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SUMMARY
The problem of estimating the order, (p,q), of an ARMA (p,q)
process is considered. An extension of the Gray, Kelley, and
McIntire (1978) method of estimating (p,q) is proposed and shown
to be particularly useful for processes whose spectra have a
certain form. Simulated data is used to illustrate the use-

fulness of the extension.

1. Introduction and Definitions

Gray, Kelley, and McIntire (1978) have illustrated how a
certain transform, Sn(-), of the autocorrelation function may
be used to estimate p and q from a realization of an ARMA(p,q)
process. Their technique hinges on the following two facts.

If Pl is the autocorrelation function of an ARMA(p,q)

process, then

(1)
Py ~ ¢1pk_1 - e ™ ¢ppk_p =0 for k > q .



Under quite general conditions on the real

sequence {f } , (2)

Sn(fm) = C for m > m, iff {fm} € L(n,A) for m > oy

These two facts imply that p and q can always be determined if
the autocorrelation sequence of the process is known. This
important '"consistency' property is not possessed by the popular
Box-Jenkins (1976) method in the case of the mixed process (i.e.
p>0and q>0).

The Gray, et al method of estimating p and q involves
the examination of an array, known as the S-~array, which contains

values of Sn(pk), where usually

N-k _
L (X,-X) (X, -X)
~ g t t+k .
“x N —
z (Xt -X
t=1

A constancy pattern in the S-array consistent with (2) leads

to estimates of p and q. Numerous simulation studies and use

of the S-—-array method on re#l data have indicated that this
constancy pattern is sometimes more apparent in an array based
on Sn[(—l)k;k]. Since'{pk} e L(p,A) for k > q if and only if
'{(—l)kpk} e L(p,A) for k > q, the same theoretical justification
exists for using Sn[(—l)k;k] to estimate p and q as for Sn(;k)'
The differing statistical properties of these two transforms

will be discussed later.

Sn(pk) and Sn[(—l)kpk] are members of the following class

of transforms of pk:

, 2miwk
{Sn(e p

The properties of these transforms when Py is the autocorrelation

function of an ARMA(p,q) process, and the estimation of p and q
2riwk” §

by means of Sn(e pk), are the subject of the remainder o

this paper,



Before proceeding to the next section, the following

definitions and notation are given.

A stochastic process'{Xt}, t=0, +1, +2,..., is said to

be autoregressive of order p and moving average of order q, or

ARMA(p,q), if
P q
Xt =kil ¢kxt_k + Zt -kilekzt_k for all t,
where the ¢k and ek are constants and {Zt} is a white noise process
with finite variance. If the operator B is defined by BXt = Xt-l’
then the above may be written as

¢(B)Xt = G(B)Zt, where
-1 - _ 2 _ _ P
4(B) =1~ 4B - ¢,8° - ... - 9B

and

2 q
8(B) 1 GlB - 62B - eee = GqB .

It is well known that {Xt} is stationary if and omly if
all of the roots of ¢(x) = 0 lie outside the unit circle.

Let m be an integer and f be a complex-valued function of

a real variable. Further, let fm = f(m),

fm—n+1 fm--n+2 T fm
f £ cen £

H(f) = m—-n+2 m-n+3 m+l

n m . . . s
fm fm+1 tee fm+n—1
1 1 oo 1
fm—n+1 fm—n+2 tt fm+l

Hn+1(l; fm) = . . . ?

fm fm+1 v fm+n2—1




where n is a positive integer. Now define

(1; £ )
S(f)= n+l
n m H (f)
n m
and
Y n =23
Hn(l;fm)
Rn(fm) =
f ’ n=1
m

The S-array for the function f is the following array of complex

numbers:
m/n 1 2 T k .
-j Sl(f_j) Sz(f_j) cee Sk(f_j)
-2 Sl(f_z)- Sz(f_z) - Sk(f_z) .
-1 Sl(f_l) Sz(f_l) cee Sk(f_l) .
0 Sl(fo) Sz(fo) .. Sk(fo) .
1 S (f ) sz(fl) - Sk(fl) een
2 S (fz) Sz(fz) - Sk(fz)
? S%(fj) S%(fj) ves ?k(fj) v

The following recursion relations, due to Pye and Atchison (1973),
are quite helpful in calculating S-arrays. If So(fm) is defined

to be 1 for all m, then

S (f )
L
R (E) =R (F ) [ s () 1]

and
R (f

)
m+1
Sn(fm) = Sn—l(fm+1)[_§;?§;7———' - ] ’



where n

1,2,..., and m is any integer.

