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The purpose of this paper is to establish a two step sampling
procedure for estimating the parameter 8 of the power function distribu-
tion to within given d units of its true value with a given probability
1 -a; (0<qg<1). The density of the power function distribution is
-a function of two parameters, the second of which k is assumed known.

It is demonstrated that an exact solution for all values of © does not
exist based on the maximum likelihood estimator. Given a preliminary
sample size m, tables and formulas are presented by which one may es-
tablish the size n of the second sample such that P(Iyn -9 <d)>1 -«
is true, where y_is the largest observation in the second sample., The
method used in deriving the results of this paper is similar to that given
by Graybill and Connell [2(hercafter referred to as GC)] and since the
power function density reduces to the uniform density when k = O, their
results can be derived from the formulas given here, Also a table of
comparisons between the expected second sample size in this paper and

two other solutions is given,

‘1, Introduction

-(k+1) uk, 0<us®9, 0 >0 and zero elsewhere

Let f(u) = (k + 1) ©
be a power function density. The maximum likelihood estimator for ©
based on a sample of size n is the largest value Y - If b= Y, and
b= = {n(k+1) + l}yn/n(k+1) are respectively biased and unbiased estimator
of © then it can be shown that for at least one set of values for a
preliminary sample size m and given k

P -06] <d)>p(|b -0] <)
is true for certain values of d, while. for others, the reverse is true.
Thus, since neither b% nor & is uni formly better for all values of d,
b will be used in this paper. Hence the problem is to determine n, the
size of a sample from this distribution, such that the estimator b

based on the sample will have probability of at least 1 - « of being
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within d units of 8, where d and 1 - o are specified in advance,
0 <g<1, symbolically,

P{ly, -] <d} >1-a. (1)

The solution will be a two step procedure where n will be determined on
the basis of a preliminary sample of size m,
2. Solution
If a = d/6 and Et denotes expectation with respect to the random

variable t, then (1) can be rewritten as

P}y, - o] <d]

1 - En[P(l -a <Y, )< 1{n)]

1-E [( - D] (2)

When d 2 © , P(]yn - 6| <d)=1; hence this case will not be
considered.

Consider a preliminary sample of size m taken from f(u) and let
x be the largest observation. The second sample size must be a function
of x, i.e,, n= t(x). If the function t(x) has all the properties given
in equation (3) of GC, then it can be shown that Theorem 1 given by GC

is also true here for the equation
En[(l _ a)(k+1)n] =a.

If 0 were known, then from equations (1) and (2) ,

n= (log @)/{(k+l) log (1-a)} , 0<a<1,0<a<1,kz=20.

(3)

Since O is not known, then following the procedure and conditions given

in 6C [p. 553], the sample size n becomes

1 , 0 % x S bd/(1-1/Ky |

(log a)/{(k+1) Tog (1-bd/x)}, bd/(1-a2*1) < x <6, (4)



where b is as given in GC [p.553] and the function in (4) has all the
properties given in GC [p.553].

If z = x/6 , then the density function for z is

m (k1) 2D -1 g <, <1 k2o,
h (z) =
0 , elsewhere,
Let
fa(z) =

(1-a) (109 @)/{1log [1-(ba/z)]} ’ ba(l—al/k+l) <zs<1.,

For the remainder of this paper, n will denote the size of the random

sample from f(u), where n is given in equation (4), Therefore

1
E [(1-a)(+ D] - e o a
0 a

If go(z) is any function which has all the properties given in

equation (8) of GC, then

' 1
En [(1 —a)"(k+1)] = j fa (z) h(z) dz2s o, 0<a<l,
]

Theorem: The smallest function having properties given in equation (8)

of GC is the function g(z), where

[1- {1 - /Dy K+ g <2 2p
g(z) = (6)

o2/P b<zs<1.

The proof of the theorem runs parallel to that of Theorem 2 in GC

and hence the lemmas which are useful to prove the same will he given,

(5)



Lemma 1:
For two real numbers existing in the intervals O < q =1 and
O0=<r=1, such that q=2 1 - r , the féllowing inequality holds:
q1/(1—q) = (1-n)i/T .
Lemma 2:
?a(z) is convex in the interval ba/ [1 - al/(k+1)] < z < b where
b () = 1 - ) 199 oM KD 1/ f10g [1 - (a/2)])

Lemma 3:

From equation (5), it follows that

;jm fa(z) = az/b , 0<z=<1,

Lemma 4:

fa(z) is monotonic decreasing in a for

Z 2 max [b,(ba)/'(l - 1/(k+1)].

