1.6) and (1.7), when vj==m~l, j=1,...,k, and
becomes a discontinuous piecewise polynomial of order m when
vj==0, j=1,...,k. Fuller (1969,1976), Gallant (1974) and
Gallant and Fuller (1973) consider models of this form with
vj= 2, j=1,...,k, which they call grafted polynomials. Functions
of the form (2.11) are also frequently called splines and can
be expressed in terms of piecewise polynomials or analogs of
B-splines obtained by "stacking" m—Vj knots at each Ej (see
de Boor (1978)). Important hypotheses for this more general
model include H, : B . =0, which is equivalent to s admitting

0" "V.,]
one more derivative ~than originally specified at Ej’ and H

By 3P,y

is “not active. Such hypotheses may be tested through standard

0"
= 0, which has the interpretation that Ej

linear models methodology using the "+" function basis. Smith
(1982) has developed certain tests of this form using B-splines.
See Smith (1979) for an illuminating discussion of the relation-
ship between, and appropriate tests for comparing, models ob-
tained from (2.11) through alternative choices for m and/or the

Vv,'s.
]



Fuller (1969), Gallant (1974), Gallant and Fuller (1973) and
Smith (1979) have discussed the use of spline models (in the con-
text of (2.11)) which have different order polynomial segments.

This can be accomplished through constraining the coefficients

and, hence, will usually require the use of restricted least squares
for inferential purposes. An illustration of the use of restricted
least squares for such models can be found in Gerig and -Gallant
(1975).

As an example of the use of model (1.6) with (2.11) consider
the data on specific retention volume of methylene chloride in
polyethelene terephthalaté (c.f. Gallant (1977)) which is plotted,
as a function of temperature, in Figure 4. A fit which uses sl(t)=
aod-alt + aztz-FBZl(t—Z.BS)i is clearlg inadequate. Alternativelyé
+o,t+a,t +Bll(t-2.85)++BZl(t—2.85)+

0 1 2
provides a good representation of the data that is much more con-

the spline function sz(t)=cx

sistent with what is indicated by the plot, namely, possible con-
tinuity but not differentiability of n, the true response function,
at the knot. It should be noted that a test of HO :Bll==0 results
in rejection at the .0001 level and, hence, the continuity reduc-
tion at El is also statistically warranted.

The use of robust regression techniques for spline models
has been considered by Lenth (1977). Instead of estimating the
coefficients in (2.11) by minimizing the sum of squared residuals,
estimators are obtained by minimizing a function of the form

n

jle(y(tj)—s(tj)) ,

where p is some appropriately chosen loss measure. As illastrated
by Lenth (1977), the combination of robust regression methodology
with the inherent robustness already available from a spline model

provides an extremely flexible curve fitting procedure.
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The concept of spline regression can also be extended to
the case of more than one independent wvariable. Unfortunately,
such extensions suffer from the lack of a totally satisfactory
basis for splines in higher dimensions. Spline regression
models involving several independent variables are discussed,
for example, in Fuller (1969) and Whitten (1972).

The problem of optimal design construction for spline
regression models appears quite difficult in general. Various
types of optimal designs for certain special spline models
have been derived by Studden and Van Arman (1969), Murty (1971),
Draper, Guttman and Lipow (1974a,b, 1977) and Park (1978). ‘

3. SMOOTHING SPLINES

A smoothing spline corresponding to model (1.3) is a
spline of order 2m which has a knot at each of the observation
points. Consequently, we assume throughout this section that

a<tl<°°'<t <b .

0

An explicit expression for this type of spline will be given

in Section 3.2. We will first, hoWever, explore the statistical
motivations for smoothing splines. These are, perhaps, best
provided by simply detailing several of the regression related

problems which they solve.

3.1 Optimality Properties of Smoothing Splines

Consider again model (1.3) where r represents the
departure from a polynomial regression model. A measure of

the size of this remainder is provided by

b
=1 [ e®e?a= W™, e



which is also a measure of curvature smoothness for n (see
Wegman (1982) for a discussion of "derivative and curvature
smoothness'"). Since n is believed to be a smooth function,
(3.1) is not expected to be large and, consequently, functions
with large mth derivatives, in the sense of (3.1), should not
be considered as estimators of the response function. To in-
corporate these ideas into an estimation scheme we might esti-
mate N by using the function which minimizes a penalized least

squares criterion such as

()2

13 2
S ) Gle-se N +Allf (3.2)

j=1
over all f's in an appropriate function class, for some given
A€ (0,2). The criterion (3.2) represents a compromise between

fidelity to the data and smoothness which, when minimized over
Wg[a,b] - {£:£9) s absolutely continuous (3.3)

=0, ...,m-1 and || £™|] < =},

results in the smoothing spline estimator for n, which will be

A

denoted by U It is of historical interest to note that
b

smoothing splines were apparently first derived by Schoenberg
(1964) who, motivated by the work of Whittaker (1923), proposed
the use of (3.2) as a data smoothing criterion.

