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Abstract
Using a conjecture closely related to the Goldbach Hypothesis, we can generate a set

of natural numbers, which we term sprimes that like the primes, have both regular and
chaotic properties, and are a good deal sparser than the primes. This paper explains
how to generate these and explores some of their properties.

1 Introduction

Suppose we define the set of primes to be P , and let Q = {1}∪ P\{2} = {1, 3, 5, 7 . . .}. A

conjecture that is very similar to the Goldbach hypothesis on the primes is as follows

Conjecture GHQ:

∀n ∈ N ∃p, q such that p, q ∈ Qand (p + q)/2 = n.

(The set Q is chosen instead of the more conventional P as it fits in more nicely with

the discussion and definitions to follow, but clearly the statement is very similar to the

conventional Goldbach hypothesis.)

It is interesting to reverse the direction of the hypothesis, and seek sets of natural numbers

G ⊆ N which are known by construction to satisfy the hypothesis. We will define a set G a

Goldbach Set if it satisfies the Goldbach Condition as stated below:

GC:

∀n ∈ N,∃g1, g2 ∈ G such that (g1 + g2)/2 = n.

(Note that this definition is very similar to the concept of a Goldbach sequence as defined by

Torelli [5]. A key difference is that averages of the members of our set are used to generate
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the natural numbers, rather than sums, and 0 is not allowed in constructing the averages.)

Clearly it is easy to choose sets which satisfy GC. Trivial examples include {2k − 1|k ∈ N}
and {1 + 10k, 3 + 10k, 7 + 10k, 9 + 10k|k ∈ Z+}. None of the aforementioned Goldbach

Sets exhibit complexity of behavior like Q. Indeed these sets are asymptotically far more

dense than Q or P . One interesting questions is “does Q (and also P ) only just satisfy the

Goldbach Hypothesis?” In other words, would any smaller set (either a subset of Q or a less

dense set than Q) also satisfy the hypothesis? If the answer is negative, this would imply

proving the Goldbach Hypothesis may be harder than if the answer is affirmative.

This paper describes a set S, which we term sprimes, to draw analogy with the primes and

also to reflect the fact that they are sparser (more spread out) than P (or Q). The set appears

to suggest that P is denser than needed to satisfy the Goldbach Hypothesis and hence raises

the possibility that the hypothesis might be satisfied by some suitable subset of P .

The set S = {si|i ∈ N} is generated sequentially as follows:

1) s1 = 1

2) Given {s1, . . . sk} = Sk, form the set A = {n ∈ N|∃si, sj ∈ Sk, (si + sj)/2 = n}.
3) Let m = min(N\A). This number is the smallest natural number which cannot be formed

by averages of the current finite list of Sprimes.

4) Create a candidate set Ck = {n ∈ N|n > sk,∃si ∈ Sk (si +n)/2 = m} of possible choices

for sk+1.

5) Evaluate the worth wi of each member i ∈ Ck by wi = |({(i + sj)/2|sj ∈ Sk}
∪ {i}) ∩ {N\A}|. (This assigns to each candidate a worth which is equal to the number of

new values that will be added to set A if the candidate is chosen for S).

6) Choose for sk+1 the largest candidate with the highest worth, that is sk+1 = max{i ∈
Ck|wi = maxj∈Ck

wj}.
Note that one could after step 4, choose the smallest natural number in the set, but this

does not generate a sparse set, and the resulting set {1, 3, 5, . . .} is regular and uninteresting.

The first 500 sprimes are listed in two tables in the appendix. Sprimes that are also prime

(actually in Q) are in bold. Although the process described above that generates the sprimes

is not a conventional sieve, in which arithmetic progressions of numbers are eliminated from

N, the process has similarities with the sieve methods. Note it is also possible to start with

3 instead of 1, which generates R = {ri|i ∈ N}, such that ri = si + 2. In addition, by

slightly altering the procedure for generating the set A, it is possible to start the sequence
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with 2 and 3, to make it more closely resemble the primes. Neither of these two changes

in starting condition are important, in the sense that the sets generated exhibit the same

general behavior as the sprimes.

