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ABSTRACT

We investigate various techniques for determining a toler-
ance limit L such that the probability is y that at least a pro-
portion P of a population produced in batches exceeds L. First,
we evaluate the approach of Lemon (1977) for this problem and
then present alternative approaches. If the variance ratio is
known, one may obtain exact tolerance limits. TFor settings where
the variance ratio is not necessarily known, we describe.a proce-
dure, based on the Satterthwaite approximation, for obtaining

conservative tolerance limits.

Key Words: Noncentral t-distribution; Satterthwaite Approximation;

Cluster Sampling.



1. LEMON'S APPROACH FOR DETERMINING L

Lemon (1977) gives a method for setting tolerance limits on
observations that vary in different batches. He sought to deter;
mine a lower tolerance limit L (where L is a function of the
sample) such that the probability is Yy that at least a proportion
P of the population is above L, i.e.,

Pr{Pr [X>L|sample] > P} =, (1.1
where X denotes an observation from the population of interest
and where the outer probability in (1.1) is with respect to the
sampling distribution of L.

Let Xij denote the jEE-test observation from the i-EE batch
or cluster, and suppose that the test observations satisfy the
random-effects linear model

Xij=“+bi+wij i=1,...,I, §=1,...,J,
where U is the overall mean, u-%bi the mean of the J'.--EE batch, and
Wij a random deviation. We assume that the bi's and wij's are
independently distributed as normal variates with zero means

A

and variances 02 and 02, respectively. Further, let U denote
b 4 ’

I J
the sample mean igl jél Xij/IJ and let s2 denote the ''between

groups'" mean square (MS). The individual observationsXij have

variance Ui==0§-+0§ while the sSamplé mean § has variance
2,2

2 2
(Job+0 )/(1J), and 52 estimates 02==Jo 40 .
w b w

~
Lemon showed that I.=u-—kLs satisfies (1.1) for

k, = TI_l(é;'Y)/(.IJ)llz

3
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where, for arbitrary constants o, B and v, Tv(a,B) denotes the
1008 percentile for a noncentral t distribution with v degrees

of freedom (df) and noncentrality parameter o, and where

§ = BKp(IJ)l/z (1.3)
2 2 \1/2 1/2
8o /o=t w R+1 (1.4)
X 2 JR + 1 )
Jo, + ¢
b
2,2
R = ob/oW (1.5)

and Kp = 100P percentile of the standard normal distribution.
Generally, tolerance limits are defined in terms of an estimate
of the population standard deviation. Lemon chose to follow this
standard form, and so, computed tables for tolerance factors k!,

where

/2

K =l (o/o) = T, (8,1)/[B an/?1. (1.6)

The noncentrality parameter § is a (monotone decreasing)
function of R, so, both kL and ki are functionally dependent on
R. Since R is generally unknown, Lemon proposed taking

L=yp- kL(R) > s (1.7
where kL(ﬁ) is obtained by substituting the sample moment esti-

mator R (computed from the AOV) for R in expression (1.2), i.e.,

R = Maximum{0, (F~1)/J},
4



where F denotes the MS ratio, sz/sé, and sé is defined to be
the "within groups" MS. (If F < 1, one generally‘assumes o =0
and then combines 32 and sé to estimate oé.) Define si =J s +
(l-J_l)sé, i.e., si is a linear combination of the between and
within MS's which estimates the population variance oi = og + 05.
The tolerance limit in (1.7) is equivalent to L = a - ki(ﬁ)sx,
where k'L(ﬁ) = kL(ﬁ)(s/sx).

Lemon's justification for using (1.7) was that the vari-
ability in kL(ﬁ) was insignificant. Although Lemon recognized
the distribution of kL(ﬁ), his "numerical integration... over the
rough grid" (p. 679) of 3 values for R did not adequately approxi-
mate the variability of kL(ﬁ). We obtained the mean and variance
of kL(ﬁ), conditional on F > 1, for a variety of examples. The
six cases given in Table 1 are those which Lemon mentioned inves-
tigating. We list the expected value (EV), standard deviation
(SD), and coefficient of variation (CV) of kL(ﬁ). Lemon claimed
a CV of less than 2% for kL(ﬁ), whereas we found ﬁalues from 6 to
21%Z by careful integration, e.g., CV = 21.3% for Case 3.