As an alternative to the previous development suppose
that, either through assumptions or prior knowledge regarding
the smoothness of n, it is possible to specify a bound for

[]r(m)ll such as

Hr(m)H < a. (3.4)

Thus model (1.3) can now be thought of as an approximate linear
model in the sense of Sécks and Ylvisaker (1978). Lacking
better knowledge of n than (3.4), it would seem reasonable to
predict n at te [a,b] by the linear estimator Z?=lc;y(tj)

which solves



max E[(Y(t)-i c.Y(tj)) ]
IEIFC.
n

= min max E[(y(t)- } C.y(tj))z]-

peeesey Hr® | =

(3.5)
If ns:W?[a,b], then the solution to (3.5), when viewed as a func-
tion of t, is identical to the minimizer of (3.2) with X==02/na2.
This result is due to Speckman (1982c¢).

Another method of deriving smoothing splines can be obtained
by drawing a parallel with models for discrete time stochastic
processes. A common model for discretely indexed time series is
y(t) =£f(t) +e(t), t=0,*1,..., where € is a white noise process,
and £ consists of deterministic and, possibly, stochastic components
but is assumed uncorrelated with the € process. In practice, £
is usually adequately represented by removing a polynomial trend
and treating the remainder as a moving average process of the
form 2§=Objw(t—j), where {w(t) ; t=0,+1,...} is also a white noise

process. Thus, the approach has been to write

y(t) = mil a,tj + r(t) + €(t)
j=o0
and approximate r(t) by a stochastic process. This idea has the
obvious parallel of approximating r(t) in (1.4) by a continuous
time process such as Z(t) = LDb(t—u)dw(u) where {W(u) ; ue [a,b]}
is a zero mean process having the same covariance kernel as that
of the Wiener process and b(*) is some specified function. In
particular, the choice b(x) = xm_l/(m—l)l results in a Z process

+
with covariance kernel

b (t—u)mul(s--u)m'-l
Qs,t) = [ h *

a (m-1) 12

Consequently, by analogy with results from time series, we might

du. (3.6)

consider using an approximate model such as
m-1 .
= J ' i=
y(t,) jzo ot3 +0gZ(t)) +e(t), i=1,...,n, (3.7)



where OS is some positive scale parameter and the Z's are
assumed to have zero means, covariances given by (3.6) and

be uncorrelated with the €'s. For any given t the best linear
unbiased predictor (BLUP) of y(t) for this model was derived

by Kimeldorf and Wahba (1970b) but can be obtained by more
classicai means through reference to Goldberger (1962).

Kimeldorf and Wahba (1970b) recognized that, when viewed as a
function of t, the BLUP for (3.7) is the same function which
minimizes (3.2) with k=02/n0§ and, hence, is a smoothing spline.
The idea of viewing smoothing splines as stemming from polynomial
approximation of n with the remainder modeled as a stochastic

process is due to Wecker and Ansley (1981, 1983).
In the event that E(ti) = (0, i=1l,...,n, in (3.7) and,

hence, only the process Z?;éajtj +-osz(t) is observed, it
follows from Kimeldorf and Wahba (1970b) that the BLUP is the
smoothest spline, in the sense of (3.1), which interpolates the
data. Extensions of this result to more general processes such
as those hdving mean value functions that are not polynomials
are given in Peele and Kimeldorf (1977, 1979).

Instead of the three previous viewpoints we might adopt
the Bayesian philosophy of Blight and Ott (1975). They note
that once n has been represented as far as seems feasible by
a polynomial in (1.3), the experimenter then regards the r(ti)'s
as errors with zero predicted values. Thus, although r is
deterministic, this belief can be represented by assuming that
the r(ti)'s have a zero mean Gaussian prior distribution. The
aj's can also be assumed to have a normal prior distribution
with mean U and variance-covariance matrix YI, which can be
justified by recalling. that the Bayesian estimator for the uj's
in ordinary polynomial regression reduces to the least squares

estimator when Yy + © , This leads us to assume that . has the

same prior distribution as the stochastic process



m-1 .
X(e) = | ot +0.2(8), te [ab] , (3.8)
j=0

where o is Nm(E)YI) and Z is‘a zero mean Gaussian process that is
independent of the aj’s. Wahba (1978) assumes that U=0 and Z
has covariance kernel (3.6). She then shows that as Yy -~ @ the
BLUP of n(t) for model (3.8) reduces to the solution of the pre-
vious problem. Thus spline smoothing is also equivalent to a
Bayesian prediction problem for a polynomial regression model
with a diffuse priof on the polynomial coefficients. For a dis-
cussion of the relationship between the Blight and Ott model (3.8)
and similar models discussed in Young (1977) and 0'Hagan (1978)
see Steinberg (1983).

. Before presenting an explicit form for the smoothing spline
nn,K’ it should be noted that althoggh both stochastic and deter-
ministic models lead to the use of nn,l as an estimator of n these
two types of models are philosophically quite different. For
example, it can be shown (see Wahba (1981a)) that the sample

paths for the Bayesian model are not in W?[a,b].

