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AESTRACT
Both the least squares estimator a?d M-estimators of
regression coefficients are susceptible to distortion when
high leverage points occur among the predictor variables in
a multiple linear regressién model. 1In this article a
weighting scheme which enables one to bound the leverage
values of a weighted matrix of predictor variables is pro-
posed. Bounded-leverage weighting of the predictor variables
followed by M-estimation of the regression coefficients is
shown to be effective in protecting against distortion due
to extreme predictor-variable values, extreme response values,
or outlier-induced multicollinearities. Bounded-leverage
estimators can also protect against distortion by small
groups of high leverage points.
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1. INTRODUCTION
Least squares estimators are well-known to be sensitive to a
variety of model assumption violations. One aberration of the
usual model assumptions which is difficult to detect and remedy
is that of extreme values among the predictor variables. Recent
interest in this problem (e.g., Denby and Larson 1977, Holland
and Welsch 1977, and Krasker and Welsch 1982) is stimulated by
the realization that extreme predictor-variable values can dis-
tort not only least squares estimators but also supposedly robust
regression estimators. In this paper we examine a relatively
straightforward procedure for weighting predictor variables in
order to reduce the potential distortion of least squares or
robust regression estimators.
Define a multiple linear regression model as

Y=XB +¢€, ' (1.1)
where Y is an n-dimensional vector of response variables, X
is an (nxm) full-column-rank matrix of nonstochastic predictor
;ariables, énd € is an unobservable n-dimensional vector of
random error terms with €i Y NID(O,G2). The regression co-
efficient vector B is usually estimated by least squares;
i.e., §==(§1""’§m) is chosen to minimize Zp(ri), where

~
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plry) =x., r. =y, xiB, and x; = (X, ,...,%, ) is the ith

1 i

row of X (note: if a constant term is included in model (1.1),

xil==l for all i). Equivalently, B is the solution to the
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where P (t) =dp(t)/dt. The resulting least squares estimator
can be expressed in the familiar form

1

B = (X'x)TR'Y. ‘ (1.3)

Robust regression estimators seek to reduce the influence
of aberranf response values while retaining the equivalence with
the least squares estimator (1.3) when no wild response values
occur. This is often accomplished by selecting alternative
functions p(*) and Y (*) which will leave "typical" residuals
unchanged but which will lessen the influence of large residuals
on the solution to egns. (1.2). Huber (1964, 1973, 1981)
popularized the use of a robust M-estimator which can be

defined in terms of the following Y{(*) function:
w(ri) = max{-c, min(ri,c)}, c > 0.

The value of c used with this Y(*) function is usually chosen
to be a multiple of a robust estimator of G.

Regardless of whether least squares or Huber's M-estimator
is used to solve egns. (1.2), extreme predictor-variable values
can distort the solution since the respective Y(*) functions
winsorize the residuals but Qo not explicitly affect the xij'
For illustration purposes, suppose egn. (1.1) defines a single-

variable, no-intercept model yi==8xi + €. Let x > while



holding xi i#k fixed. The solution to egn. (1.2) becomes

¢(Yk-§:ﬁ§) = 0
or .

B=y /% > 0.
Thus both least squares and Huber's M-estimator yield slcpe
estimates which are zero regardless of the true value of B.

The failure of many robust estimation schemes to compensate
for extreme predictor-variable values occurs because these
estimators are specifically intended to cope with violations
of error assumptions (including outliers in the errors) but
not with aberrant predictor-variables values. In the remainder
of this article we focus attention on a technique for Weighting
predictor variables in order to reduce the influence of a few

data points on the estimation of regression coefficients.

2. BOUNDED-LEVERAGE ESTIMATORS

If one rewrites egns. (1.2) as
injmri)ri =0 3=1,2,...,m (2.1)

where ¢(ri) = w(ri)/ri, it is apparent that M-estimators
weight each residual by a quantity ¢(ri) which approaches
zero as lril + ®©, One can rewrite egns. (2.1) in the form of

a weighted least squares estimator,

B = (x'0x) " Ix'oy, (2.2)



where @==diag(¢(ri),...,¢(rn)). This equation can be solved
iteratively to yield M-estimators of B.

