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1. INTRODUCTION, NOTATION, AND DEFINITIONS

Let‘Xl, XZ’ cevy Xn be a random sample of size n from a

- distribution with distribution function F, and let Xl 0’ X2 0’
’ ’

ooy Xn 0 denote the associated order statistics. For a fixed

weight function J(u) defined for 0 < u < 1, we define the

L-statistic

s =X gJ[ 1 ]x . (1.1)
n n oy n+1 i,n .

Other definitions, typically asymptotically equivalent to that

n n
above, include Tn =-% L J(i)xi n and Un = %- L ci nxi n
' i=1 ! i=3 7° *
i/n
where ¢ a " f J(u)du., Sn is chosen for study in this paper
? (i-1)/n

as being typical of actual L-statistics used in practice (use
of Un, in which the integration '"smooths" J, might result in

fewer conditions on the weight function).

L-statistics of the form of Sn are often used in esti-
mation préblems since they are typically computationally simple
and (at least for location and scale problems) asymptotically
efficient given the proper choice of the weightvfunction J.
Thus, they are often good choices a) és estimates for their

own sake, b) as good starting values for iterative estimation



procedures, and c) as quick and consistent estimators of
nuisance éarameters (such as unknown scale in regression
problems) to minimize the number of parameters being simultan-
eously egstimated via an iterative procedure, Herein we consider
primarily a), where L-statistics are used to make parametric
inferences on their own., However, Sn is often biased as an

1
estimator of So = f Q(u)J(u)du where Q(u) = inf{x:F(x) > ul ,

0
as is g(Sn) biased for g(So) for many choices of g. Also,
there seems to be a dearth of procedures for consistent non-

parametric estimation of the variance of /h(sn-so). (But see Sen

(1979) in this regard.) For both of these problems, reduction
of bias and consistent nonparametric variance estimation, the.
jackknife is a natural choice as a possibly non-optimal
rough~and-ready tool.

The ordinary jackknife of Sn may be written as

i=1 (1.3)
_1 % [( 1).1[i = 1] + ( 1).1(3)] X
n - n n- n i,n
i=1 4
n ,
=nsS - n -1 z S(l)
n . n~1l



where the ith pseudo-value is

n i-1 n
T TR CAN I C-e E
. S R R e 3
(1.4)
S(i) is the same L-statistic computed after deleting X
n-1 b i,n

from the sample, and I h(i) is understood to be defined to be
i=a

zero if a >vb. (See Miller (1974) for basic definitions of
the jackknife and pseudo-values in general.) Note that the
definition of J at O and 1 is completely arbitrary since the
associated terms will cancel out in (1.3).

We further define the sample variance of the pseudo-values

as

L (s
i=1

- 2
i,n s ) . (1.5)

2. RESULTS ON JACKKNIFING L-STATISTICS

Theorem 1: Let X,, X,, «.., X_ be a random sample of size n
1 2 n

from a distribution F with EFIXIp < « for some %~§_p < 1.
Further, let S_ and §n be as defined by (1.1) and (1.3). If
a) p=1 and J' satisfies a Holder condition with a >-%, or

b)'% <p <1l and J' satisfies a Holder condition with



8 o}

Proof:

where

(with

i&

and (with

'
rof—

From elementary algebra, Sn

, then v/n(Sn - Sn) + 0 with probability 1 as

. ‘ n
- Sn = Z DJ(l,n)X

i i
n+1f-Einl—n)
i '

J[n+l}+J [n

- J[n

i-1

i
+1

i _i__ i
+ 1) (n n+1

vep 1 1
+ (ginl) - J {m])[n -

i

i

J+o G

< g

in2 <

+ 1

|

n(n + 1) + Binl

.

n+1

)

i ,l+a
ni{n + 1)




L [] i i-l i
O = [n T 1]{ P 1]

- i i i-n-1
J[n+1]+J{n+l] an(n + 1)

. l+a
i-n-1
n(n + 1) ’

+
Bin2

where the B and B, , are all uniformly bounded in absolute
inl in2

Value by some finite positive constant B. Hence,

g yR-22F . L+a
D (iyn) = =J' [ ] - B —_—
J n+1 n2(n + 1) n inlin(n + 1)

1-1

s |t-n-1 I+a
n in2 | n(n + 1)

Thus,
- n
/h|sn - Snl < /n E IDJ(i,n)IFXi’n|
i=1
no x|
l+a i
<n sup |D (i,n)| £ ———F
teien O ia) (i) /2
= 2



, 2
"2 1+2a .
If 0 <7If;—§; <1 and EFIX‘ < », with J' satisfying a
Holder condition with exponent a, Zn + 0 with probability
one, by Marcinkiewicz' theorem (Loeve (1977), p.254). 1If

EF[X] < » and J' satisfies a H&lder condition with exponent

a > %3 Zn + 0 with probability one, using the strong law of

large numbers.