3.2 The Hat Matrix

For a given A, the smoothing spline is a linear estimator.
Eonsequently, the vector of fitted values, Dn,K=(nn,A(tl)""’
1] .
nn,l(tn)) can be written as

nn,k

= H(A)y . (3.9)
By analogy with regression analysis we call H(A) the hat matrix

since it transforms y to y = Various representations for

n .
-,
H(A) can be found in work by Reinsch (1967, 1971), Anselone and
Laurent (1968), Kimeldorf and Wahba (1970b, 1971), Demmler and
Reinsch (1975) and Wahba (1978, 1980). Let
= (4]
T={t5h 1. (3.10)
3i=0,m-1

and



Q, = {Q(ti’tj)}i,j=l,n (3.11)

Then, Wahba (1978) has shown that given any nx (n-m) matrix U
of rank n-m satisfying

U'tT =0 (3.12)
where 0 is an (n-m) X m matrix of all zeroes, we have

I - H(A) = nAU(U'QU + Ut tut . (3.13)

Alternative forms for H()A), i.e., alternative bases for smoothing
splines, can then be regarded as corresponding to different

choices for U. A natural choice is to take

U't =1 (3.14)

since, in this case,

I-H(A) = nAUTD(N)T'U' , (3.15)
where I' is the matrix of eigenvectors forU'QnU and D()A) is adiag-
onal matrix involving the eigenvalues dl,...,dn__m of U'QnU that
is given explicitly by

1

1
T d E}f:jzf-—) . (3.16)
1 n-m

D(A) =diag(

The matrix H(A) is closely related to the hat matrix for

polynomial regression

H = T(T'T)—lT' . (3.17)
It follows, for example, from Hoaglin and Welsch (1978) that
the elements of H satisfy i) 0 < hii <1, ii) -1< hi;li 1
and iii) hii==l iff hij = Q for all j#1i. Using representation
(3.15) it is possible to show that the elements of H(}) = {hij(X)}

have similar properties. More precisely, it can be shown that
(see Eubank (1983))

0<h () <1, (3.18)

-1 <h, . () <1, (3.19)
= "ij =



h..(A) =1 4iff h,  ,(AQ) =0 for all j#i (3.20)
ii ij
and, furthermore, that
hii(k)+hii s hij(K) - hij as A > (3.21)

and

hy (4L, h () >0 as Ao (3.22)

By analogy with regression theory the values of hii(A) are
called leverage values since they tell us the influence that

y(ti) has on its own prediction. Due to (3.18)-(3.22) the hii(A)'S

can be used as a diagnostic tool in the same manner that leverage
values are utilized in ordinary regression analysis (see Hoaglin
and Welsch (1978)) to indicate sensitive points among the t.'s

where y(tj) may be overly influential in determining the fit.
Other properties of Ny follow from (3.15) and (3.21)-(3.22).
~ H

For instance, nn 0 is now recognized as the smoothest spline
b ~

A

which interpolates the data and N, ow = limk

n satisfies
) n,\

>0

~

n = 'ty . (3.23)

—_ foe)
1,
A

This has the consequence that LI is the least squares pre-
b

dictor obtained from model (1.3) by regressing y on the poly-
nomials 1,t,...,tm-l. The latter fact verifies that smoothing

splines are indeed a generalization of polynomial regressiomn.

3.3 Selection of A

The quantity A is usually called the smoothing parameter

and can be regarded as the "tuning knob'" which controls the
tradeoff between fidelity to the data and smoothness. A visually
satisfactory value of A can usually be selected through trial

and error. However, no optimality properties can be attributed
to values selected in this fashion. Ideally, we might wish the

selected A to minimize the true mean square error (MSE),

MSE(L,m) = 0t [T () - (e ® (3.26)



This random variable is, of course, unobservable and the

obvious alternative is to use its sample estimate
o -ltn 2
= 3.25
MSE(A,n) = n zj=1en,x(tj) (3.25)

where en A(tj) is the jth residual defined by

e }\(tj) = y(tj) -n, )\(t‘j) . (3.26)

Unfortunately, (3.25) is always minimized at A=0, since nn 0

’
interpolates the data. This fact led Wahba and Wold (1975a)
to suggest using the smoothing parameter value which minimized

the cross-validation (CV) criterion
-1 " SlE 2

CVO,m) = Jo (r(e) =y (e)) (3.27)
where aifg is the smoothing spline fit to y(tl),...,y(tj_l),
y(tj+l),...,y(tn), j=1l,...,n. The use of (3.27) may be
justified, intuitively, Ey the belief that a good value of A
should be one for which nié%(tj) is a good predictor of the
missing data value y(tj).

Motivated again by standard regression terminology we
define the deleted residual

er[lj’]x = y(tj) - nli}\ (tj)

and note that Craven and Wahba (1979) have established the

remarkable identity
(i) . -
en,k en,l(tj)/(l hjj(k)) (3.29)

which parallels results from linear regression (see Hoaglin and
Welsch (1978)). Thus

n 2 2
CV(A,n) = jzlen’)\(tj)/(l—hjj()\)) (3.30)

which can be utilized, along with (3.21)-(3.22), to understand
how CV works.
It follows easily from Schoenberg (1964) that MSE(A,n)

is a monotone increasing function of A and, hence, the residuvals



tend to decrease in magnitude, on the average, as A decreases.
Since (l—hjj(k))_l increases monotonically as A deg;eases, we now
see that CV(A,n) is merely a weighted version of MSE(A,n) which
utilizes the weights (l—hjj()\))_2 to counteract the tendency to
choose A as zero. On the other hand, the CV criterion also guards
against the choice A=» since the decrease in (l—hjj()\))_2 obtained
by increasing A tends to be counteracted by an increase in the
average size of the residuals. Hopefully, the value selected will
then reflect the correct balance, somewhere between total fidelity
to the data, obtained when A=0, and the "smoothest possible" fit,
realized at A=%.