In spite of this variability, we have found Lemon's procedure

to be conservative, i.e., the probability
v (R) = Prﬁ,s’ﬁ{Prx[X >u =k (R) s|u,s,R] > P|F > 1} (1.8)

generally exceeds y. The probability YL(R) is given in Table 1

for each case considered there. [We evaluate YL(R) by computing
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(1.8), conditional on F = f, and then numerically integrating
these values with respect to.the density of F (truncated at 1).]
These few cases illustrate the conservativeness of Lemon's pro-
cedure. We found that YL(R) appeared to be decreasing in R, e.g.,
for Case 2 in Table 1, YL(l) = ,9985, whereas YL(R) was computed
to be .9999, .9799 and .9681 for R = .2, 5 and 10 respectively.
Hence, Lemon's procedure appears to be the most conservative
when J is large and I and R are small.

We offer two intuitive reasons for the fact that YL(R) > Y.
First, note that kL(ﬁ) is a decreasing function of ﬁ, while the

2 . . . o
EV of s, conditional on F, is an increasing function of R. Thus,

k(R) tends to compensate for the variability in s, so that i - k(ﬁ)'s

is more stable than U - k(R)-s.
Second, the probability (1.8) is equivalent to

Pr[ﬁx‘;c,i SHE - @/ - ant/, (1.9)

where Z is a standard normal variate. Using the result of
Satterthwaite (1946), si/oi is approximately distributed as a
x%/f variate, where

£ = @DAMEH/ (D + @-1)/17%. (1.10)
Since f is greater than I-1 (though it approaches I-1 as R tends
to infinity), the "df" in si exceed the—df for sz. Therefore,

the tolerance factors ki which are based on TI_l(S,Y) tend to be
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larger than necessary. The fact that f is an increasing function
of J and a decreasing funcfion of R reinforces the observation
made earlier that Lemon's procedure is more conservative for
small R and large J.

2. AN ALTERNATIVE PROCEDURE BASED ON THE
SATTERTHWAITE APPROXIMATION

In this section, we discuss a procedure for determining L
which employs the Satterthwaite approximation mentioned at the

u - késx satisfies (1.1), this corre-

close of Section 1. If L

sponds to ké satisfying

Pr[z + 8 /2

s /o
X X

A

' 1 -
kSB(IJ) 1 =rvy.

. 2 . , . .
Since sxlci is approximately distributed as a x%/f [where f is defined
in (1.10)], we have (approximately)

/2

kg = T8, /B . (2.1)

S
It is informative to investigate ké as a function of R. As

R tends to infinity, ké approaches
'(0) =
kg (=) TI_l(KpJf,Y)/Jf ,

which is the tolerance factor for a random sample of size I.
Hence, when essentially all the variation is between groups, re-

peated measurements within a group provide no additional informa-

2 1 ant'?, vnere

tion. At R =0, ki(0) =T (Kp(IJ)l

I1J~1-¢
g = (J-1)/(1J-J+1). (Note that 0 < € < 1 for I > 1.) Thus,
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except for the term €, at R = 0 the approximation (2.1) corresponds
to the tolerance factor for a random sample of size IJ. When 0 < R
< o, ké is greater than ké(O) and less than ké(m). Selected values
of ké appear in Table 2.

If R were known, the tolerance factor ké could be obtained
from Table 2 or calculated using (2.2). When R is unknown, one
might consider replacing R in (2.2) with R. Let ké(ﬁ) denote ké
evaluated at R = i. We computed

Yg(R) = Prﬁ’sx’ﬁ{Pr[x > u - ké(f{)sxiﬁ,sx,ﬁ] > P|F > 1}  (2.3)
for a variety of examples in order to evaluate the procedure of
taking L = 1 - ké(ﬁ)sx. [The computations were performed as de-
scribed in Section 1 for YL(R).] The function YS(R) necessarily
approaches y as R approaches infinity, and YS(R) exceeds y for R
sufficiently small. However, for intermediate values of R, YS(R)
is generally less than vy, e.g., for I =J =5, P= .9 and v = .95,
YS(R) is Below .95 for R > .5 with infimum .91.