Several comments are in order:

1) This result is the univariéte analogue for L-statistics
of result J.1 of Reeds (1978) for M-estimators. The extension
to the multivariate case is immediate and hence omitted.

2) The moment condition on F is seen by an inspection
of the proof to be'supeffluous if S "trims", i.e.,if J(u) = 0
for u € (C,e) U (1 - ¢,1) for some 0 < ¢ < %-.

3) If further /n(Sn - So) §+ N(0,02), where

-]

o2 = [ [ITF&)IE®G)) [Fmin(xz,y))

-t -

- FX)F(y)]dx dy > 0, (2.1)

then /h(sn - So) 4, N(0,02) likewise. This is true if the

conditions of Theorem 1 hold with p = 1 and J' is of bounded



variation (using the result of D. S. Moore (1968), with g2 < ®),

4) Since J" bounded on (0,1) implies that J' satisfies
a Holder condition with a = 1, the condiﬁion on J and F in the
theorem may be replaced by the stronger but intuitively clearer
condition that J" is bounded and EFIXI%,3 < =,

5) A similar theorem was stated under much stronger
conditions by Thorburn (1976).

6) Theorem 1 yields a law of the iterated logarithm for
the jackknife of a linear function of order statistics from the
corresponding law for the original statistics. Using Theorem 4
(Example 1) of Wellner (1977b), we obtain that if EFIXl2+e < ®

for some € > 0 (and a > %?

- 1
‘als_ - of Q(u)J_(u)du|
lim sup =1
n
Vgicz log log n

with probability one, where Jn(u) = J{

_ 1
l<iz<n, and J (0) = J[n T l]

7) Similarly, a Berry-Esseen rate for Sn follows directly
1
from that of Helmers (1977), If EF|X|3 <™, [ 13w ldQu) <=
0
and 02 > 0, we quickly obtain that

-1
sup  [F*) - 0] = 0™ )



. - 1
where Fn*(x) is the cumulative distribution of (Sn-E[Sn])/(VarSn)) 2

and ¢(+) is the standard normal cumulative.

The following theorem gives conditions under which the
jackknife provides a consistent estimator of the asymptotic
variance of /h(Sn - So) and /h(Sn - So), and hence makes

possible the construction of asymptotically pivotal quantities.

Theorem 2: Let Xl, ceey Xn be a random sample of size n from

a distribution F, and let spz be defined by (1.5). If there

1

exist positive numbers € and § such that 0 < § < g < 5

(let C(e)

[0,e) U 1 ~¢g, 11); J(u) =0 for.uGC(E),
£Q(u) > B > 0 for ue&l{e - o), and J'

gsatisfies a Holder condition with exponent a > 0, then
sp2 21*02, with o2 given by (2.1).

Proof: Note that ¢4 = Var(H(U)) where U ~ u(0,1) and

2

1 .

H(u) = Q(u)J(u) - [ Q(t)J'(t)[t - I(u < t)]dt, translating
0



the results of Boos (1979, eq.3.3) into the quantile domain and

then integrating by parts. Now, from (1.5), it will suffice for

the desired result if we show that

sup |S, _ - H[ = ]| 50, as n > =, (2.2)
leij<n o0 n+1
If (2.2) holds, then s 2 = L ; (" i -1 ; H __i___)2+0 (1).
: ? P n-1_" n+1l n. ,\n+1 P
i=1 =1
10 i 1 B i
2 1 .
Furthermore, 7 I H {n y l) and o .Z H[n T l] will
i=1 i=1
1
converge to f H2(u)du and f H(u)du respectively, giving
0 0 . ‘
sp2 -2+ g2, By definitionm,
n i-1 . n
T S R C RS ey LA
,n j=l n 3 j=l J 3 j=i+l J ?
{ 1-1 N .
= J[n + l]xi,n - jil{J(n) B J[n + 1]}Xj,n
n .
SR e R e L
j=1i+1 : Is
i-1 . n
‘J[ il}xi -5z J'[.+1] 1 -5 zj'[n+l}'
n noom n n S R
-3
(n+l L X ¥ R