A complex-valued sequence {fm} will be said to be an

element of L(n,A) for m > m

0

if there exists a smallest integer

n > 0 and a set of ci's such that

f. + c_f +

kT C1tk-1 te

2m1iwk

2. Properties of Sn(e

nfk—n

0.)

k

=0, m>m

0

Theorem 1 is now stated in order to given an explicit

form for each of the transforms in {Sn(e

2mink
m1w 0 ):

N

K 0 <w<3}.

Theorem 1 . Let {ak: k=0, + 1,...} be any sequence of real or

complex numbers. Then for any positive integer n, and any
integer ko, we have
=-27iw -2wiwn
1 e .
2miwk, 2Tiwn -
S_ (e 0a, ) =e 0 _ —n + a
n, ako ako n0+l ako n, 2 ... k0+1
ako-n0+2 ako—n0+3 e ak0+2
+ o 8
ako ako 1 k0+n0
H (a )
ng ko
Proof: By definition
Hn +1[1;e2ﬂ1wk0 ]
g (eZTriu)ko ) = 0 0
no 0 Hn (eZWika )
0 0




2riwkg
H [1;e ] =
n0+1 ako
1 1 v 1
eZTriw (ko-n0+1) a1 eZTrim (ko-n0+2) “ . e21rim (k0+1)
0 ™ ) oL
eZTricu (ko—n0+2) eZTrim-(ko-no+3) a e21rim(k0+2) a
0 ot2 ky~ng+3 ko+2
2mink 2miw (k. +1) 2miw(k +n )
e Oak e 0 e 0 0'a
0 a1<0+1 ko*m,
= exp{Zwim[no(no—l) /21} x
1 1 .. 1
e2wiw(k0—n0+1) - e21riw (ko-n0+2) g e e21r1m"(k0+1) "
00 00 0
2wiw (k. -n +1) 27iw (k. -n.+2) 2riw(k +1)
e 00 e 00 ces € 0
- - +
oo+ ako ngt3 ako 2
i - - +
e21r1uq(ko n0+1) e2111w(ko n0+2) " eZTrim(ko 1) ‘o
0 0 00
1 e-Zﬂim e-Zﬂiwno
2miwn,(k,+1) a
= 0 3 -n.+1 _
e 0 0 no ko no+2 o ak0+1
a"ko-no+2 ako-n0+3 . ak0+ 2
akO a'k0+1 o akoq-no




The above follows from simple row and column operations. A

similar set of operations yields

" (e2niwkoa e2viwn

n

k
) 07 0on (a ) ’
0 ko oy Ko
and the result follows.

From Theorem 1 we see that Sn(e2“1Mkak) depends on k only

through the sequence {am}. This fact will be helpful later when
we consider {a_} = {p_}.
m m
As noted previously, the autocorrelation function of an

ARMA(p,q) process satisfies the following relationship:
pk - ¢1pk-1- e ~ ¢ppk_p = 0’ k> q.

This relationship, however, is equivalent to

2mink
e [pk—¢lpk_1-°°°—¢kpk_p] = O’ k > q

or

2miwk o 2miw, 2miwm(k-1) 2riwp, 2mwiw (k-p) _
(e P88 T (e P10 (e Pr-p)=0>

k > q.

2riwk

In other words, for k > q, fkﬁu) = e is the solution of a

pk’

‘coefficients. Wif-(ijﬁoidsrfaiwébmﬁiéx'séquénbes,'théﬁ'fk(m)eL(P,A) o

2nimkpk), 0<m<l ,

fork > q allows the complex-valued transforms Sn(e
tobe candidates for use in the estimation of p and q. The validity
of (2) for complex sequences is established in the following
theorem.

Theorem 2  Let {fk} be a sequence of complex numbers. Suppose

S (f ) and R_ (f ) are defined and [S_ (£ )] > 0 for m > m
n, m n, m n, m -

0 0 0 0



Then

fm € L(nO,A) for m > m, iff

0
Sn (fm) = C for m > my.
0
%0
Further C = (-1) "(l1-a,-a,—-...-a ) where
1 72 n0
fm - alfm_1 — ee. - anofm_nO =0, m > my -

Proof: The proof of this theorem by Cray, Houston, and Morgan
(1978) for real {fk} depends only upon properties of determinants
and systems of linear equations. These properties hold so long
as the elements of {fk} belong to a field. Since the complex
number system satisfies the field properties, the result follows.