The role of the weights ¢(°¢) in controlling the influence
of residuals on the estimation of B suggests that a weighting
of predictor variables could be beneficial for providing
protection against distortion by extreme predictors. An alter-
native to the solution of egns. (2.15 for estimating B is to
weight the rows of X prior to inserting the xi in the esFimating
equations. The effect on the estimating equations is that one

solves

Iw.x, . 0(r®)r* = 0 j=1,2,...,m (2.3)
i%ij i'7i

~

where r* = ~w.x'B.
i Y i%i

i
' Consider now the leverage values (e.g., Hoaglin and Welsch

1978) for a weighted predictor variable matrix WX. The leverage

values hi(w) are the diagonal elements of the matrix

WX(X‘WZX)—lX'W:

h, (W) = wox! (X'Wox) x,
1 1 1 1

]

2.2
wid (xi) . (2.4)

One criterion for selecting weights wi for use in the estimating
equations (2.1) is to choose the w, so that max{hi(W)} f_nz,

where n2 is a preselected value. The weights then satisfy

w, = min{l,n/d(xi)} . (2.5)



This is a deterministic weighting scheme (conditional on X) and
can be viewed as a special case of a more general stochastic
weighting procedure studied by Maronna (1976); see also Maronna,
Buetos, and Yohai (1979) and Krasker and Welsch (1982).

Bounded-leverage regression estimates are computed as
follows. For a prescribed value of n2 iteratively determine the
predictor-variable weights:

(1) initially set wi==l for all i;g

(2) calculate hi(W) and dz(xi) from egns. (2.4);

(3) calculate new weights wi==min{l,n)d(xi)};

(4) repeat steps (2) and (3) until convergence.
A unique solution to this algorithm is proven under very mild
conditions in Maronna (1976). Like Maronna (1976), we are unable
to prove convergence of the algorithm; nevertheless, convergence
has been rapid on all examples studied thus far. For the two
examples presented in the next section a maximum of 15 iterations
on a C.D.C. 6600 were required to insure that two successive cal-
culations of hi(W) differ by less than 10—4. Once the predictor-
variable weights are determined, é can be obtained iteratively
using egns. (2.3) and algorithms such as those in Huber (1981,

Section 7.8) or Dutter (1977).

3. APPLICATIONS AND EXAMPIES.
Before illustrating the use of bounded-leverage estimators
on two data sets, consider again the single—vériable, no-intercept

model which was discussed in Section 1. As X - w'wk - 0 and the

solution to egn. (2.3) with bounded-leverage weights is the value

~

of B which satisfies



I w.x, W(y WX, B) =0
i#k i

i.e., B is an M-estimator based on the (n-1l) observations
excluding (yk.xk)-

Another interesting application of the bounded-leverage
estimator occurs when extremely large values on two or more
predictor variables for the same observation produce an outlier-

induced multicollinearity. For example, if model (1l.l1l) represents

a two-variable, no-intercept model the estimating eguations (1.2)

are . -
injw(yi-xilsl-xizﬁz) =0 j=1,2. (3.1)
5 .= . .
Now let ij ®, 9=1,2, with xkl/xk2 . Equations (3.1) become
Vly, - (By*B)x,) =0, (3.2)

which has a solution B -+B = yk/xkl + 0. The limiting solution
to egn. (3.2) forces B B but B and B can have arbitrary
magnitudes - the same type of ambiguous solution which is
characteristic of least squares estimation with multicollinear
predictor variables. The bounded-leverage estimator yields

W + 0 as xkj > © so the estimating equations (3.1) become

z wixijw(y -w x1131 w.x. B) =0 3=1,2
ik

i.e., the bounded-leverage estimator eliminates the multicolli-

nearity-inducing observation from the data set.



3.1 Single-Variable Example

Mickey, Dunn and Clark (1967) examine the use of a stepwise
regression procedure for detecting outliers and illustrate the
performance of their procedure on the data set in Table 1.

