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Abstract

Using a conjecture closely related to the Goldbach Hypothesis, we can generate a set
of natural numbers, which we term sprimes that like the primes, have both regular and
chaotic properties, and are a good deal sparser than the primes. This paper explains
how to generate these and explores some of their properties.

1 Introduction

Suppose we define the set of primes to be P, and let @ = {1}U P\{2} = {1,3,5,7...}. A

conjecture that is very similar to the Goldbach hypothesis on the primes is as follows

Conjecture GHyg:
VYn € N dp, ¢ such that p,q € Qand (p+ q)/2 = n.

(The set @ is chosen instead of the more conventional P as it fits in more nicely with
the discussion and definitions to follow, but clearly the statement is very similar to the
conventional Goldbach hypothesis.)

It is interesting to reverse the direction of the hypothesis, and seek sets of natural numbers
G C N which are known by construction to satisfy the hypothesis. We will define a set G a
Goldbach Set if it satisfies the Goldbach Condition as stated below:

GC:
Vn € N, 3¢y, go € G such that (g1 + ¢2)/2 = n.

(Note that this definition is very similar to the concept of a Goldbach sequence as defined by

Torelli [5]. A key difference is that averages of the members of our set are used to generate
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the natural numbers, rather than sums, and 0 is not allowed in constructing the averages.)
Clearly it is easy to choose sets which satisfy GC. Trivial examples include {2k — 1|k € N}
and {1 + 10k,3 + 10k, 7 + 10k,9 + 10k|k € Z*}. None of the aforementioned Goldbach
Sets exhibit complexity of behavior like (). Indeed these sets are asymptotically far more
dense than @) or P. One interesting questions is “does () (and also P) only just satisfy the
Goldbach Hypothesis?” In other words, would any smaller set (either a subset of @ or a less
dense set than Q) also satisfy the hypothesis? If the answer is negative, this would imply
proving the Goldbach Hypothesis may be harder than if the answer is affirmative.

This paper describes a set S, which we term sprimes, to draw analogy with the primes and
also to reflect the fact that they are sparser (more spread out) than P (or ()). The set appears
to suggest that P is denser than needed to satisfy the Goldbach Hypothesis and hence raises
the possibility that the hypothesis might be satisfied by some suitable subset of P.

The set S = {s;]i € N} is generated sequentially as follows:

1) s1=1

2) Given {sy,...s,} = Sk, form the set A = {n € N|3s;,s; € Sk, (s; + 5j)/2 = n}.

3) Let m = min(N\ A). This number is the smallest natural number which cannot be formed
by averages of the current finite list of Sprimes.

4) Create a candidate set C, = {n € Njn > s;,3s; € Sy (s;+n)/2 = m} of possible choices
for sgy1.

5) Evaluate the worth w; of each member ¢ € Cy by w; = |({(¢ + s;)/2|s; € Sk}

U {i}) N {N\A}|. (This assigns to each candidate a worth which is equal to the number of
new values that will be added to set A if the candidate is chosen for S).

6) Choose for sii; the largest candidate with the highest worth, that is s;y1 = max{i €
Crlw; = maxjec, w;}.

Note that one could after step 4, choose the smallest natural number in the set, but this
does not generate a sparse set, and the resulting set {1, 3,5, ...} is regular and uninteresting.
The first 500 sprimes are listed in two tables in the appendix. Sprimes that are also prime
(actually in @) are in bold. Although the process described above that generates the sprimes
is not a conventional sieve, in which arithmetic progressions of numbers are eliminated from
N, the process has similarities with the sieve methods. Note it is also possible to start with
3 instead of 1, which generates R = {r;|i € N}, such that r;, = s; + 2. In addition, by
slightly altering the procedure for generating the set A, it is possible to start the sequence



with 2 and 3, to make it more closely resemble the primes. Neither of these two changes
in starting condition are important, in the sense that the sets generated exhibit the same
general behavior as the sprimes.

Torelli [5] suggested a similiar construction using the concept of a “basis”, in which a set A is
a basis for the natural numbers if any natural number can be written as a sum of members of
the set A. A Goldbach sequence as defined by Torelli is then such a basis written in increasing
order, without the element 0 (see also Gunturk and Nathanson [1]). In this paper we only
insist that sums of members of a set A cover the even positive integers (that is averages
would cover all the natural numbers), and 0 is not allowed in any sum. These conditions
are essentially the same as the conditions classically stated for the Goldbach Hypothesis.
“Lucky” numbers (Hawkins and Briggs [3]) and “random primes” (Hawkins[2]) also appear
to be Goldbach sets in the sense described in this paper, but there is no known proof of this
assertion, only empirical evidence. Heyde [4] shows that numbers generated by the random

Hawkins sieve almost surely satisfy the Riemann hypothesis.

2 Some properties and conjectures for the sprimes mo-
tivated by the primes

1) By construction, |S| = oo, which is true also of P and @), as proven by Euclid.

2) The members of ) can be generated iteratively by the sieve of Eratosthenes. The sprimes
S are generated by a sieve-like process.