The basis for the remainder of this work is established

~ inCorollary 1 and Theorem 3.

:TC6£6115;§71: . Suppose the time series {Xt: t =0,+l,...} is a
stationary ARMA(p,q) process with autocorrelation LI Suppose

Sno(fmﬁn)) and Rho(fmﬁn)) are defined, p > 0 and lSno(fmGu))l > 0.

Then for some integer Ty

Sn (fm(ﬁﬁ) =C and

0

, m>m
s -

Sno(fmo_l(m)) # Cl’m

if and only if n, =p and my = q. In addition

’

= (_1\P/1 _ 2miw_ b4wiw_ . 2miwp
¢ o -1 $,e ¢2e ces ¢pe ).

Proof: SinceA{fmGn)} e L(p,A) and satisfies the equation

£,0)-(4,e" e @) - - 0 TRE @) =0, m > g,

the results follow immediately from Theorem 2.



Theorem 3 below is the analog gf;Theo;em 3 in Gray, Kelley,
and McIntire (1978). TIts validity follows from the fact that,

since pk = p_k, we have

p_k - ¢lp_k+1 T eee T ¢pp_k+_p = O’ —k < —q-

~ Theorem 3 Under the conditions of Theorem 2

Snéfm(m)) = CZ,w’ m < my and

Snéfm 1 £,

1
iff ng =P and m, = -qg-1l. 1In addition,
= 2riwp
c ] -Cl,we
2,w ¢ '
P

Proof: The proof is completely analogous to the proof of
Theorem 3 in Gray, Kelley, and McIntire (1978). Only trivial
modifications are required to adjust for the fact that Sn(fm(w))

is complex-valued.

" Corollary 1 and Theorem 3 show that thdré is no
inherent reason for considering only the real valued transforms

Sn(pk) and Sn[(-l)kpk] in the estimation of p and q. The question

remains, however, as to which transform from the class'{Sn(eZﬂiwkpk):

0O<uw i-%} is (in some sense) best for estimating p and q. The
best transform must obviously depend on the nature of the process
being observed, and thus some method is required to identify this

transform for a given process. One immediate clue towards the

solution of this problem comes from Corollary ii;tﬁhiéh;éﬁégéf

that

2miw_ ezﬂlwp), e

) m > q. (3)

- P(1-
Sp(fm(m)) = (-1)7(1-9,e P



Since the spectrum, sx(-), of an ARMA (p,q) process is such that

ll -8 eZﬂiw _ Y eZﬂiquZ
1 voe 1
s_(w) = 9 (0 <w<=)
X 2w { —_ = ’
Il - $pe o ¢pe2w1mp|2 2

it follows that for m > q, Sp(fm(w)) is closely related to

sx(w). In fact, if q = 0, we have

1
2 ]
ISp(fm(w))I

s (w) =

m>q.
x 29

This relationship will be exploited in the next section when

Zﬂimok
pk) is

the problem of choosing an optimal transform Sn(e

formulated.

3 Formulation of the Optimal Frequency Problem

Estimating p and q by the S-array method involves examining

an array for the presence of a certain constancy pattern. The

data at hand supports the estimates p and q if

ap 2mink” - -
Sp(e pk) e Cl, k > q and
ap 2mink” o -
Sp(e P *Cy k<-q-1.

For a given process, the transform to be used to estimate p and

q should be the one which, on the average, makes the correct

2riwk”
p,)

constancy pattern the most apparent. The ability of Sn(e Kk

to evidence this constancy depends on two things:

2migk”

(1) the variability of Sp(e pk) for k > q and k < -q-1,

and

(ii) the magnitude of the two constants being estimated by

2riwk”
e

Sp( pk) for k > q and k < -q - 1.

These considerations lead to the following definitionm.

10



Definition_ 1 Suppose'{Xt} is a stationary ARMA (p,q) process.

Then the frequency g willl be referred to as optimal for the esti-

mation of p and q iff

2riwgq” 2niwg”
var[Sp(e pg?] < var[Sp(e Dq?]

2wiw e2ﬂiwpl2

s o2miwg_ _, _2miwgpy2 _ -
|1 4 e e ¢pe l |1 4e ety

for all w € [O, %].