Table 2 displays diagnostic statistics which are useful in
assessing the overall impact of individual data points on the
fit. Contained in Table 2 are leverage values hi (Hogglin and
Welsch, 1978), Studentized (deleted) residuals ti (e§g., Belsley,
Kuh and Welsch 1980; Cook and Weisberg 1982), and Cook's (1977)
distance measure Di' We include in Table 2 leverage values
which exceed Hoaglin and Welsch's suggested cutoff of 2m/n,
Studentized residuals which exceed 1.5 in'magnitude,‘and Di
values which are greater than Cook's reéommended comparison
with a lower 10% point from an F(m,n-m)} distribution.

[Insert Tables 1 and 2]

It is clear from Table 2(a) that observation 18 has an
extreme predictor-variable value (hi= .652) and that it exerts
a strong influence on the estimation of B (Di==.678), but its
relatively small Studentized residual (ti=-.845) suggests that
this observation can be fit reasonably well from the other twenty
observations. As indicated by its small leverage value, observation

19 does not have an extreme predictor-variable value; nevertheless,



its Studentized residual reveals that it is fit very poorly by
the least squares estimates from the other twenty observations.

Table 2(b) illustrates the effect that an extreme predictorf
variable value can have if the data point is not consistent with
the overall trend in the data. The only change in the analysis
for Tables 2(a) and 2(b) is that the X5 value in Table 1 was
changed from 20 to 50. This makes observation 10 extreme in X
and not close to the trend of the other twenty observations.
All the statistics in Table 2(b) are now large for observation
10 and because of its impact on the fit neither observation 18
nor observation 19 is fit well. Table 2(c) changes both Xe aﬁd
xlo»to 50. ©Note that reinforcement by observation 6 greatly
reduces the t, and D, values for observation 10 in Table 2(c)
from the values in Table 2(b). This is the problem of masking
observations: two or more influential observations are similar
in magnitude and 'mask" the deleterious impact of one another
on the fit when statistics such as ti ana Di are used to assess
their effect. Other discussions of the maskiné problem are
contained in Andrews and Pregibon (1978), Dempster and Gasko-
Green (1981), and Draper and John (1981).

The second column of Table 3 lists thg Huber weights ¢(ri)
for these three situations using c==1.345; in egn. (1.2). Note

in particular that the M-estimator does not weight observation

10 in Table 3(a}, weights it in Table 3(b), and weights neither’



observation 6 nor 10 in Table 3(c). The masking effect of
observations 6 and 10 cause the M-estimator to weight observations
2 and 18, two observations which are consistent with the overall
trend in the original data. These distortions are even more
apparent in the coefficient estimates‘displayed in Table 4.
[Insert Tables 3 and 4]

Three bounded-leverage estimators were examined on this
data set. The first estimator selects weights so that hi(W)< 2m/n
and utilizes the estimating equations (2.3) with c= 1.345;.

The second estimator calculates leverage values for the matrix

HY = X* (X*1x%) g

where X* is X without a column of ones.  The leverage values are
bounded by h;(w) < 2(m-1)/n and egns. (2.3) are again used to
estimate B. The third bounded-leverage estimator uses egns.
(2.3) to estimate B; however, prior to finding weights each
column of X* is centered by subtracting the median Mj of the
observations in the column. Since centering by éubtracting
means (instead of medians) yields an average leverage of

h* = (m-1) /n, we bound the median-centered leverage values by
hz(w) f_2ﬂ;4l/n= {2m-1) /n. Weighted values of the nonconstant
predictor variables are then given by xz. = Mj+wi(xij-Mj) and
a?e used instead of wixij in egns. (2.3) and in the calculation
of r; (note: xil==1 with no weight is still used for the

constant texrm of the model).



Tables 3 and 4 show the weights and estimated coefficients,
respectively, for the three bounded-leverage estimators. Note
in particular the consistency of the latter two bounded-leverage
estimators over all three data sets. »Both of these estiﬁators
weight only the nonconstant predictor variables and use egqns. (2.3)
to estimate the regression coefficients.