10
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using Taylor expansions and the HOlder condition on J'. Also
using trimming condition on J, the remainder term is such that

sup IRnZil = op(l) as n + o,
l<i<n

From the continuity and boundedness of J and the fact

that £Q(u) > B > 0 wherever J(u) # 0, J[ 1 ]Xi,n -

n+1

i i ’ ' )
J(n + 1] Q[n + 1] * R 3pr Vith 159p anBil = Op(l)- Further
' ' <icn :
s y : 1
-— ' I ' . L
n ’ElJ (n + 11 n+ 1 Xj,n -+ Of Q(t)J'(B)F(t)dt w1t§ probability

one from Corollary 2 to Theorem 1 of Wellner (1977).

i =
Then, for fixed K let U T i=0,1, ..., K+ 1.
It follows easily that
1 n . P 1
L, == £ J'|——=x. = [ J'()qr)dt
i . n+1;"j,n
J=[nui] uy

1
[ 3T()I(u, < t)Q(t)dt ,
0 1



12

Since K is finite, the convergence in probability is uniform

ini, 1=0, 1, ..., K+ 1, Furthermore, letting inf |ui-u|

. i=l,.I‘K
be achieved at index value i*

=l

n ,
sup |L,, - roJ P—J——}x, |
Osusl  * j=lnu] T 1em

IF o]+ [F - o

i sup IJ'(u)l K+ 1 s

O<u<l

which may be made less than any specified positive number in
probability through a sufficiently large choice of K. Hence,

P

(2.2) holds and s? — g2, by the uniform continuity of

2
1 P
o IT®a(ede.)

Some pertinent comments follow:

1) This result provides a method for consistent variance
estimation for L-statistics, being the univariate analogue for
L-statistics of result 3.2 of Reeds (1978) for M-estimators.

2) Finiteness of 02 is clearly implied by the trimming
and boundedness conditions on J.

3) This result makes possible the construction of

nonparametric approximate confidencte intervals for

1
So = f Q(u)J(u)du, using as pivotal quantities
0
/’n-(sn -s.) /n(sn -8.)
or e *
s s

P P



This is, to the knowledge of the authors, the only nonparametric
method of consistent variance estimation for L-statistics (i.e.,
in the absence of a specified parametric form for the unknown
density) other than that of Sen (1979) discussed below. For a
specific parametric family, a consistent estimator would of

course typically be provided by

o2 = [ [ I(Fy(0)I(Fy(y) [F](min(x,y)

-l =00

(2.3)
- Fg(X)Fé(y) Jdxdy ,

where F B8 € Q is the parametric family of densities and §

e’
is a weakiy consistent estimator of 8, possibly mulitivariacte.

4) It would be interesting to compare the properties of

this estimator with that proposed by Sen (1979), which is

essentially
0% = LT IECIE ONIE oy - F OF () ]dxdy,  (2.4)

obtained by subsituting the empirical distribution function

Fn for F in (2.1).
5) Relaxation of the trimming condition on J, which

would require either moment conditions on F or joint conditionms

13

governing J(u) and Q(u) as u approaches 0 and 1 is questionable from
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the standpoint of robust inference and hence Theorem 2 is ,
stated as being of interest in its own right. Theorem 3,
however, obtains strong convergence of spz, while dropping the

trimming condition, at the cost of moment assumptions.

Theorem 3: Let Xl, cees Xn be a random sample of size n from

2+e

a distribution F with E|X| < = for some ¢ > 0. If J'

is continuous on [0,1], then sp2 + o2 with probability one.