Torelli [5] suggested a similiar construction using the concept of a “basis”, in which a set A is

a basis for the natural numbers if any natural number can be written as a sum of members of

the set A. A Goldbach sequence as defined by Torelli is then such a basis written in increasing

order, without the element 0 (see also Gunturk and Nathanson [1]). In this paper we only

insist that sums of members of a set A cover the even positive integers (that is averages

would cover all the natural numbers), and 0 is not allowed in any sum. These conditions

are essentially the same as the conditions classically stated for the Goldbach Hypothesis.

“Lucky” numbers (Hawkins and Briggs [3]) and “random primes” (Hawkins[2]) also appear

to be Goldbach sets in the sense described in this paper, but there is no known proof of this

assertion, only empirical evidence. Heyde [4] shows that numbers generated by the random

Hawkins sieve almost surely satisfy the Riemann hypothesis.

2 Some properties and conjectures for the sprimes mo-

tivated by the primes

1) By construction, |S| = ∞, which is true also of P and Q, as proven by Euclid.

2) The members of Q can be generated iteratively by the sieve of Eratosthenes. The sprimes

S are generated by a sieve-like process.

3) There is strong empirical evidence that Q is a Goldbach set (that is GH is true). By

construction S is a Goldbach set.

4) There is empirical evidence that there are an infinite number of twin primes, ie {n,m ∈
Q|m = n + 2}| = ∞. It is not known if S has this property, but we note there are 8

pairs of twin sprimes in the first 500, namely {(1,3),(11,13),(77,79),(115,117),(3791,3793),

(6855,6857),(14551,14553), (31231,31233)}.
5) The prime number theorem states that π(n) ∼ n/ ln(n). More accurately if one defines

Li(n) =
∫ n

2
1

ln t
dt,

then π(n) ∼ Li(n). Empirical evidence (see section 3) suggests that the sprime counting

function σ̄(n) ∼ n0.5709 . However, this is very misleading as a power function in n also
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provides a very accurate approximation to π(n) for “small” n. As shown in section 3, there

is an apparent linear relationship between log(sk) and log(pk), which if true for larger n,

would imply σ̄(n) ∼ n0.763

0.763log n
, or some such similar relationship.

6) (Bertrand’s postulate, proved for P by Chebyshev). ∀n ≥ 2,∃p ∈ P st n ≤ p ≤ 2n. This

property is true for any Goldbach set, hence is true for S.

7)
√

pn+1 −
√

pn < 1 (Andrica’s conjecture). Numerical evidence is strongly in favor of this

for primes. For sprimes, the conjecture is false, although it is possible that the result is true

with a higher bound. Note that
√

s316 −
√

s315 =
√

23973 −
√

23145 = 2.7.

8) (Sophie Germain conjecture). It is conjectured that there are infinite n such that (n, 2n+

1) ∈ P. In the first 500 sprimes, there are 8 such pairs: {(1,3),(3,7),(13,27),(117,235),(5421,10843),

(6159,12319), (12565,25131),(25523,51047)}.
9) It seems reasonable that |Q ∩ S| = ∞, although like other results of this type, the proof is

probably hard. A related question is whether the density of the primes amongst the sprimes

is what one would expect if they were “distributed at random”. Probablistic investigations

in section 3 suggest that sprimes are slightly more likely to be primes than non-sprime odd

integers.

10) Does
∑∞

k=1
1
sk

converge? We know that the corresponding sum for primes diverges, but

the sprimes are more spread out. Direct examination of a sum of a finite number of terms

is of no use as if the sum diverges, it will do so very slowly. If indeed the sprimes counting

function behaves as σ̄(n) ∼ n0.763

0.763logn
, then we would expect the sum to converge.