As a final comparigon, Tables 3 and 4 contain the weights
and coefficient estimates for Krasker and Welsch's (1982)
bounded-influence estimator (with V= 1.596V/m and c==v;). Bounded~
influence estimators minimize (over all weighted M-estimators
whose weights are only a function of ly-x'él) the asymptotic
variance of the estimator subject to a bound on the estimator's
gross-error sensitivity. This estimator evidences distortion in
the fit for both the latter two data sets; in particular, it
behaves similar to Huber's M-estimator in the presence of
extreme predictor-variable values and it does not effectively
handle the masking problem. This example supports Huber's claim
(1983, Section 1 and Rejoinder) that the bounded-influence
estimator is not resistant to gross errors'invthe pfedictor -

variables.

3.2 Air Pollution and Mortality Example

Lave and Seskin (1970, 1977, 1979) conduct an extensive
investigation on the effects of air pollution on mortality.

Gibbons and McDonald (1980a, 1980b, 1982) discuss many of the



methodological problems surrounding the use of regression models
for predicting mortality with the Lave and Seskin data, including
the sensitivity of the results to individual observationé in the
data base. Using Lave and Seskin's 1960 cross-sectional data set
on 117 Standard Metropolitan Statistical Areas (SMSAS) we now
examine the least squares and.robust fits to the eleven-variable
prediction equation for Total Mortality Rate (deaths‘per 100,000
population) studied by Gibbons and McDonald (1982).

Table 5 lists the leverage values, Studentized residuals,
and Di values for SMSAs which exceed the suggested cutoff yalues
which were mentioned in the previous section. 1In addition, two
diagnostic statistics which were suggested by Belsley, Kuh, and
Welsch (1980) are included. DFF‘.ETSi is a scaled measure of the
difference between the predicted value of Yy from the full least
squares fit and its predicted value from thé fit which is obtained
after deleting (yi,xi) from the data set. A size-adjusted cutoff
of 2(p/n)l/2=.64 is used to highlight influential observations.
The last column of Table 5 lists the largest DFBETASij value for
each observation, using an absolute cutoff of 0.35. DFBE'I‘ASJ..j is
a scaled measure of the change in the estimate of Bj when (yi,xi)
is deleted from the data base. Each of these latter two statistics
approximatley measure‘the number of estimated standard errors change
in the predicted response or coefficient estimate, respectively,

attributable to the deletion of observation (yi,xi).

{Insert Table 5]



Of particular interest in Table 5 is the extremely large
leverage value for Jersey City. This SMSA possesses an unusually
large population density (PM2) and is highly influential in the
prediction of its own response and in the estimation of the
coefficient for PM2 (see the values for DFFITSi and DFBETASij,
respéctively). Also of interest are the large Studentized
residuals and DFFITSi values for Tampa, Scranton, and Wilkes
Barre, as well as the large DFFITSi value for Charleston.

All four of these SMSAs exert a strong influence on the
estimation of‘one or more of the regression coefficients, as indi-
cated by the DFBETASij.

M-estimator weights for Huber's M-estimator, the median-
centered bounded-leverage estimator, and Krasker and Welsch's
bounded-influence esfimator are shown in Table 6. All three
estimators place small weights on the residuals for Scranton and
Wilkes Barre, SMSAs which have large residuals but small leverage
values in Table 5. Among the more notable differences in the
weights displayed in Table 6 are those assigned to Tampa, Charleston,
and Jersey City. Although all three robust estimators assign small
weights to Tampa, the bounded-leverage estimator weights both the
predictor variables and the residuals. Huber's M-estimator fails
to weight Charleston, Neither Huber's M-estimator nor the bounded-
influence estimator weight Jersey City. Recall from Table 5 that
all three of these SMSAs exert a substantial effect on the estimation
of one or more of the regression coefficients and on the prediction
of its own mortality‘rate.