Equation (3.30) suggests that other criteria which utilize
weights having similar properties to the (l—hjj(l))_z's, such as
their average or median, might be expected to work as well. Craven
and Wahba (1979) proposed using the former choice and termed the
resulting criterion generalized cross-validation (GCV). Their

criterion is given explicitly by
n

2j=len,}\

They then showed that (3.31) provides a rotation invariant version

2

Gev(h,n) = n o[ % trace (I-H(\)) ]2 (e )%, (3.31)

of (3.30) and established the important GCV Theorem. This theorem
has the consequence that for nE:W?[a,b],

|E[MSE(A,n)] + o? - E[GCV(A,n) ]| /E[MSE(A,n)] < g(A) (3.32)

where g(A) is a function involving n and the trace of H(A) and
H(A)z. Equation (3.32) has the implication that, if g(A) is small,
then GCV(A,n) is an estimator of E[MSE(A,n)] with near constant
bias. Consequently, we would expect GCV(A,n) to track MSE(A,n)

and both to be minimized at approximately the same value of A.

In the case of equally spaced ti's, Craven and Wahba (1979)
verified that g(A) is, in fact, small for sufficiently large n

and appropriate}y chosen values for A which allowed them to con-

clude that if {A(n)} is a sequence of minimizers of E[GCV(A,n)],

E[MSE(;(n),n)]/iaf E[MSE(A,n)]¥1, as n + =, (3.33)



The case of unequally spaced sample points follows from work in
Speckman (1981b). A data oriented version of (3.33) has been
proved by Speckman (1982a) who shows that, uncer certainAregula—
rity conditions, a sequence of minimizers of GCV(A,n), {A(n)} say,

satisfies

MSE(A(n),n)/inf MSE(A,n) - 1 as n > o,
A p
where »p denotes convergence in probability.
If instead of a deteministic n we assume that n is stochastic
as in model (3.8) the previous optimality results no longer apply.

However, it follows from Wahba (1977a,b) that both EnEE[MSE(A,n)]

z/ncg,

and EnEE[GCV(k,n)] have the same minimizer, namely, A =0
where En and E8 denote expectation with respect to the prior
distribution of n and the distribution of the €'s. Thus, GCV
can also be expected to work well in this case.

Efficient algorithms for the estimation of A using GCV have
been developed by Utreras (1979, 1980, 1981b) for equally spaced
data. A program which provides a cubic smoothing spline fit to
data with A selected by GCV is contained in the IMSL package.

It follows from Wahba (1978) that for nE:W?[a,b] the asymp-

-2m/2m+1

totically optimum A is O(n ) and the corresponding asymp-

totically optimum MSE is bounded above by a term that is
-2m/2
0(n 2m/ m+l). It is shown in Wahba (1975) that, for equally
spaced t,'s and a periodic ns:wim
J -4m/ 4w+l
the better rate O(n ). (See also Wahba and Wold (1975b)

and Wahba (1977c¢) for other related results.) A similar set of

[a,b], the optimal MSE enjoys

conclusions have been obtained by Speckman (1981b) pertaining

to the integrated mean square error (IMSE)

b A~ 2
IMSE(A,n) = [ (n(e) -n_ . ())"dt.
a

=2
He shows that if nE:W?[a,b] then, by taking A =0(n m/2urt1

-2m/2m+1

), it
) for the IMSE.
This is consistent with Wahba's results for the MSE. However,
-4m/bmt+1 2m

) for the IMSE when ne W, [a,b] holds only

. 2
3 (a) anP vy =0,

is always possible to achieve the rate O(n

a rate of O(n

if n satisfies the boundary conditions N



j=m,...,2m-1 as otherwise the behavior of the IMSE near a and b
is dominated by boundary terms. (Similar results have been ob-
tained by Rice and Rosenblatt (1981, 1983) and this behavior

was observed empirically by Wold (1974).) This fact has an
interesting consequence for the comparison of smoothing and
variable knot splines which will be discussed in Section 4.

A variety of other applications for GCV can be found in Golub,
Heath and Wahba (1979) and Wahba (1977a,b, 1980, 1982a,b). In
particular, GCV can be used to select an appropriate value for m.
This possibility is explored, for example, by Gamber (1979a,b),
Wahba and Wendelberger (1980) and Speckman (1982a).

3.4 Inference and Diagnostics

For the Bayesian model it is shown in Wahba (1981la) that the

posterior variance-covariance matrix for n:(n(tl),..,,n(t ))' satisfies
- n
vnly) = 6%HQ). (3.34)

Thus, as suggested by Gamber (1979b) and Wahba (198la), we might

use

~ 2

whereZOL/2 is the 100(1-a/2) percentage point of the standard
normal distribution, to provide an approximate 100(1-a)7% confi-
dence interval for n(ti). 0f course 02 in (3.35) is usually
unknown. To overcome this difficulty, Wahba (1981a) has proposed
an estimator of 02, patterned after the usual variance estimate
in linear models, which we define by

52 =T e (e ¥er(-HO). (3.36)

n,A “j=1n,\ ]

Her simulation results indicate that the confidence intervals
obtained from (3.35) with 02 estimated by gi ) can be quite
satisfactory and she also gives an argument %or why they
should work for ne:W?[a,b] when A is selected as the GCV esti-

mate. Alternatives to (3.35) include interval estimates proposed



by Wecker and Ansley (1983) as well as those that can be obtained
by jackknifing. This latter approach has been suggested by Wold
(1974) and Nougues and Sielken (1980).
As an example consider the data in Figure 5 which was simulated
4.26(e_3'25t— Le -6. 5t 9 75t

with ¢ =.1. This function is a rescaled version of one utilized

using n(t) = ) and normal errors

by Wahba and Wold (1975a) for their illustrations. Plotted along
with the data are the true response function, the smoothing spline
estimate of n with A select through GCV, and Bayesian approximate
957% confidence intervals for n(tj), j=1,...,n.