3 Probabilistic analysis:

Here we perform various statistical analyses of the sprimes, under assumptions that they can

be modelled as random variables. This method has a long tradition in number theory.

A plot of the log pk versus log sk for the first 500 terms of each sequence reveals a near

straight line relationship (correlation coefficient of 0.999), which implies that

log sk ≈ α + β log pk.

In fact a relationship with α = 0 is possible. For simplicity, we will take this to be the case,

and assume pk = sγ
k for some power γ, and use the empirical relationship to derive the form

of the counting function σ̄(n) for the sprimes.
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We know k = π(pk) ≈ pk/ log pk, so substitution of the approximate form for sk gives

k =
sγ

k

γ log sk
.

Thus we can suggest

σ̄(n) ≈ nγ

γ log n
.

Empirically we have γ ≈ 0.763. It is of course possible that σ̄(n) follows some totally

different form, and the empirical results are merely artifacts of the “law of small numbers”.

A reasonable empirical alternative is that σ̄(n) ≈ n0.571.

The table below gives actual values for σ̄(n), along with values for the approximations

n0.763/0.763 log n and n0.571 for various n.
n σ̄(n) n0.571 n0.763/0.763 log n
50 9 9.3 6.6
100 13 13.9 9.5
500 34 34.7 24.2
1000 50 51.6 36.9
5000 127 129.3 102.2
10000 190 192.1 160.4
15000 246 242.2 209.4
20000 287 285.4 253.1
25000 324 324.2 293.5
30000 360 359.7 331.4
40000 416 424.0 401.5
50000 479 481.6 466.2

The n power law seems a better fit to σ̄(n) than the law derived from the linear relationship,

but again, this could easily be an artifact of the aforementioned law. Indeed the power

law (2/3)n0.81 is a better fit to the prime counting function π(n) than the known correct

asymptotic form n/ log n for n ≈ 3000.

Roughly speaking about 2/ log n of the odd integers up to n are prime, so applying this to

the 500 sprimes terminating in 53, 003 we would expect about 2(500)/ log 53003 ≈ 90 of the

first 500 sprimes to be prime. The actual number of prime-sprimes in the first 500 sprimes is

110, suggesting perhaps sprimes are slightly more likely to be prime than randomly chosen

odd integers, but again this is likely to merely be related to the fact that the n/ log n formula

undercounts primes for small n.

We can see how many sprimes are divisible by 3,5,7 etc. The table below gives the proportion

of such in the first 500 sprimes.
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Expected proportion Actual proportion
3 33.33% 32.6%
5 20% 20%
7 14.2% 15.6%
11 9.1% 8.6%
13 7.7% 7.6%
17 5.9% 7.2%
23 4.3% 4.4%

Note, the expected proportion is calculated assuming a random sample from the odd integers.

The observed proportions of multiples of 3,5 etc are what one would expect if the sprimes

were randomly chose from the odd integers.

4 Conclusion:

This paper introduces the sprimes (denoted by S), which are specifically constructed to

satisfy a Goldbach type property (namely that any even positive integer can be represented

as a sum of two sprimes). The construction is recursive, where each member of the set S is

determined by a simple algorithm based on the current members. The set S is constructed

in such a way that the set is as sparse as possible in a certain sense. Empirically the sprimes

follow as similar distribution law as the primes, but are sparser. This suggests that the

primes might be redundant in satisfying Goldbach’s conjecture, that is they are denser than

is needed to form a basis for even positive integers.