[Insert Table 6]



The pattern in the weights assigned by the three M-esti-
mators to Tampa, Charleston, and Jersey City reflects the ability
of each of the three estimators to adjust for leverage points.
The larger the leverage value, the less able are Huber's M-esti-
mator and the bounded-influence estimétor to compensate for the
resulting distortion in the fit. This is the same tendency which
was observed with the Mickey-Dunn-Clark data and which was demon-
strated theoretically for a single-variable, no-intercept model
as x e,

Table 7 displays the various coefficient estimates for this
data set. Several of the robust coefficient estimates differ
markedly from the corresponding least squares estimate, notably
those for SMIN, SMEAN, and PMEAN, By far the largest difference
among the robust coefficient estimates occurs for PM2, Both
Huber's M—estimate and the bounded-influence estimate are similar
to least squares. The bounded~leverage estimate for PM2 is much
larger that the other but is similar in magnitude to that which

would be obtained if Jersey City was deleted from the data set.

4. SUMMARY
Huber (1981) observed the need to aéhieve some type of
predictor-variable weighting in order to protect against extreme
predictor-variable values. In Section 2 of this article we intro-
duced a weighting scheme which enables one to bound the leverage

values of the weighted predictor variables. Coupled with M-esti-



mation as in eqn. (2.3), bounded-leverage estimators afford
protection against extreme predictor variables, extreme response
variables, and outlier-induced multicollinearities. Based on the
above examples and others we've examined, we recommend that prior
to computing the predictor-variable.weights the constant term be
removed from the matrix of predictor variables and the remaining
variates be centered by subtracting the median of each column from

all the observations in the column. Then the constant term (xi =1)

1

and the adjusted predictor-variable values x;j =M, + wi(xij-Mj)

should be used in place of the wixij in egn. (2.3).
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TABLE 1. Mickey~Dunn~Clark Data

Obn. Age (Mo.) Gesell Score Obsn. Age (Mo.) Gesell Score
1 15 95 12 9 96
2 26 71 13 10 83
3 10 83 14 11 84
4 9 91 15 11 102
5 15 102 le 10 100
6 20 87 17 12 105
7 18 93 18 42 57
8 11. 100 19 17 121
9 8 104 20 11 86

10 20 94 21 10 100

11 7 113




TABLE 2. Diagnostic Statistics for Selected Observations,
Mickey-Dunn-Clark Data '

Obsn. h, t D,

(a) Original Data

2
6
10
18 2652 .678
19 3.607 0223
(b) X9 = 50
2
6
B 10 «523 2,585 2,824
B 18 . 327 -2,277 1,031
19 2,555 -128
(c) x6 = X0 = 50
2 -1,552
6 .349 .163
10 349 1.498 2563
18 «220 ~2,522 .698

19 2.414 .116




TABLE 3. Comparison of M-Estimator Weights, Mickey-Dunn~Clark Data

. Bounided-Leverage

Huber Constant Weighted Constant Unweighted Median-Centered Bounded-Influence

Obsn. ¢, vy % vy ¢ w5 4 v 95

(a) Original Data

2 0655 0734 .479 N 0471 0483
6 .954 .799 .675
10 .954 .799 .675
18 2311 .454 2569 - 2232 .555  ,248 .247
19 .457 .483 2512 .512 .816 .430
(b) xlO = 50
2 .675 734 479 ‘ .513  .453
6 , .954 .799 .714
10 .800 2257 .382 .184 .223 .089
18 .898 .325 .454 .569 2232 .555 .276 .194
19 .619 .497 .512 : .512 .840 . 465
(c) x6 = xlO = 50
2 .887 .721 .734 ' .479 .574 .345
6 .280 .382 .184 +259
10 .280 .382 .184 <259 «357
18 .629 »354 .454 .569 0232 .555 .319 .117

19 2637 2523 2512 .512 .870 «570




TABLE 4. Comparison of Coefficient Estimates, Mickey-Dunn-Clark Data

Intercept Slope
(a) Original Data
Least Squares 109.87 -1.13
Huber 109.74 -1,17
Bounded-Leverage
Constant Weighted 105,32 -0.78
Nonconstant Predictors Weighted 108,83 -1.19
Median-Centered 108.60 -1,19
Bounded-Influence 106.78 -0.92
(b) xlo = 50
Least Squares 102.76 -0.58
Huber 102.84 ~0.62
Bounded-Leverage
Constant Weighted 104.33 -0.72
Nonconstant Predictors Welghted 108.83 -1.19
Median-Centered 108,60 -1.19
Bounded-Influence 104.68 -0.76
(c) X, = X0 = 50
Least Squares 101.47 -0,45
Huber 100.26 . -0.38
Bounded-Leverage
Constant Weighted 103,09 -0.60
Nonconstant Predictcrs Weighted 108,83 -1.1°
Median-Centered 108,60 -1.19

Bounded-Influence 99,47 ~0.27




TABLE 5.