—n,A
and note that, for the model (3.7),

. . = \]
Define the residual vector e (en,k(tl)""’en,k(t )

Ve ) = V((I-BO))y) = o> (T-H(). (3.37)

This relationship parallzls results for the variances and co-
variances of residuals from linear models and suggests a variety
of diagnostic measures patterned after their counterparts in
regression analysis. Examples include the "studentized residuals"
A ~N
N 1/2 .
Tn,k(ti> = e (t )/0 >\(l -h, (K)) , i=1,...,n, where X is the

GCV estimate of X "Cook s dlstance measures"
~ _ R 2 A _ A ~
Dn,A(ti) = Tn,l(ti) hii(l)/[(l hii(l)) tr(H(A)) ]

and the "studentized deleted residuals"

E A~
e = e qeprlt S 002

A

where Gan is the estimator of 0 corresponding to the observation
set y(tls,..,,y(ti_l),y(ti+l),...,y(tn) (see Eubank (1983)).
Wendelberger (1981) also notes the usefulness of probability plots
for the re81duals and Wahba (1980) suggests that, when 02 is
known, tr(I—H(k))c /0 can be compared to values of a Xz random
variable with tr(I- H(A)) "degrees of freedom'" to assess goodness-

of-fit. The development of diagnostic methods for smoothing
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splines has, as yet, to receive much attention in the literature.
Perhaps, some of the measures proposed here will provide a

starting point for more rigorous study and future developments.

3.5 Generalizations and Related Work

As 1is the case with spline regression, the concept of
robust smoothing splines can also be developed by considering
functions which minimize a criterion such as
JigPlr(ep - £(e) + A1 £™ |
for some suitable function p which measures the size of a
residual. Under quite general conditions the solution is still
found to be a spline. This type of robust smoothing spline has
been investigated by Anderssen, Bloomfield and McNeil (1974),
Huber (1979), Utreras (1981a) and Cox (1983).

If we modify model (1.3) to obtain the more general model
m~-1

y(t) = 1 b (t) + r(ty) + e(t;) (3.38)
§=0 373

where the ¢j s, j=0,...,m~1, are now m arhitrary regression
functions, a generalized version of our basic smoothing spline
can be derived as the minimizer of

n n

2
DL () = v (0w (r(e) = ) + AL []7, (3.39)
fel 4 J J J
i=1 j=1
where the wiJ are positive weights, the VY, are given linear
functionals, L is a linear differential operator and ll!-l]l is
some appropriate norm. The smoothing spllne studied in previous
sections correponds to ¢, (t)‘-tJ, Wy -landw&j-o(1#3),¢j(f)—f(tj),
L=d"/dt" = | . Thus, (3.38) - (3.39) repre-

sent a variety of modifications to the problem considered pre-

-

viously. Results corresponding to smoothing splines which stem
from extensions such as these and their connection with BLU,

Bayesian and minimax prediction can be found in Kimeldorf and
Wahba (1970a,b, 1971), Wahba (1978), Weinert (1978),



Weinert and Kailath (1974), Weinert and Sidhu (1978), Weinert,
Desai and Sidhu (1979), Weinert, Byrd and Sidhu (1980), and
Speckman (1979, 198la). Constraints can also be added to the
estimation criterion such as those considered by Wright and
Wegman (1980) and Wegman (1982).

There are also multivariate extensions of the smoothing
spline concept. For example, in the case of two indepen-
dent variables, t and x, and observations (Yi,ti,xi), i=1,...,n,

an analog of model (3.1) is

i k
tIxs + r(t,,x.) + ¢,
i i

¥i T 2 OLj,k i1

j+k <m-1
for which a reasonable smoothing criterion is
" 2

-1 " 2 " om { l d
n zj.=l(yj—f(tj’xj)) +)\Zj=0(j)f2 NS f(t,X), xdt.

(3.40)
When formulated in the proper function space, the minimizer

of (3.40) is a bivariate spline known as the thin plate spline.

Various modification and generalizations of this type of spline
and its extension to more than two dimensions are investigated
in Dyn, Wahba and Wong (1979), Wahba (1979, 1981b,c, 1982b),
Wahba and Wendelberger (1980), Wong (1981) and Wendelberger
(1981, 1982). It is of interest to note that the predicted
Xalues for such multivariate models can still be expressed as
n = H(A\)y where H(A) has a form similar to (3.15). Thus,
analogs of equations (3.10)-(3.22) and (3.29) hold in the
multivariate setting which can be utilized to motivate the use
of GCV for the selection of A and suggest various inferential
procedures and diagnostics. The use of leverage values may be
particularly useful in this case.