3. Summary
From the above theorem, it follows that

1
En[(l—a)n(k+1)] =I £f(z) h (z) dz
- 0

1
= I g (z) h (z) dz
0

k+1
= m (k1) pPOFD S (Rplyp Ukl 9T 0 i) )
r=o

1
+ m(k+1) faz/b M) =14 ()

b



If equation (7) is set equal to o and solved implicitly for b for
each m, ¢ and k, it is assured that the use of this b in eduation (4)
will give a second sample size n such that (1) is satisfied., Tables 1
to 6 give values of b such that (7) is equal to q.

4, Sample Size Tables

To determine the desired second sample size n, first find the value
of b in Tables 2 and 3 depending on the choice for m (the preliminary
sample size) 1 - o and k. Then find x, the largest observation in

the preliminary sample, determine d and find n according to

=

{ 1 L0 s x s (bd)/(1l/k¥ly

[10g @)/{(k+1) log (1 - bd/x)} ., bd/(1l=x Ukﬂ)s X < 0.

The use of this n for the second sample size guaiantees that
P[]yn-9]<d]>1—a.
where y is the largest observation in the second sample. If it occurs
that x is greater than Yo then x satisfies equation (1) and is superior

to y, as an estimator of O,

The contents of Tables 2 and 3 are similar to those given in GC

except the sample size, determined by the use of Tchebycheff's inequality

[1], may be shown to be equal to

n= [1/(k+1)]{1 + [m(k+1) x2]/[{m(k+1) - 2} adz]}é- 1/(k+1) .

The conclusions derived from these tables are also exactly the

same as those given in GC,
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TABLE 2,—Expected second sample sizes for k = 1

.90 .95 .99

a {m Ideal Ej(n) Fq(n) Ideal Ejn) Ej(n) Ideal Ej(n) Ez(n)

05 | 57| 2204 23.3 31.6 | 29.2 30.8 45.0 | 44.9 49.9 101.1
05 | 20 | 22.4 22.6 31.2 | 29.2 29.5 44.3 | 44.9 45.7 99.6
.05 | 50 | 22.4 22.5 31.1 | 29.2 29.3 44.2 | 44.9 45.2 99.5
25| 5| 4.0 4.2. 5.9 5.2 5.5 8.6 | 80 9.0 19.8
25|20 | 40 4.0 5.9 5.2 5.3 8.5 80 82 19.5
25 |50 | 40 40 58| 5.2 5.2 85| 80 8.1 19.5
600 5| 1.3 1.3 2.2 1.6 1.8 3.3] 2.5 3.0 8.0
60120 1.3 1.3 2.2 1.6 1.7 3.3 | 2.5 2.6 7.9
60 [50 | 1.3 1.3 2.2 | 1.6 1.6 3.3 | 2.5 2.5 1.8

TABLE 3. —Expected second sample sizes for k = 3

1l —«

a m Ideal Ej(n) E,(n) Ideal Ej(n) Ej(n) Ideal Ej(n) Ey(n)

.05 5 11.2 11.3 15.6 14.6 14.8 22.2 22.4  22.9 49.9
.05 | 20 11.2 11.2 15.6 14.6 .14.6 22.1 22.4 22.5 49.8
.05 | 50 11.2 11.2 15.6 14.6 14.6 22.1 22.4 22.5 49.8

251 5 2.0 2.0 2.9 2.6 2.6 4.2 4,0 4.1 9.8
.25 | 20 2.0 2.0 2.9 2.6 2.6 4.2 4,0 4.0 9.8
.25 | 50 2.0 2.0 2.9 2.6 2.6 4.2 4,0 4.0 9.8
60| 5 6 1.0 1.1 .8 1.0 1.6 | 1.3 1.3 3,9
.60 | 20 6 1.0 1.1 .8 1.0 1.6 1.3 1.3 3.9
.60 | 50 6 1.0 1.1 .8 1.0 1.6 1.3 1.3 3.9
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