Appendix 1:

The 1st to 500th sprimes.
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1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
1-10 1 3 7 11 13 27 31 35 49 61
11-21 77 79 93 101 115 117 133 163 183 187
21-30 193 235 245 257 271 279 323 335 343 381
31-40 399 439 481 497 507 535 549 569 619 669
41-50 681 693 713 739 815 833 863 905 941 973
51-60 1033 1053 1089 1119 1141 1163 1181 1259 1285 1317
61-70 1341 1401 1419 1431 1555 1565 1647 1685 1691 1699
71-80 1747 1841 1853 1875 1981 2001 2041 2051 2095 2149
81-90 2195 2259 2281 2299 2339 2377 2511 2557 2611 2663
91-100 2669 2781 2815 2857 2889 3027 3041 3087 3125 3129
101-110 3249 3309 3379 3501 3559 3577 3667 3675 3791 3793
111-120 3853 3933 4043 4055 4125 4181 4185 4253 4317 4389
121-130 4465 4539 4583 4689 4781 4877 4977 5069 5137 5215
131-140 5259 5307 5387 5421 5443 5497 5523 5661 5739 5747
141-150 5763 5837 5871 5881 5965 5977 6065 6153 6159 6235
151-160 6465 6535 6539 6855 6857 6889 6907 6957 6993 7103
161-170 7131 7295 7379 7389 7445 7735 7739 7939 7955 8133
171-180 8175 8207 8279 8403 8437 8447 8639 8687 8747 8775
181-190 8881 8929 9049 9095 9207 9393 9581 9673 9693 9745
191-200 10003 10073 10129 10169 10269 10299 10307 10385 10603 10717
201-210 10797 10813 10843 10903 10911 11079 11227 11269 11331 11461
211-220 11807 11877 12035 12085 12099 12175 12217 12319 12525 12565
221-230 12587 12647 12727 12811 12845 13005 13163 13371 13389 13591
231-240 13945 14117 14153 14157 14181 14221 14239 14305 14337 14409
241-250 14467 14551 14553 14799 14853 14981 15113 15385 15483 15533
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1 2 3 4 5 6 7 8 9 10
251-260 15743 15833 16167 16223 16273 16413 16557 16889 16915 17051
261-270 17197 17335 17407 17473 17481 17603 17683 17847 17875 17971
271-280 18101 18379 18403 18661 18695 18817 18827 19073 19141 19153
281-290 19223 19579 19731 19745 19757 19831 19883 20075 20101 20331
291-300 20355 20385 20403 20783 20927 20955 20991 21135 21339 21549
301-310 21665 21781 21935 22001 22037 22047 22165 22397 22483 22521
311-320 22807 22815 22871 23085 23145 23793 24067 24163 24469 24615
321-330 24627 24703 24769 24841 25131 25177 25439 25523 25643 25787
331-340 25903 26055 26063 26213 26291 26431 26491 26617 26659 26693
341-350 26729 26899 27035 27123 27377 27511 27581 27619 27693 28241
351-360 28569 28601 28805 29001 29045 29221 29587 29619 29957 29985
361-370 30179 30377 30859 31107 31157 31231 31233 31625 31945 31977
371-380 31987 32041 32109 32559 32667 32721 32993 33033 33299 33465
381-390 34125 34285 34379 34453 34477 34515 34569 34901 34915 35079
391-400 35629 35679 35763 35913 35929 35975 36021 36209 36225 36599
401-410 36665 37059 37125 37151 37179 37575 37631 37083 38063 38609
411-420 38703 38833 39043 39125 39291 39529 40041 40135 40233 40315
421-430 40433 40513 40573 40641 40811 41161 41981 42023 42101 42275
431-440 42319 42393 42445 42561 42865 43185 43269 43369 43457 43493
441-450 43719 43811 44077 44209 44329 44357 44767 44807 44933 45149
451-460 45311 45329 45479 45623 45695 45909 46085 46501 46545 46633
461-470 46969 47085 47111 47209 47685 47083 48091 48545 48795 48803
471-480 48907 49127 49259 49417 49513 49567 49593 49793 49929 50205
481-490 50295 50641 50669 50701 50985 51017 51407 51443 51495 51631
491-500 52199 52379 52389 52499 52513 52663 52749 52777 52981 53003
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