Diagnostic Statistics for Selected Observations,
Air Pollution and Mortality Data

SMSA hi ti Di DFFITSi DFBETAS;j

Orlando FL 1.85

Tampa FL 278 -4.82 -596 -2.99 -2.17 (GE65)
Macon GA 422 1.09 .95 (PMAX)
Savannah Ga 2.00

Terre Haute IN 1.85

New Orleans LA 1.98 «35 (PMIN)
Albuquergque NM «252

Jersey City NJ .894 -1.59 -1,47 (PM2)
Canton OH 261 ~-1.98 -1.18 - .49 (SMIN)
Scranton PA 3.62 1.49 .66 (SMIN)
Wilkes Barre PA 3.73 1.07 72 (POOR)
Sioux Falls SD -1.70

Austin TX | -2.24 -.65 .41 (PMIN)
Charleston Wv 557 =1.69 -1.90- .64 (SMIN)
Madison WI -1.50

*Only the largest DFBETAS,. is shown for each SMSA; the corresponding

predictor variable is shd

in parentheses.



TABLE 6. Comparison of M-Estimator Weights, Air Pollution
and Mortality Data

Huber Bounded-Leverage Bounded-Influence

SMSA ¢i LA ¢i LA ¢i
Bridgeport CT 079
Miami FL 063 <70 .63
Orlando FL 055 057
Tampa FL 025 79 049 213
Macon GA .54 .58
Savannah GA »59 .60 73
Terre Haute IN 269 77 ) T .69
New Orleans LA .60 .61 .64
Las Vegas NV .64 59 .60
Jersey City NJ .14 33
New York NY 50
Canton OH 074 . 035
Scranton PA .33 035 25
Wilkes Barre PA .33 «35 - 36
Sioux Falls SD .64 265 ;59
Austin TX 050 .50 057
Waco TX o 77
Charleston Wv .42 .79 023

Madison WI 276




TABLE 7. Comparison of Coefficient Estimates, Air Pollution and
Mortality Data

Predictor Least Boundea-  Bounded-
Variable* Squares Huber Influence Leverage‘
SMIN 456 .314 0294 0245
SMEAN 079 .248 0351 279
SMAX .056 -,017 -.004 .036
PMIN 0253 166 «276 107
PMEAN 2337 »149 032 110
PMAX -.025 .018 .03  -.001
PM2 | .089 .088 .079 .376
GE65 6.923 7.296 7,261 7.179
PNOW .403 425 408 .355
POOR .039 .062 .102 0191
LpopP -.281 -.196 ~.215 -.373
Constant 340.267 274.468 275.884 335.126

* SMIN: Smallest Biweekly Sulfate Reading (ug/m3x10)
SMEAN: Arithmetic Mean of Biweekly Sulfate Readings (ug/m3x10)
SMAX: Largest Biweekly Sulfate Reading (ug/m3x10)
PMIN: Smallest Biweekly Suspended Particulate Reading (ug/m3)
PMEAN: Arjithmetic Mean of Biweekly Suspended Particulate Readings (ug/m3x10)
PMAX: Largest Biweekly Suspended Particulate Reading (pg/m3x10)
PM2: SMSA Population Density (per square mile x .1)
GE65: Percent SMSA Population at least 65 years old (x 10)
PNOW: Percent of Nonwhites in SMSA Population (x 10)
POOR: Percent of SMSA Families with Income Below Poverty Level (x 10)
LPOP: Logarithm (Base 10) of SMSA Population (x 100)