Proof: We proceed as in the proof of Theorem 2 to write

n .
' 3 J _ . .
L7 [n T 1] [n ) .I(J < ANX 4

1 | h
- — ' — ' - ]
jil(J (n ji) J ( I l])(n 1 I(J < i)]xj, ,
ji-1 1 ; = _i
where a < nnji < n and in particular Mii e i

e =)

The proof is then concluded by showing 1) %

1
Si,n*of Q(u)J(u)du,

i=1
1

n
and 1ii) %- £ S2 _ + o2+ ( f Q(u)J(u)du)2, both convergences
0

2
1=1 ="

being with probability one. Proceeding with the first part,
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1 n 1 n . 1 n . : . .
= ps, == pJ——=ix, - 13— -4 x
n i,n n_ 7, In+1)i,n n . n+ 1ljintl a1} j,n
i=1 i=1 j=1
n n
1 1 i i ..
-= ¥ = E(J‘(n..)—J'( ])[ -I(Jil)]x. .
n,.,0 =1 nji n+lj’ {n+l j,0
1
The first term converges to f Q(u)J(u)du with probability

0
one by Theorem 4, example 1 of Wellner (1977a),

n . .
The second term is - l-{-]-'- T J'[ = } 1__ X, } which
n n =1 n + 1J n+1l"j,n

converges to O with probability one by the same result (since

n .
L r J' ] — X
n 1=1 n+1ljn+1 " j,n

1
f Q(u)uJ' (u)du with probability one). Lastly,
0

converges to

' SRS S I B A . .
(T npyq) =7 (n+l])(n+l 1G < 1)]Xj,n
|

n

j=1_3o°

n

' _ prf_d
< sup|3'n ) - [n-i-l]
i,]

which converges to zero with probability one using the uniform
continuity of J' and the first moment assumption on F, For

the second part,
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n n '
- l -—i— _-l. 1 _j__ —j__ - 2 5 .
2 n E [J(n+l]xi,n n LJ (n+l]{n+l I(Jil)}xj,n]

i=1 j=1
1o A
= ' - I! - . :
n ji]_(J (nnji) J [n+l])[n+l G < l)]xj,n
n n
1 (1 ERNE ] 12
+= 4= I (U'(n_.,) = T y—=1)j—= - 1(§<1)|X,
n i=l‘n j=1 nji ll’H‘lJ bﬁ-l 1=+ J’nf

The third term, A3n’ is less than or equal to (in absolute

value)

%, D%,

(%su?[J'(nnji) - J'['—j—][i .

n+l
i,j

Ht1p

which converges with probability one to zero via the strong

law of large numbers and the continuity condition on J'. The



second térm, A2n’ is disposed of in similar fashion. The

first term, Aln’ requires a more extended analysis.

=R

n
A Lotz +
noon._ ntlj i,n

n . .
L8 F R I 0 L B 2
R C | R S

Bin - f Q2(u)J2(u)du with probability one by Wellner's Theorem 4.

0

By a similar argument and rearrangement ¢f térms,
1 9 1 1
By, * ([ QI (Wudw)® - 2 [ uI'(w)Q(wdu+ [ I (uw)(1-u)Q(u)du
0 0 0
1 u 2
+ [ ([ Q)3 (v)av)“du
0o o
and

1 1
By, > -2 of Q(u) J(wdu - 0[ Q(u)J" () udu

1 u .
-2 Q(u)J(u)[ i Q(v)J'(v)dv}du’ ,
0 0

17



both convergences holding with probability one. The result

then follows by integrating the expression for o2 given by (2.1)
by parts and observing that the quantity to which s 2 converges
with probability one is indeed 02. (Note that the appeals to
Wellner's result are actually to a slight modification of it

allowing random Jn which satisfy the boundedness and convergence

conditions with probability one.)

Example 1: The sample mean, for which J(u) = 1, clearly

satisfies the conditions of Theorem 1 (but not the trimming

conditions of Theorem 2) if EF|X|%/3 < », In fact, Sn = S
n

I(x, - X)2

. . i=3 P . .

in this case, and sz = S— -—*cFZ if EF|X|‘ < o,

n

Theorem 3 requires EFIX[2+€ < = for some ¢ > 0. Thus, the
usual strong law for the sample variance '"just fails" to

be a corollary of Theorem 3,

Example 2: While the ordinary trimmed means do not satisfy

the score conditions of Theorems 1 and 2, a smoothed version
causing J to returg to zero in such a way that it is differ-
entiable with J' obeying a Holder condition with o >-%- would

satisfy those conditions, We assume that the modified score

is also zero on C(g).