3) There is strong empirical evidence that ) is a Goldbach set (that is GH is true). By
construction S is a Goldbach set.

4) There is empirical evidence that there are an infinite number of twin primes, ie {n,m €
Qlm = n + 2} = oo. It is not known if S has this property, but we note there are 8
pairs of twin sprimes in the first 500, namely {(1,3),(11,13),(77,79),(115,117),(3791,3793),
(6855,6857),(14551,14553), (31231,31233)}.

5) The prime number theorem states that w(n) ~ n/In(n). More accurately if one defines
Li(n) = [} odt,

then m(n) ~ Li(n). Empirical evidence (see section 3) suggests that the sprime counting
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function a(n) ~ n However, this is very misleading as a power function in n also



provides a very accurate approximation to 7(n) for “small” n. As shown in section 3, there

is an apparent linear relationship between log(sx) and log(px), which if true for larger n,
n04763

~ GHeaiogn OF some such similar relationship.

would imply 7(n)

6) (Bertrand’s postulate, proved for P by Chebyshev). Vn > 2, 9p € P st n < p < 2n. This
property is true for any Goldbach set, hence is true for S.

7) \/Pnt1 — v/Pn < 1 (Andrica’s conjecture). Numerical evidence is strongly in favor of this

for primes. For sprimes, the conjecture is false, although it is possible that the result is true
with a higher bound. Note that /S3i6 — v/S315 = V23973 — /23145 = 2.7.

8) (Sophie Germain conjecture). It is conjectured that there are infinite n such that (n,2n+

1) € P. In the first 500 sprimes, there are 8 such pairs: {(1,3),(3,7),(13,27),(117,235),(5421,10843),
(6159,12319), (12565,25131),(25523,51047)}.

9) It seems reasonable that [QQ N S| = oo, although like other results of this type, the proof is
probably hard. A related question is whether the density of the primes amongst the sprimes
is what one would expect if they were “distributed at random”. Probablistic investigations
in section 3 suggest that sprimes are slightly more likely to be primes than non-sprime odd
integers.

10) Does > 27, i converge? We know that the corresponding sum for primes diverges, but

the sprimes are more spread out. Direct examination of a sum of a finite number of terms

is of no use as if the sum diverges, it will do so very slowly. If indeed the sprimes counting
n0-763

~ G7e3logn then we would expect the sum to converge.

function behaves as a(n)

3 Probabilistic analysis:

Here we perform various statistical analyses of the sprimes, under assumptions that they can
be modelled as random variables. This method has a long tradition in number theory.
A plot of the logpy versus log s; for the first 500 terms of each sequence reveals a near

straight line relationship (correlation coefficient of 0.999), which implies that
log si. = a + [ log py.

In fact a relationship with a = 0 is possible. For simplicity, we will take this to be the case,
and assume py = s; for some power 7, and use the empirical relationship to derive the form

of the counting function & (n) for the sprimes.
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We know k = 7(px) =~ pr/ log pk, so substitution of the approximate form for s, gives

_ 5
~vlog sy
Thus we can suggest
nY
~vlogn
Empirically we have v &~ 0.763. It is of course possible that (n) follows some totally

a(n) ~

different form, and the empirical results are merely artifacts of the “law of small numbers”.

A reasonable empirical alternative is that (n) a2 n%>7.

The table below gives actual values for a(n), along with values for the approximations

n0763/0.763 log n and n®5™ for various n.
n a(n) | n%>™ | n%763/0.763log n
50 9 9.3 6.6
100 13 13.9 9.5
500 34 34.7 | 24.2
1000 | 50 51.6 | 36.9
5000 | 127 | 129.3 | 102.2
10000 | 190 | 192.1 | 160.4
15000 | 246 | 242.2 | 209.4
20000 | 287 | 285.4 | 253.1
25000 | 324 | 324.2 | 293.5
30000 | 360 | 359.7 | 331.4
40000 | 416 | 424.0 | 401.5
50000 | 479 | 481.6 | 466.2

The n power law seems a better fit to g(n) than the law derived from the linear relationship,

but again, this could easily be an artifact of the aforementioned law. Indeed the power
law (2/3)n%%! is a better fit to the prime counting function m(n) than the known correct
asymptotic form n/logn for n ~ 3000.

Roughly speaking about 2/logn of the odd integers up to n are prime, so applying this to
the 500 sprimes terminating in 53,003 we would expect about 2(500)/log 53003 ~ 90 of the
first 500 sprimes to be prime. The actual number of prime-sprimes in the first 500 sprimes is
110, suggesting perhaps sprimes are slightly more likely to be prime than randomly chosen
odd integers, but again this is likely to merely be related to the fact that the n/log n formula
undercounts primes for small n.

We can see how many sprimes are divisible by 3,5,7 etc. The table below gives the proportion

of such in the first 500 sprimes.



Expected proportion

Actual proportion

3 |33.33% 32.6%
5 | 20% 20%
7 | 14.2% 15.6%
11 19.1% 8.6%
13 | 7.7% 7.6%
17 | 5.9% 7.2%
23 | 4.3% 4.4%

Note, the expected proportion is calculated assuming a random sample from the odd integers.