Since the probability YS(R) can fall below y when using L =
ﬂ - ké(ﬁ), we seek another procedure to replace it. We propose
using ké(R*), where R* denotes an upper n confidence bound for R,.
i.e.,

R* = max{ (FF_ - 1)/3,01,
where Fn is the 100n percentile of an F distribution with de~

= I(J-1) and v, = I-1 (Searle 1971, p. 414).

grees of freedom v 9

1
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That is, we enter Table 2 with the upper confidence limit for R
rathgr than the point estimate of R. Thus using ké(R*) instead
of ké(ﬁ) results in a more conservative procedure. The problem
here is in choosing a reasonable value for n.

We found it necessary to vary n according to the values of y
and P that are being used. Let Yg(R) denote the probability obtain-
ed by replacing R with R* in (2.3). We found that yg(R) is decreas-
ing in J with a limiting value that may be computed using numerical
integration. Thus, we were able to determine n, such that Yg(R)
>y for all J and R and for I > 5 (the limiting value was increasing
in I). For the following combinations of y and P, the necessary

values of n are

y
P .90 .95 .99
.90 .76 .825 .91
.95 .78 . 84 .92
.99 .80 .855 .93

Lemon's procedure is always conservative, being most conser-
vative for large J and small T and R. Our procedure above is most
conservative for small J and large R. One practical solution here
would be to choose in each situation (based on I, J and vague knowl-
edge of R) the procedure which one expects will produce the smaller
k wvalue. However, if R is known or known to Qithin a close approxi-

mation then the procedure given in Section 3 below should be used.
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3. PROCEDURE WHEN R IS KNOWN
If the variance ratio is known, this additional information
may.be utilized to obtain a tolerance factor which is generally
smaller than those obtained using either of the procedures de-
scribed in Sections 1 and 2. Knowledge of R enables one to pool
the two MS's and thus obtain an estimated SD which has IJ-1 df.

The quantity
(s2/6?) - [(I-1) + 1(J-1) (JR+L)/F]

is equivalent to (I—l)(sz/oz) + I(J—l)(sé/ci), and, therefore is

distributed as a chi-square variate with IJ-1 df. Hence, condition-
2

al on F, (32/02) is distributed as a known multiple of a X17-1

variate. Using this result, the conditional probability,

Pr~

5 SlF[PrX{X > u - ks|n,s,F} > P|F] = v (3.1)
, :

for

K = s,/ ant’?,

eTr5-1

with ¢? = [I-1+I(J-1) (JR+1)/F1/ (TJ-1).

The tolerance limit L = p - k - s may be expressed in stan-

dard form as L = 1 - k'sx, where k' = c'kﬁ, with

kg = TIJ—1(6,Y)/[B(IJ)1/ZJ 3.2
¢! = ch/sx =

/2

{[J(R+1) /(F+I-1) ] [1(J-1) + (I—l)F/(JR+1)]/(IJ—1)-}l (3.3)
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We chose to factor k' in terms of kﬁ and c', because ké does not
depend on F. In Table 3, we provide values for kﬁ. The factor
c¢' is a decreasing function of the MS ratio (and hence, of ﬁ) and
equals 1 when R = R. Thus k' is somewhat smaller (larger) than
the table wvalue kﬁ if ﬁ is greater (less) than R.

Given I, J and F, k' is a strictly increasing function of R.
Thus, if one is certain that R < r, then one may enter Table 3
with R = r to obtain kﬁ and then compute c' from (3.3).

For settings where R is unknown, we considered the procedure
of computing an upper 100(1-B)% confidence bound R* for R based
on F, computing k' at R = R*, and then combining the two proba-
bility statements to obtain an overall probability of at least
(y-8). However, this approach produced extremely large (conser-
vative) tolerance factors. This may be attributed to the fact
that c'kﬁ increases without bound as R approaches infinity.
Hence, the procedure based on (3;1) is not recommended unless pre-
cise knowledge about R is available apart from the sample.