Finally, the question arises of how the ti's should be
selected in designed experiments. A general formulation of
this problem has been given by Wahba in her discussion to

O'Hagan (1978). However, this problem remains, as yet,



unsolved. Some problems closely related to the one she posed

are considered by Sacks and Ylvisaker (1970), Wahba (1971) and
Eubank, Smith and Smith (1982). 1In the case of interpolating

splines (A =0) some design questions have been answered by

Speckman (1982b).

4. SPLINE REGRESSION: FREE KNOTS

In this section we again consider the generalized spline
model (1.6) wherein s is now defined by (2.11). However, in
contrast to the development in Section 2, values for the knots
are no longer assumed to be known or specified and, hence, the
Ej's are now included as parameters to be estimated from the
data. Let d =m + Z?=l(m—vj) and denote the dx1 vector of

linear parameters in (2.11) by

§j=(a ,0

1
0 m-l’B\Jl,l"'"Bm—l,l"'”ka,k""’sm-l,k) . (4.1)

Also define the collection of "all possible knot sets" by
Dk = {(EO’...’Ek"‘l): a = go < El <eee< gk < €k+l=b} (4'2)

and, for a given f¢€ lkd and £€D , denote the ith residual by

k’

m-1 3 5 &
e, (6, = y(t.,) - ). a.t; - .
(8.0 = () - [i g oty L j}u B
r

N A
J(EEDT L (43
Then, for some specified integer k and vector of continuity
constraints V, the problem we consider, initially, is the selec-

* . d *
tion of § €eR- and £ €D, which minimize

SSED,D) = I§;e,(8,0)" . o

The simultaneous estimation of both 8 and § using (4.4) is

called free or variable knot spline regression and, since s

is not linear in the Ej's, is recognized as a problem of non-

linear least squares.

Perhaps the simplest example of a variable knot spline

problem, which is of practical interest, corresponds to the



case of a discontinuous linear spline with one knot. Such

models can be written as

600 + Gloti + e(ti) , i=1,...,q

y(ti)= (4.5)

601 + Gllti + S(ti) , i=q+l,...,n E

b

with g being the number of observations obtained from the first
linear segment. Selection of q is equivalent to selecting El,

in this case, since the precise location of a knot between any
two observations is immaterial in discontinuous models. The
problem of estimating the parameters in (4.5) and/or testing
the hypothesis that a change in regression regimes has occurred
is classically known as the problem of switching regressions.
It was first considered by Quandt (1958, 1960) and has, since,
received considerable attention in the literature. Many of the
important references and an interesting new approach to this
problem can be found in Worsley (1983).

Sprent (1961) was perhaps the first to consider a con-
tinuous version of (4.5), i.e., to assume that the two line
between t and t .

1’ q q+l
Under the assumption that q was known and the errors were normal,

segments intersect at some point, §

he developed a likelihood ratio test for the hypothesis that

El has some specified value. This approach was later generalized
by Robinson (1964), te include higher order polynomial segments.
Hudson (1966) relaxed the assumption that q be known and de-
veloped an algorithm for estimation of both the coefficients in
each segment and the knot El. His results also extend to higher
order polynomial segments and k+ 1 > 2 segments. Hudson's
algorithm, in the case of k=1, was improved by Hinkley (1969)
(see also Hinkley (1971)) who also derived the asymptotic dis-
tribution of the estimators for this case. Other algorithms

for parameter estimation in linear splines with k > 1 knots

have been developed by Bellman and Roth (1969), and Ertel and
Fowlkes (1976). The latter authors even allow k to be a free



variable but consider only knots of the form Ei = (ti4-ti+l)/2.

A Bayesian approach to parameter estimation for linear
splines with a single knot has been investigated by Smith and
Cook (1980). Bacon and Watts (1971) also utilize a Bayesian
framework but assume that some specified transition function
can be treated as governing the change from one segment to
another and, consequently, they estimate the value of a transi-
tion parameter instead of a knot.

Estimation in spline models which allow for general values
of m and k, but no continuity constraints (i.e., vj=0,
j=1,...,k in (4.3)), has been considered by Cox (1971) and
Guthery (1974) who both employ a dynamic programming approach.
McGee and Carleton (1970) have developed an approximate estima-
tion procedure for such models through the use of cluster ana-
lysis which also allows for the estimation‘of k.

Gallant (1974) and Gallant and Fuller (1973) in their
study of grafted polynomials were apparently among the first
to utilize nonlinear regression methodology for parameter
estimation in spline models. It follows from their work that
nonlinear regression procedures such as the modified Gauss-
Newton algorithm (Hartley (1961)) are appropriate for con-
tinuously differentiable spline models.

The use of nonlinear least squares to estimate the para-
meters § and § of the spline model is facilitated by observing
that these parameters form two disjoint sets. Thus splines are
a special case of partially linear models whose linear and

" nonlinear parameters separate in the sense that, given a value
for g, £ may be estimated through linear regression. To see

the benefits which stem from this fact first define
X(@ = [T]0,(®] (4.6)

where T is given in (3.10) and_Qv(gp is a nx {d-m) matrix with

. r . - .
typical element (ti-Ej)+, i=l,...,n j=1,...,k and r=v,,...,m-1.