In light of (3), our definition of the optimal frequency is
consistent with (1) and (ii) above, although we consider the
variance of only positive lag S-array values. Note that the
quantity considered in the definition is essentially the
sQuared coefficient of variation of the random variable
Sp(eZWﬁﬂoq;q)-

In order to obtain an expression for var[Sp(eZﬂﬂnq;q)],

recall that, by Theorem 1

1 e—Zﬂlw e—Zﬂiwp

A ~ ~

Pamptl Pg-p+2 ... Pq¥l

A PN A

Pa-p+2 Po-p+3 0 Pex2

Sp(eznimqpq) - eZﬂiwp s ; .
q qt+l o Paip .
H
p(pq)

By performing appropriate row and column operations and expanding

the numerator by cofactors of the first row, we have

11



12
Sp(e21r1u)qp ) = (_1)p(1_¢§p,q)e2w1w_"

~(p,q) 21
. —p(Pr@) 27 wpy

P

where (¢§p,q)’ ¢§p’q),...,¢;p’qZ) is the solution of

- R R R - p -
P P cee O \
q q-1 q-ptl Pq+l
P P cee P _ A\
q+l q q-p+2 P42
. . . X = - ‘
P P cee P P
qtp-1 qtp-2 d qﬂ)J
b - _J

By the definition of variance of a complex valued random variable

(i.e., var(X + iY) = var(X) + var(Y))we thus have

s A P ~
var[Sp(eZwlwqpq)] = I var(¢£p’q))[c0522nmk + sin22wmk]

k=1

+ 2 ZI {(cos2mwjcos2mwk + sin2mwjsin2nwk)

i<k
“(p,q) S(p,q
X Cov(d)j ’ d)k )}
P -
= I var(¢£p’q))
k=1

+ 2 chos[Zwm(k—j)]cov(i(P:Q)’ &(p,q))
j<k 3 k

p-1 iy
=3y + 2 T ¥ cos2mwk ’ (4)
0 k=1 k
p-k

where wk =z cov(igp’q)’ $§zﬂq)), (k = 0,1,...,p-1).
j=1 -

Therefore, the frequency which is optimal for the

estimation of p and q is the value of w which minimizes
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-1
¢0 + 2k51¢k cos2twk
= = 5
Clw) Il 2riw 2riwp 2 )
-¢le —...-¢pe |

Interestingly, the above expression shows that our criterion for
identifying wg is essentially equivalent to the problem of finding
the frequency at which the spectrum of an ARMA (p,p-1l) process
has its minimum.

The above considerations illustrate that for many processes

2“im0kpk) is optimal for the

- there exists wg # 0,l for which Sn(e
estimation of p and q. We have not, however, addressed the pro-
blem of identifying wq given a record of finite length from an

ARMA process. A less than optimal, but useful, solution to this

problem will be discussed in the next section.

4, Estimating the Optimal Frequency w4

The dependence of ( 5 ) upon p makes the estimation of mo
difficult. Suppose for the moment, however, that for the process
under consideration q = 0. Then the quantity C(w) is proportional
to

pr-1

C*w) = s_(W)W+2 T Y. c
b'q 0 k=1 k

os2nwk) .

Experience has shown that for most processes the minimum of C*(w)

occurs at about the same frequency as does the minimum of sx(w).

-1
This is because wo +2z2 ¢k0032“wk is almost flat in relation to
k=1 .
sx(m). Stated another way, if {Sp(eznimkpk)} is viewed as a
stochastic process with
2mriwk” - 2riwk
Sp(e pk) = Sp(e pk) + ep,k(m)’
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"then the errors e k(m) are essentially homoscedastic. -
b4

In order to partially substantiate the previous claim,
an approximation to £n(NC(w)) has been calculated for two

different autoregressive processes and plotted (see Figures 1

and 2) for comparison with

1
Ln
2miw 2miwp2
{1 b, e ceambe [

The approximation of £n(NC(s)) uses the Box and Jenkins (1976)
approximation for the variance-covariance matrix of
" " 0 " 0 N 0
o7 = (P, 30 (e 0y,
P
Assuming that the noise process {at} is composed of independent
and identically distributed N(O,oz) random variables, it can be

shown that

var(é) 2-%(1 - QngP_l,

where
1T = ' =
] (ol,oz,---,op), $ (¢1,¢2,---,¢p),
1 Py Py eee pp-l
P = pl 1 pl - pp—Z ,
I N
pp-l pp_z pp_3... 1

and N is the sample size.