4. DETERMINING ké AND kﬁ BY INTERPOLATION

Tables 2 and 3 provide tolerance factors ké and ké respec-
tively, for y = .95, P = .9 and .99, I < 10, and for selected
values of J and R. For combinations of J and R not appearing

in the tables, the tolerance factor ké or k; may be obtained by
linear interpolation in I/J and by linear interpolation in R
for 0 < R < .2, logarithmic interpolation for .2 < R < 10 and

11



linear interpolation in 1/R for R > 10, (For R = 0, the appro~
priate éolerance factor is the factor for a random sample of
size 1J.) This interpolafion scheme is similar to one suggested
by Lemon.
5, EXAMPLES

We illustrate theproceaurésdiscussed in Sections 2 and
3 for determining a tolerance limit, employing the example dis~
cussed by Lemon (1977, p. 680). Six samples from each of five
independent batches of material composed the sample from which a
lower tolerance limit for static strength is to be determined,
with P = .9 and v = .95. The summary statistics were o = 186
ksi (thousand pounds per square inch), ﬁ = 1.37 and s, = 9.04,
Td determine ké (as described in Section 2.2), we compute an 82;5%
upper bound for R,

R* = [9.22(2,67) - 1]/6 = 3.94,.

The tolerance factor ké(R*) computed from Table 2a equals 2,83,
and hence L = 186 - 2.83(9.04) = 160.4, Hence we can be at
least 95% confident that at least 90% of the material in the
population has static strength above 160,4 ksi., For comparison,
we note that Lemon's procedure produces a tolerance limit of
156.3 ksi (based on ki(ﬁ) = 3,285) which is more restrictive
than is necessary.

To illustrate the procedure for computing k', suppose that,

in addition to the sample information, it is known that R <1,

.12



Then, from Table 3a, we obtain ké = 2.00 and, using (3.3),

¢' = .9385. Hence k' = c¢'k! = 1.877, and L = 169.0 ksi. As
mentioned in Section 3, k' may be much smaller than ki or ké
(as in the case here), yet the validity of the tolerance limit

depends on the assumption about R.

13
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Table 1:

Table 2:

Table 3:

Variability of kL(fz) (P=.90, y = .95, R=1)

One-Sided Tolerance Factors ké for One-Way-Random-
Ef fects-ANOVA
One-Sided Tolerance Factors ké for One-Way-Random-

Effects—-ANOVA

15



TABLE 1. Variabilityof kL(R) (P=.90, y=.95, R=1)

K, (®)
Case I J Kk (R) EV SD o . pr[r>1] 1 ®
1 5 2 2.714 2.721 .198 .073 .155 .9913 |
2 5 5 1.889 2.010 .317 .158 .047 .9985
3 5 10 1.388 1.528 .325 .213 .015 .9995
4 10 2 1.878 1.895 121 .064 .057 .9821-
5 10 5 1.308 1.358 .155 .114 .004 .9925
6 10 10 .961 1.005 .130 .130 .000 .9957
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TABLE 2. ONE-SIDED TOLERANCE FACTORS k!

S
FOR ONE~WAY—RANDOM-EFFECTS—-ANOVA
a. y= .95 P = .90
J 1
2 3 4 5 6 7 8 9 10

R=.2
2 5.18  3.24 2.70 2.44 2.27 2.16 2.08 2.01 1.96
4 3.08  2.42 2.17 2.04 1.95 1.88 1.83 1.79 1.76
8 2.43 2.08 1.93 1.8 1.78 1.73 1.70 1.67 1.65
16 2.15 1.91 1.80 1.74 1.69 1.65 1.63 1.60 1.55
» 1.89  1.74 1.67 1.62 1.59 1.57 1.55 1.53 1.52

=1
2 7.68  3.89 3.06 2.69 2.47 2.33 2.22 2.14 2.08
4 5.06  3.15 2.64 2.38 2.23 2.12 2.05 1.99 1.94
8 4.18  2.84 2.44 2.24 2.11 2.03 1.96 1.91 1.87
16 3.81 2.70 2.35 2.17 2.06 1.98 1.92 1.87 1.83
©» 3.48  2.56 2.26 2.10 2.00 1.93 1.87 1.83 1.80