18
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Example 3: Gini's mean difference (J(u) = u - %) and the
optimal score for lacation estimation for a logistic population
(J(u) = 6u(l - u)) clearly satisfy the conditions of Theorem 1
if EF(X) < = and those of Theorem 3 if E|X|2+s < =, but violate
the trimming conditions of Theoreﬁ 2,

In most instances, Theorems 2 or 3 will be of primary
interest, providing methods for the construction of approximaté
confidence intervals based upon L-statistics (and one-to-one
functions thereof). The bias of an L-statistic will often be
small (but see Section 3 in this regard), and hence én will
be of limited practical use for the purposes of estimation
with reduced bias. However, the end goal of an analysis may
be to estimate or construct approximate tests or confidence
intervals for g(So). For estimation, g(Sn) may suffer from
severe bias if g is highly non-linear near So (recall that

g8"(s) .
— VarF(Sn) ). Hence jackknifing

Elg(S )] = g(s ) +
g(Sn) would be of interest in such cases for reduction of bias.
If g is non-monotone, confidence intervals for g(Sn) obtained by
finding a confidence interval for S° using /h(Sn - So)/sp as

an approximately standard normal pivotal quantity and taking

the image of such an interval under g may well result in

longer intervals than would be obtained by pivoting about g(Sn).



Thus, it seems to be of independent interest to study the
behavior of g(Sn) under jackknifing. The following theorem
parallels Theorem 1, establishing that g(Sn) and its jackknife

have the same limiting distribution.

Theorem 4: Let X1 Xys eees X be a random sample of size

N
n from a distribution F with E[|X|/3] < @, Let J' obey a
Holder condition with o > %. If g is a function with a bounded

second derivative in a neighborhood of So’ and g(Sn) =

n ,
ng(S_) - n-1 T g(S(l)) , the jackknife of g(S ), then
n n i=1 n-1 n

/h(s(sn) - g(Sn)) — 0 with probability onme.

Proof:

- _ /o fn - 1)
/n(g(Sn) - 8(5)) -/n-——7;——-

g'(s ) (s - 5 )
i

1 n-1 n

t o2

P (1) - 2
+358 (Ein)(sn__l s <]

20



(2.5)
n - l ] -

n
+2-1 4 z
= n ?

" (1) - 2
o . l(g (sin)(sn-l S.)

(1)

-1 ° To justify this expansion,

where Ein is between Sn and S

we need to prove

(1)
sup |Sn__1

- S | - 0 with probability one.
. n
1<i<n

21



n .
- 1 k| | ) -
jil{ n(n - 1) J[n + l) * n(n + 1) (n - 1)J [n + 1]
¥
j 1] - 1] . j___
+ n(n + 1)(n - 1) ( (nnj) J [n + l])} Xj,n
1 i
- ;'J[n + l] Xi,n
So
s 158 s | <z Bix |+ 1 sw laldx, J+lx D
1<i<n n-1 n j=1n 3 n n O<u<l n,n 1,n

with M determined by

expression converges
law of large numbers

with probability one

the bounds on J and J'. Finally, this

to zero with probability one by the strong

and the fact that max(IXl’nl,!Xn’n|)/n -0

if .Elel < @,

22

The first term in (2.5) converges to zero with probability one by

Theorem 1.

IR~ : e,

where ]g"(a)l < L for a in some neighborhood of So’

sufficiently large.

(i) (1)

Z(S
i=1 07

2 n-1
O R Ty

for n

sn)2 ,

The second term, denoted by Rn, can be bounded as follows,
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— 2 .
n .2/n i=1 J=ln j,n
2
i s
Ml
+
n

n+1

_:_I'_ n i
+ 2 1 @ X, )?
{=1 J7i,n

2M sup |J(u)]|

O<u<l p n \
+ Z !Xj n{\2 - O with probability vne
n3 lj=1 ? J.j

by the moment condition on F, Hence, the theorem is established.

Naturally, the moment condition may be omitted if J trims.

The analogous result on a consistent variance estimator follows.

Theorem 5: Let Xl, ceey Xn be a random sample of size n from
a distribution F obeying the conditions of Theorem 2. Let J

satisfy the conditions of Theorem 2 and g have a bounded second
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derivative in a neighborhood of So. If

n
= (n-1) I

(&(sylD) - (s 02, (2.6)
i=1

2
p(g)

P
2 —_ v 2,2 : 2 o3
then sp(g) (g (So)) o<, with o< given by (2.1).

Proof: The proof proceeds by second-order Taylor expansion
of the g(SiEi) about Sn’ and then follows the method of
Theorem 2.
It should be noted that Theorem 2 (1) ié (is not) é spécial
case of Theorem 5 (4) with g(+) the identity, due to the

identical (additional) conditions imposed on f and J in the

latter theorem.