The processes associated with Figures 1 and 2 are,

respectively,



(1—.6OB)(1—1.0607B+.5625B2)(1+.4944B+.64B2)Xt -z, 6)

and

(1-.953)(1+.953)(1-1.34353+.902532)x; = z!. @

As was conjectured, £n(NC(w)) and -2&ndl—¢le2wim—...—¢pe2wiwpl)
are minimized at the same value of w for process (6) and at
approximately the same value for process (7).

The above considerations suggest that, for autoregressive

-

processes, a reasonable estimate of W would be the value 0 for
which a window spectral estimate ;x(w) is minimum. It should be
pointed out, though, that since @ is of interest only because
of its utility in estimating p and q, it.is actually not
important to have a precise estimate of this parameter. If the
array assoclated with ;0 indigates obvious estimates of p and q,
then ;O has performed its intended function.

The purpose of our discussion to this point has been
twofold:
(1) to illustrate theoretically the possible value
of complex-valued S-arrays in the estimation
of p and q
(ii) to address the problem of estimating a frequency

A

anwokpk) is optimal for the

5 for which Sn(e

estimation of p and q.

Still open for research is a complete solution to the problem
in (ii). For the present, however, it is suggested to initially

examine the S-array associated with Wy unless @, occurs at a

0

sharp dip in the estimate of the spectrum. Such a sharp dip

15
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is evidence of a near noninvertible moving average factor, and
thus is not indicative of a small value of
1

- ¢182ﬂim_..._ ¢p82ﬂimpl2

If ;0 occurs at a sharp dip, then the S-array associated with
the next smallest local minimum should be examined initially.
Additional S-arrays may be examined if estimates for p and q
are not apparent in the first array. Such an examination of
several different arrays may seem prohibitive in terms of

computing time, but this is actually not the case due to the

recursive algorithm defined in Sectionm 1.

5. Examples

The results of Section &4 imply that S-arrays based on
frequencies satisfying 0 < w < %-will be the most valuable for
processes whose spectra have relatively large power at w = 0
and w = %u Therefore, since the purpose of this section is
to 1llustrate the practical importance of complex-valued S-arrays,
the two examples which follow will involve such processes.

In each of the two examples to be considered, five indepen-
dent realizations of an autoregressive process were generated.
The process in Example 1 (whose log-spectrum appears in Figure
3) is

(1 - .95B)Y(1 + .953)xt =7 (8)

t b
and the process in Example 2 is process (7). Realizations of

length Nl = 75 and N2 = 50, respectively, were generated from

18
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(8) and (7). In each case the values of the noise process
‘{Zt} were obtained by generating random samples from the N(0,l)
distribution using IMSL subroutine GGNPM.

For each of the ten realizations an estimate of the
spectrum was calculated. The estimates in each case utilized
a Parzen window based in Examples 1 and 2, respectively, on 11
and 8 values of the estimated autocorrelation function. The
following empirical measures of constancy in the S~array were

then computed for each realization in Example j:

5
1 ~ 2niwk = 2
3 i iSp'(Dke ) - Sp (m)!
k=0 i 3
C.((ll) = _ 2 b
J IS (m)l
Py

- > - y
where p) = 2, py = 4, S, (u) = %z 5p (okezﬁwk),
' | =0 “j

A

and v = 0, %3 and Wy the frequency at which the estimated
spectrum is minimized. Note that cjﬁn) is a sample analog of
the quantity C(w).

'Table 1 contains the average value of cj(O), cj(%),
and cj(;o) over the five realizations of Example j (j = 1,2).
In addition, Tables 2 and 3 show the S-arrays associated
with w = 0, %3 and ;0 for typical realizations in the two

examples.

In each example, the average value of ¢ Quo) is seen to

3

be smaller than the average of either cj(O) or c (%9, and

3

further, cj(mo) was the smallest of the three values for all

five realizations in both examples., The numerical evidence

~

in Table 1 favoring S-arrays based on @ is presented visually
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TABLE 1

AVERAGE VALUES OF cl(w) and cz(w)
IN EXAMPLES 1 AND 2

c. (O c,(w,) c.(.5

_.1____.1__0__.1___1
.0878126 .0005025 .0361297

3.1317649 .1238482 .2255245
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in Tables 2 and 3. Although constancy is apparent in all
three arrays in both examples, it is most apparent (for

Example j) in the array based on wg due to the magnitude of

the quantities being estimated in column pj.