=5

2 14.00 5.14 3.70 3.11 2.79 2.58 2.44 2.33  2.25
4 11.66  4.72  3.48 2.97 2.69 2.50 2.37 2,27 2.19
8 10.66  4.52 3.38 2.91 2.63 2.46 2.34 2.24  2.17
16 10.20  4.42  3.34  2.87 2.61 2.44 2.32 2.22 2.15
© 9.77  4.33 3.29 2.84 2.50 2.42 2.30 2.21 2.14

R=10
2 16.56  5.56 3.89 2.24 2.88 2.66 2.50 2.39  2.29
4L 14.90  5.29 3.76 3.15 2.82 2.6l 2.46 2.35 2.26
8 14.14  5.16 3.70 3.11 2.79 2.59 2.44 2.33  2.25
16 13.78  5.10 3.67 3.10 2.78 2.58 2.43 2.32 2.24
» 13.42  5.04 3.64 3.08 2.76 2.56 2.42 2.31 2.23
R=w® 20.58  6.16 4.16 3.41 3.01 2.76 2.58 2.45  2.36
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Table 2 (Cont'd)

Y .95 = ,99
J I
2 3 4 5 6 8 9 10
R=.2
2 8.83 5.44 4,54 4.10 3.83 3.65 3.52 3.42 3.34
4 5.16 4.04 3.65 3.43 3.29 3.19 3.12 3.06 3.01
8 4.03 3.47 3.23 3.10 3.01 2.95 2.90 2.86 3.83
16 3.56 3.18 3.02 2.93 2.86 2.81 2.78 2.75 2.72
o 3.11 2.89 2.79 2.73 2.69 2.66 2.63 2.61 2.60
=1
2 13.28 6.54 5.12 4.50 4.14 3.90 3.74 3.61 3.51
4 8.58 5.24 4,38 3.97 3.73 3.56 3.44 3.35 3.27
8 7.02 4.70 4.05 3.73 3.53 3.39 3.29 3.22 3.15
16 6.37 4,45 3.89 3.61 3.43 3.31 3.22 3.15 3.09
o 5.79 4,22 3.73 3.49 3.33 3.22 3.14 3.08 3.03
=5
2 24 .83 8.75 6.22 5.22 4,68 4.34 4.10 3.93 3.79
4 20.51 7.99 5.85 4.98 4.50 4.20 3.98 3.82 3,70
8 18.68 7.64 5.67 4,86 4,42 4,13 3.92 3.77 3.65
16 17.84 7.47 5.59 4,81 4.37 " 4.09 3.89 3.75 3.63
© 17.05 7.30 5.50 4,75 4,33 4.06 3.86 3.72 3,61
R=10
2 29.58 9.49 6.57 5.44 4.84 4,47 4,21 4.02 3.87
4 26.49 9.01 6.34 5.30 4.74 4.39 4.14 3.96 3.82
8 25.08 8.78 6.23 5.23 4.69 4,35 4,11 3,93 3.79
16 24,41 8.67 6.18 5.19 4,66 4.33 4.09 3.92 3.78
o 23.60 8.56 6.13 5.13 4,64 4.30 4.07 3.90 3.77
R=ooc . )
37.09 10.55 7.04 5.74 5.06 4,64 4,35 4,14 3.98
*c
for all J
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TABLE 3. ONE-SIDED TOLERANCE FACTORS k!
FOR ONE-WAY-RANDOM-EFFECTS—ANOVA
a. y=.95 P = .90
J 1
2 3 4 5 6 8 9 10
=.2
2 4.22  3.05 2.62 2.39 2.24 2.14 2.06 2.00 1.95
4 2.69 2.30 2.11 1.99 1.91 1.8 1.81 1,77 1.74
8 2.20 1.98 1.87 1.80 1.75 1.71 1.68 1.65 1.63
16 1.98 1.83 1.75 1.70 1.66 1.63 1.60 1.58 1.57
© 1.76 1.67 1.62 1.58 1.56 1.54 1.52 1.51 1.49
=1
2 4.34  3.14 2.69 2.45 2.30 2.19 2.11 2.04 1.99
4 2.8  2.45 2.24 2.11 2.02 1.95 1.90 1.86 1.82
8 2.45 2.19 2.04 1.95 1.89 1.84 1.80 1.76 1.74
16 2.27 2.07 1.95 1.8 1.82 1.78 1.75 1.72 1.69
© 2,10 1.95 1.86 1.80 1.76 1.72 1.69 1.67 .65
=5
2 4.45  3.22 2.76 2.51 2.35 2.24 2.15 2.09 2.03
4 3.06 2.58 2.35 2.21 2.11 2.03 1.98 1.93 1.89
8 2.65 2.35 2.18 2.07 2.00 1.94 1.89 1.85 1.82
16 2.49  2.24 2.10 2.01 1.95 1.89 1.85 1.82 1.79
© 2.34 2.15 2.03 1.95 1.89 1.8 1.81 1.78 1.76
R=10