If the conditions for both Theorems 2 and 4 are satisfied,
asymptotically pivotal quantities for the construction of
confidence intervals for g(So) include

i Ya(g(s ) - g(s.))

Zln

Bp(g)

and

i /h(g(Sn) - g(s))

2n . )
g (Sn)sp

Z
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If conditdions for Theorems 1 and 3 hold, g(Sn) could be
replaced by é(Sn) and g‘(Sn) bygf(én)(or even ;‘(Sn) if g has
a bounded third derivative in a neighborhood of So). The
question naturally arises as to which choices would be best
in moderate-~size sample applications of the above resultsf

The issue of what quantity to jackknife, that is, whether to

use

/n(sn ~S) . v’n(g(Sn) - 8(5))

p sp(g)'

has not been addressed inasystematic fashion in the literature.
However, the common suggestions of Miller (1974), p.12) and

Efron (1972, p.192C) that the function %2 be iackknifed shonuld

be variance stabilized are reasonable, for example tantflr does
jackknife more satisfactorily than r, the ordinary sample correlation
coefficient. Using this advice, when estimating a function g

of a location parameter S,, the location parameter estimate Sn should

itself be jackknifed to produce a variance estimator. In other words,

Z is recommended.
2n

3. TRIAL BY NUMBERS

While the above results give a large-sample justification
for use of the jackknife method for the creation of approximate

confidence intervals, they leave unaddressed questions
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regarding-appropriateness of the technique in small-sample
situations. Accordingly, a modest Monte Carlo study is in
order both 1) to relate the large~sample theory to samples of
a size likely to be encountered in practice, and 1ii) to
explore the behavior of the jackknife for L-statistics whose
score functions violate one or more of the regularity conditions
of Theorems 1-4. All computations were performed on the
AMDAHL 470 V/6 at Texas A&M University.

Only locétion parameter estimation is considered, that is
J(u) > 0 for 0 < u <1 and OflJ(u)du = ]. The distributions

considered are i) N(5,1), a normal with mean 5 and variance

one, 3ii) a logistic with mean 5 and scale parameter 1, with

-(x-5) ,-1

F(x) = [1+e 17, —® < X <@

and 1ii) u(4,6), a uniform distribution on the interval
(4,6). Five hundred random samples of sizes 5, 10, 20 and 40
from each of the above three distributions were examined. The

score functions considered are



0 0 <u< .05

"Jl(U) = b
=.23,53 (u - .05) .05 < uc< .10
= 1.1765 .10 < u< .90
= 23.53 (.95 - u) .90 < u< .95
=0 . .95 < u._<_ 1,

a "smoothly" trimmed mean designed to obey the trimming
conditions of the theorems but to fail to be differentiable

at some points in [0,1];

J,(u) = bu 0 <u<.5

4(1 - u) : .5 <u< 1,0,

a "triangular"” weight function neither trimming nor being

.everywhere differentiable; and

J3(u) = 6u(l - v 0 <ux<l,

a score function meeting all differentiability requirements
but failing to trim.

Unfortunately, even with the above three symmetric score
functions which integrate to one and symmetric parents,
biases ﬁan result due to the fact that
1 " 1

= IJ [
n 4=1 Kin + 1

n .
] # 1. Table 1 gives values of 1 J [ = ]
noo K
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for n = 19, 20, 39, and 40 and K = 1, 2, 3. Note that a value

of 1 corresponds to no bias.
(TABLE 1 ABOUT HERE)

In fact, often such biases will die out at the rate of 0(1/n2)

n ; :
(obtained by viewing 1 rJ = as an application of the trape-
n,_q o + 1 1
zoidal rule in approximating the integral f J(u)du - if J"
’ 0
is bounded and continuous the error is 0(1/n%)). Hence, the

ordinary jackknife would be of little or no use in dealing

with these biases. Also, a practitioner using L-statistics

would doubtlessly use the modified L-statistic
n i
L J[n + l} Xi,n

* = i=1
n
i
u[ }
1=1 n+ 1

to guarantee unbiasedness. All of Theorems 1-53 continue to

hold for these modified Sn* if they hold for Sn’ so long as

. 3/2 1 2 i

limn™“(1 -= ¥ J ) = 0. Based upon the 500 samples
n n+1

n+o . i=1

for each sample size and distribution combination the

following are estimated:



1.