6. Summary

A refinement of the S-array method of modeling ARMA
processes has been introduced in this chapter. 1In so doing,
the theory of complex-valued S-~arrays was developed, and the
problem of identifying a frequency whose associated S-array
is optimal for estimating the order of an ARMA process was
formulated. Additionally, two examples involving simulated
data were considered in which S-arrays based on estimated
optimal frequencies gave clearer determinations of the order
of the underlying processes than did real-valued S-~arrays.

The true usefulness of the method discussed in this
chapter cannot be ascertained until it has been utilized omn
real data. Constancy patterns in the S-arrays of simulated
data tend to appear quite good at all frequencies, and thus
the potential worth of complex-valued S-arrays may have been
understated in the examples of the previous section. The
possibility exists that for certain data, constancy which is
virtually hidden in the two real-valued S-arrays is readily
apparent in some complex-valued array.

An aspect of the S—-array method which has not been

discussed here is the information it contains about the



TAB

LE 2

S-ARRAYS FOR A TYPICAL REALIZATION IN EXAMPLE 1

w=0
m/n 2 3
-6 =-.507 0.000 -.145 0.000 491  0.000 -.393 0.000
-5 1.286 0.000 -.125 0.000 046  0.000 .015  0.000
-4 -.510 0.000 -.112 0.000 -.042 0.000 -.094 0.000
-3 1.261 0.000 -.100 0.000 148 0.000 -.106 0.000
-2 -.524 0,000 -.105 0.000 .533 " 0.000 1.318 0.000
-1 1.346 0.000 -.084 0.000 -.658 0.000 -1.608 0.000
0 -.574 0.000 .074 0.000 -.083 0.000 .079  0.000
1 1.100 0.000 .093 0.000 -.111 0.000 .222  0.000
2 -.558 0.000 .089 0.000 -.312 0.000 -.078 0.000
3 1.039 0.000 .102 0.000 -.030 0.000 -.053 0.000
4 -.563 0.000 111  0.000 .077 0.000 .044  0.000
5 1.030 0.000 .131 0.000 -.176 0.000 .199 0.000
w= _50
m/n 1 2
-6 -1.493 .000 -.069 .000 -.044 .000 -.198 .000
-5 =3.286 .000 -.130 .000 .168 ~.,000 -.162 .000
-4 -1.490 .000 -.098 .000 .260 ~-.000 .236 .000
-3 ~=3.261 .000 -.135 .000 .093 -.000 .162 .000
-2 =1.476 .000 -.151 .000 -.431 .000 -.737 .000
-1 -=3.346 .000 -.210 .000 1.271 -.000 -3.103 .000
0 -1.426 .000 .183 .000 ~-.160 -.000 .152 .000
1 -3.100 .000 134 .000 -.090 -.000 -.124 .000
2 -1.442 .000 121 .000 .197 .000 .118 .000
3 -3.039 .000 .089 .000 -,186 -.000 .133 .000
4 =1.437 .000 .116 ~.000 -.280 -.000 -.465 .000
5 -3.030 .000 .062 .000 -.016 -.000 .101 .000
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TABLE 2 (con't)
w = ,298
m/n 2 3
-6 -1.145 471 1,927 .586 .906 -4.841 -.543 -1.883
-5 -1.672 2.185 1.932 .636 -2.540 .265 3.085 .021
-4 -1.144 469  1.916 .615 -3,373 1.439 1,912 5.973
-3 -1.665 2,161 1.919 .645 -1.426 -1.353 1.803 4.932
-2  -=1,140 455 1,926  .656 3.149 -7.722 18.318 -4.375
-1 -1.690 2.242 1.930 .705 -10.334 10.906 -17.091 -33.340
0 -1.125 407 1.737 .438 -1.873 -.258 1.828 .177
1 -1.617 2.007 1.739 .479 -1.517 ~-.845 .450 3.139
2 -1.130 423 1,745,488 .563 =4.110 3.831 -.102
3 -1.600 1.949 1.746 .514 -2.530 .706  3.538 -.238
4 -1.129 418  1.734 .496 -3,593 2.311 3.315 8.209
5 -1.,597 1.941 1,737 .541 -1.339 -1.152 .990 -.095
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possible nonstationarity of the observed time series (see Gray,
Kelley, and McIntire (1978)). An analog of this important
feature of the S-array method is not possessed by automatic
order selection techniques such as the AIC criterion of

Akaike (1969). The behavior of complex-valued S-arrays under
an assumption of nonstationarity is an area for future research.
Some unforseen application of these arrays to the nonstationary

problem may well exist.
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