Then, for any‘ge:Dk, it is well known that the solution, 8(§)

say, to

X(®)'X(®E6 = X'y (4.7)

minimizes SSE(6,f) with respect to 0. This suggests replacing

8 by 8(8) in ei(g)g) and minimizing

SSE(E) ijlej (8(%),8) (4.8)

instead of (4.4). The function in (4.8) depends only on the
knots and its minimization as a function of £ is equivalent

to iterated minimization of (4.4), i.e., min(Ee SSE(E) =

SEDy

miééﬁkaan§$dSSE(§)§). The benefits from using this iterated

approach for fitting splines with free knots are far from
trivial. Not only does it provide an effective reduction in
the number of parameters under consideration but, more impor-
tantly, reasonable starting values for the Ej's, which are
required to initialize most nonlinear optimization algorithms,
can usually be obtained from visual inspection of the data.
An initial value for the § vector is not so easily obtained,
however. It is, therefore, comforting to note that, under certain
restrictions, Golub and Pereyra (1973) have shown that minimizing
(4.8) is equivalent to minimizing (4.4). For their results to
apply we must assume that s 1is continuously differentiable
and that the rank of X(g) is constant over the knot variations
we employ. Jupp (1978) provides reasoning for why the latter
assumption should usually be satisfied.

As noted by Jupp (1978), algorithms for minimizing
SSE(§) exhibit a lethargy property in that they tend to become
trapped near the boundary of Dy and converge (numerically)
quite far from the boundary solution. Solutions on the boundary
of Dk correspond to a reduction in the stated continuity con-
straints and, as a result, we will generally prefer an interior
minimum. These facts led Jupp (1978) to propose reparameterizing

the problem in terms of the new variables



Ei+1 5

i=1,...,k . (4.9)

The transformation (4.9) maps Dk smoothly onto *k and takes
the boundaries to #~. Jupp (1972, 1978) has used (4.9)
effectively to fit a cubic (m=4) spline with five knots and
vj = 3, j=1,...,5 to the titanium heat data. For various
starting values, his approach led to the interior minimum
more freQuently than an algorithm developed by deBoor  and
Rice (1968a,b), availabie on the IMSL package, to which

it was compared.

Jupp's spline fit to the titanium heat data provides an
illustration of the gains to be realized by optimizing knot
locations. To demonstrate this point both the cubic spline
with five optimal knots and a cubic spline with five knots
uniformly spaced over the interior of [595,1075] have been
plotted with the data in Figure 6.

Jupp (1978) established a relationship between the _
Jacobian matrices for SSE(§) and SSE(w), the SSE function using
the transformed variables (4.9). Specifically he showed that the

Jacobian matrices, J(§) and J(w), for these two functions satisfy
-1
Jw) = JE@) 6 (4.10)

where G(§) is a k xk tridiagonal matrix having nonzero elements
-1 -1 -1

= . TG, sy 8. . = =(&.,,-6. - =& and

g (=85 )7 s By 5 = ~(Eyg=E0 7 = (EyEy )

jsj—l -1
- Ej) . By using a local linearization it was

85 541 = Bypg
then shown that the vectors of corrections (or changes), §9.and
8¢, which are made to the wj's and Ej's at each iteration of

the optimization process are related by
§E =60 su. (4.11)

This has the consequence that a local approximation to the
solution path to optimal knots corresponding to transformation
(4.9) can be obtained using only the variables of interest,

i.e., the Ej's, for many nonlinear least squares algorithms.



FIGURE 6. Titanium Heat Data Fitted Using Uniform Knots,
Optimal Knots and Knot Selection

2.5
"""" Cubic Spline,Uniform Knots r\
, --— Cubic Spline,Optimal Knots ]
2 71 - — Cubic Spline,Knot Selection _lf \
¥
7
PR\
1.5 | 1
T
Foow
i A,
1 ;F !
A %
8.5 1 N 4
2 .
! I T T T
(1% %} 708 823 =% % 1809 1109

Temperature



For example, if we apply the Levenberg-Marquardt algorithm
(Marquardt (1963)) to SSE(w) then at each iteration we make a
change of the form dw = (J(w)'J(w) + AI)_lJ(g)'g_ where e is
the vector of residuals and A > 0. Using (4.10) and (4.11),

the corresponding approximate change in the knots is
88 = (3(B)'I(E) + A6 H @) e (4.12)

which does not involve w.

It is of interest to compare (4.12) to the correction
term, (J(§)'J(8) + Ai)—lJ(g)'g., one obtains by abplying the
Levenberg-Marquardt algorithm directly to the Ej's. It is well
known (Marquardt (1963)) that this latter correction solves
the problem

min {|]e-3®a|]2 +1llal|?,
degk

with I

IE denoting the usual Euclidean norm, whereas (4.12)
solves an analogous problem except with ILQ[IE replaced by
I|G(§)§||. Examination of G(§)d reveals that this is a vector
of second differences and, hence, (4.12) represents a smoothing
of the solution path for the Levenberg-Marquardt procedure.
This, of course, suggests the possibility of replacing G(§) in
(4.12) with alternatives which provide other types of smoothing.
Such possibilities have apparently not, as yet, been investigated.
Under the assumption of normal errors we may also set
confidence intervals and test hypotheses about the parameters in
a spline model. It is, in fact, possible to obtain exact tests
and confidence regions in certain cases using a method essen-
tially due to Halperin (1962) and Hartley (1964). Their approach
is applicable to any nonlinear model which, under a null hypo-
thesis of interest, is linear in the unspecified parameters.
For eﬁample, in a spline model if we wish to test HO’:§fﬁéo