Bias Factors for L-Statistics

n Jl J2 J3
19 1.053 1.053 1.050
20 1.048 1.048 1.048
39 1.026 1.026 1.026
40 1.024 1.024 1.024

29
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a) Variance of Sn*

b) wvariance of én*’ the jackknife of Sn*

¢) Mean of spz/n, the jackknife variance estimator
d) Mean of sp//h, the jackknife standard deviation

estimator

e-f) Percent coverages of approximate 100(1 - a)7

1
confidence intervals for f Q(u)J(u)du, obtained as
0
S*+t s_//n , where t is the
n 1--5 ,n-1 P l-qz- ,0—1

100(1 - %9 percent point of a t-distribution with
n - 1 degrees of freedem, for e) a = .10, and
£) a = .05. |

and g-h) Percent coverages for confidence intervals identical
to these above, but centered on gn*’ for g) o = .10,
and h) a = .05.

Tables 2-5 present the results. It may be seen, even for

samples of size 5, that the approximate confidence intervals
maintain actual confidence coefficients close to the nominal
90 and 95 percent levels. Typically, the worst cases of
undercoverage seem to occur for, curiously enough, the uniform
parent. Intervals centéred on Sn* seem slightly better

in this regard than those centered on gn* , although the
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observed differences are of the same order as the standard
errors of the empirical confidence coefficients. This may

be related to the typically slightly larger.standard error

of én*. Consistent with the result of Efron and Stein (1979),
the jackknife variance estimator appears to be typically
positively biased as an estimator of the variance of Sn*.

For 28 of the 36 combinations of sample size, score, and

parent population, the estimated mean of the jackknife vari-
ance estimator was greater than or equal to the estimated
variance of Sn*. Out of the 36 combinations, én* had a larger
estimated variance than Sn* 27 times, with 3 ties (to &

deceimal places), Fowever, the increase was tvnically small
relative to the size of the estimates themselves. Interestingly,
the estimated bias of sp//n as an estimate of the standard
error of Sn* is small, perhaps indicating that while the
variance estimate may suffer from a positive bias, the standard
error estimate is relatively better off. (Parenthetically,

if sp//n were exactly unbiased for (Var(Sn*))B&, then spz/n

would have a bias of order 1/n?, assuming Var(Sn*) = 0(1/n).)

4., APPLICATIONS

The large-sample results of Section 2, bolstered by the

favorable Monte Carlo results in Section 3, provide a metho-
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dology for robust inference in linear models, in particular for
completely randomized designs with multiple observations per

treatment. We consider the model

where a; represents the "effect" of the ith treatment. Note
that we do not rule out a factorial structure for the t
treatments. If, instead of the usual assumptions that the

eij are normally and independently distributed with mean 0 and

common variance, we merely assume that the e,. are independently

ij

and identically distributed, symmetrically about 0, we can
pursue an L-statistic approach to analysis of variance
(the symmetry assumption is merely convenient - not necessary).

If we assume min(nl, Myy eoes nt) + = and min(nl,inz, evey nt)/
t

L n, +a> 0 , then for a symmetric score function J(-)
i=1

meeting the conditions of the appropriate theorems in Section 2,

we denote
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and s,? the corresponding variance estimate, where X, is the
i jomy
jth order statistic among those receiving treatment i. We then

pool our variance estimates by

t
_ 2
. iﬁl (n; = 1)s,*
02 = : ,
t
I (o, - 1)
j=1 *

mimicking ordinary analysis of variance, Then, an approximate

n

= 0) is provided by rejecting

with Zl—a/Z the 1 - %-quantile for the standard normal. An
obvious modification in the critical point would permit
Scheffé-type procedures. Similarly, "robust" multiple -
comparisons could be done, Robustness of fhese procedures would,
of course, depend upon the robustness and convergence rates

of the associated L-statistic for location - a well-studied

topic. Note that the "sums of squares'" for this type of analysis



can be simply computed by separately computing Si and si2 for
each treatment, and then inputting these into any standard

analysis of variance package which will accept treatment means

and variances as input.

5. SUMMARY

The ordinary jackknife is a computationally simple means
for the construction of large-sample confidence intervals
for functionals of the form S0 = 0le(u)J(u)du. Simulation
results indicate that the technique is effective for small

samples.
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