2 4,48  3.24 2.78 2.53 2.3 2.25 2.16 2.10 2.04
4 3.09 2.61 2.37 2.23 2.13 2.05 1.99 1.94 1.91
8 2.69 2.38 2.21 2,10 2,02 1.96 1.91 1.87 1.84
16 2.53  2.28 2.14 2.04 1.97 1.92 1.87 1.8% 1,81
© 2,39 2.19 2,07 1.98 1.92 1.87 1.8 1.80 1.78
2 4,51 3,26 2.80 2.54 2.38 2.26 2.18 2.11 2.05
4 3,13  2.64 2.40 2.25 2.15 2.07 2.01 1.96 1.92
8 2.74 2,42 2.24 2,13 2.05 1.98 1,94 1.89 1.86
16 2.58  2.32 2.17 2.07 2.00 1.94 1,90 1.86 1.83
© 2,44  2.23 2.10 2.02 1.95 1.90 1.86 1.83 1.80
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Table 3 (Cont'd)

R

.2

R=10

R=

o0
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W Wk P
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.20
.80

.16
.58
.79
.46
.15

.24
.71
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.66
.39

.25
.74
.00
.70
44

.27
.78
.05
.75
.49

.09
.81
.28
.01
.71

NWWWwWLm

.16
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.45
.22
.00
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.21
.03
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.38
.19

Wwwke~ o

.23
.06
.62
<42
.23

Wwweks~ o,

.24
.08
.65
3.46

W &~

vy = .95 P = .99
I

4 5 6
4.38 4.00 3.77
3.52 3.34 3,22
3.12 3.02 2.94
2.91 2.84 2.79
2.66 2.63 2.60
4.43  4.05 3.81
3.62 3.43 3.31
3.26 3.14 3.06
3.09 3.00 2.93
2.91 2.85 2.80
4,48 4,09 3.85
3.71 3.51 3.38
3.38 3.25 3.16
3.23 3.12 3.05
3.08 3.00 2.94
4,49 4,11 3.86
3.73 3.53 3.39
3.41 3.27 3.18
3.26 3.15 3.07
3.11 3.03 2.97
4,51 4,12  3.87
3.75 "~ 3.55 3.41
3.44 3.30 3.20
3.29 3.18 3.10
3.15 3.06 3.00

3.60
3.14
2.89
2.75
2.58

3.64
3.21
3.00
2.89
2.77

3.68
3.28
3.09
2.99
2.389

3.70
3.31
3.13

3.04
2.95

3.48
3.07
2.85
2.72
2.56

NN N WW
~ o0 \WwE WL
S~

3.55
3.20
3.03
2.95
2.86

3.56
3.22
3.05
2.97
2.88

NN WLWW NN WW MDY WW NN DDNWW

NN WWLWW

.39
.02
.81
.70
.55

42
.08
.91
.81
.71

.45
.14
.99
.91
.83

.46
.15
.00
.93
.85

.47
.17
.02
.95
.87

3.34
3.04
2.87
2.79
2.69

3.37
3.09
2.95
2.88
2.80

3.38
3.10
2,97
2.89
2.82

3.39
3.12
2.98
2.92
2.85
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