for some specified vector éo,the regression model under HO

is, in matrix notation,



= X(éo)p- + € (4.13)

which is linear in the unspecified parameter vector 6. Conse-

quently, by fitting the model

= X(EPE+ZEPS +E , (4.14)

where Z(§) is an arbitrary matrix that is possibly dependent on

& and chosen subject to rank consideratioms, a test of HO can be ob-

tained through the standard F-test for H; :§ = 0. Gallant (1974,
1977) discusses how the elements of Z(§) should be selected to
provide good power for this test and notes that, by finding all
the knot sets for which Hg is not rejected, a confidence region
for £ can be obtained. El-Shaarawiand Shah (1980) make the

specific choice

de, (8,8)
Z2(f) ==~ —— ¢
3£j i=1,n

i=1,k
and extend the work of Halperin (1962) to obtain statistics
which, for spline models, can be utilized to test hypotheses
of the form HO :_£_=_£_0 or HO :8=£.,0 =§O. By inverting these
test statistics one can also, in theory, obtain confidence
regions for the knots or for the knots and coefficient
vector.

The asymptotic distribution theory for least squares
parameter estimates from spline models has been studied by
Gallant (1974) and Feder (1975a,b). 1In particular, it follows
from Gallant (1974) that, for a continuously differentiable
spline model, if we let J(8,f) and (EJED denote, respectively,
the Jacobian matrix and minimizer of the unreduced functional
(4.4) then, for large n, (éﬁg) may be treqted as having a
d+k dimensional normal distribution with mean (8,%) and a

variance-covariance matrix which is consistently estimated by

A A

SS s ~on
¢ - SE&E ;55,0



This fact motivates the use of intervals such as gi * Za/Z/E;;;;;;;
where cij is the ijth element of C, to provide approximate 100(1-c)7%
intervals for the knots. The linear parameters can, of course, be
dealt with similarly. It is also possible to use SSE ratios to
obtain approximate tests for certain hypotheses about the spline
model. TUnfortunately, tests which pertain to the absence of a knot
or a continuity constraint violate certain regularity conditions
required by Gallant (1974) in deriving their asymptotic distribu-
tion theory. To overcome such difficulties Gallant (1977) developed
an asymptotic analog of the exact tests we considered previously
that can be utilized for these types of hypotheses.

It is sometimes of interest to estimate both the number and
placement of knots. To obtain an estimate of k one could, for
example, use statistics such as (2.9) and (2.10) or, perhaps, a
CP type statistic such as utilized by Ertel and Fowlkes (1976)é
The use of their statistic, however, requires an estimate of o
which they obtain by overfitting. As GCV can be regarded as a
competitor to CP which does not require estimation of o (see
Golub, Heath and Wahba (1979)) one could also estimate k by the

minimizer of

CeV () = nSSEE,) /[0 er (1-BED) 1

A

where E 1s the- vector of knot estimates for the k knot model and
H(ék = X(Ek)(X(E )! X(E D X(Ek)’ In view of the asymptotic
relationship between GCV and Akaike's information criterion (AIC)
(see Golub, Heath and Wahba (1979)) this approach is closely
related to an AIC based procedure used by Brannigan (1981) to
select k, as well as §, which appears quite successful. As
another alternative, cluster analysis methodology, such as em-
ployed by McGee and Carleton (1970), could be used. Other al-
gorithms which allow for variable k have been proposed by Powell

(1970) and Smith and Smith (1979).



An asymptotic solution td the problem of optimally selecting
the number and positioning of the knots, as well as the optimal
placement of observation points, has been provided by Agarwal
(1978) and Agarwal and Studden (1978a, 1978b, 1980). Théy also
develop an adaptive algorithm to accomplish optimization with
respect to these three variabies which can be used when the pro-
cess under study can be sampled repeatedly. It also follows from
their work that the asymptotically optimal IMSE for variable knot

splines of order m is O(n-Zm/2m+l

). By comparing this to similar
results for smoothing splines in the previous section, we observe
that to obtain this rate with smoothing splines one must either
use a spline of order 2m or handle the boundary terms separately
(see Speckman (1981b)). Consequently, free knot splines can be
considered as, asymptotically, more parsimonious than smoothing
splines.

Essentially any algorithm which allows the knots to be free
variables will require considerable computation time. An inter-
esting alternative to such procedures has been proposed by Smith

\(1983) (see also Marsh (1983)). She chooses a pool of k' > k
knots, distributed appropriately over [a,b] and then uses variable
selection techniques to delete knots from consideration whose
corresponding coefficients do not statistically differ from zero.
The resulting fitted model is usually obtained with much less
labor and, provided the knot pool is chosen well, often provides
a fit that is competitive with those obtained via nonlinear re-
gression. An illustration of typical results obtained from her
method is provided by Figure 6 where a cubic spline has been
fitted to the titanium heat data using a knot pool consisting
of 10 equally spaced values over [785,1055] and step-down selec-
tion. It is interesting to note that after nonsignificant terms

are deleted the final fit has five knots.
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