The observed proportions of multiples of 3,5 etc are what one would expect if the sprimes

were randomly chose from the odd integers.
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This paper introduces the sprimes (denoted by S), which are specifically constructed to
satisfy a Goldbach type property (namely that any even positive integer can be represented
as a sum of two sprimes). The construction is recursive, where each member of the set S is
determined by a simple algorithm based on the current members. The set S is constructed
in such a way that the set is as sparse as possible in a certain sense. Empirically the sprimes
follow as similar distribution law as the primes, but are sparser. This suggests that the
primes might be redundant in satisfying Goldbach’s conjecture, that is they are denser than

is needed to form a basis for even positive integers.

Conclusion:

Appendix 1:
The 1st to 500th sprimes.




1st 2nd 3rd 4th 5th 6th Tth 8th 9th 10th
1-10 1 3 7 11 13 27 31 35 49 61
11-21 7 79 93 101 115 117 133 163 183 187
21-30 193 235 245 257 271 279 323 335 343 381
31-40 399 439 481 497 507 535 549 569 619 669
41-50 681 693 713 739 815 833 863 905 941 973
51-60 1033 1053 1089 1119 1141 | 1163 | 1181 | 1259 | 1285 1317
61-70 1341 1401 1419 1431 1555 1565 1647 1685 | 1691 | 1699
71-80 1747 1841 1853 1875 1981 2001 2041 2051 | 2095 | 2149
81-90 2195 2259 2281 2299 | 2339 | 2377 | 2511 | 2557 | 2611 | 2663
91-100 2669 2781 2815 2857 | 2889 | 3027 | 3041 | 3087 | 3125 | 3129
101-110 | 3249 3309 3379 3501 | 3559 | 3577 3667 | 3675 | 3791 | 3793
111-120 | 3853 | 3933 4043 4055 | 4125 | 4181 4185 | 4253 | 4317 | 4389
121-130 | 4465 4539 4583 | 4689 | 4781 | 4877 | 4977 | 5069 | 5137 | 5215
131-140 | 5259 5307 5387 | 5421 | 5443 | 5497 5523 | 5661 | 5739 | 5747
141-150 | 5763 5837 5871 5881 | 5965 | 5977 6065 | 6153 | 6159 | 6235
151-160 | 6465 6535 6539 6855 | 6857 | 6889 6907 | 6957 | 6993 | 7103
161-170 | 7131 7295 7379 7389 7445 7735 7739 7939 | 7955 | 8133
171-180 | 8175 8207 8279 8403 | 8437 | 8447 | 8639 | 8687 | 8747 | 8775
181-190 | 8881 8929 | 9049 | 9095 | 9207 | 9393 9581 9673 | 9693 | 9745
191-200 | 10003 | 10073 | 10129 | 10169 | 10269 | 10299 | 10307 | 10385 | 10603 | 10717
201-210 | 10797 | 10813 | 10843 | 10903 | 10911 | 11079 | 11227 | 11269 | 11331 | 11461
211-220 | 11807 | 11877 | 12035 | 12085 | 12099 | 12175 | 12217 | 12319 | 12525 | 12565
221-230 | 12587 | 12647 | 12727 | 12811 | 12845 | 13005 | 13163 | 13371 | 13389 | 13591
231-240 | 13945 | 14117 | 14153 | 14157 | 14181 | 14221 | 14239 | 14305 | 14337 | 14409
241-250 | 14467 | 14551 | 14553 | 14799 | 14853 | 14981 | 15113 | 15385 | 15483 | 15533




1 2 3 1 5 6 7 8 9 10

251-260 | 15743 | 15833 | 16167 | 16223 | 16273 | 16413 | 16557 | 16889 | 16915 | 17051
261-270 | 17197 | 17335 | 17407 | 17473 | 17481 | 17603 | 17683 | 17847 | 17875 | 17971
271-280 | 18101 | 18379 | 18403 | 18661 | 18695 | 18817 | 18827 | 19073 | 19141 | 19153
281-290 | 19223 | 19579 | 19731 | 19745 | 19757 | 19831 | 19883 | 20075 | 20101 | 20331
291-300 | 20355 | 20385 | 20403 | 20783 | 20927 | 20955 | 20991 | 21135 | 21339 | 21549
301-310 | 21665 | 21781 | 21935 | 22001 | 22037 | 22047 | 22165 | 22397 | 22483 | 22521
311-320 | 22807 | 22815 | 22871 | 23085 | 23145 | 23793 | 24067 | 24163 | 24469 | 24615
321-330 | 24627 | 24703 | 24769 | 24841 | 25131 | 25177 | 25439 | 25523 | 25643 | 25787
331-340 | 25903 | 26055 | 26063 | 26213 | 26291 | 26431 | 26491 | 26617 | 26659 | 26693
341-350 | 26729 | 26899 | 27035 | 27123 | 27377 | 27511 | 27581 | 27619 | 27693 | 28241
351-360 | 28569 | 28601 | 28805 | 29001 | 29045 | 29221 | 29587 | 29619 | 29957 | 29985
361-370 | 30179 | 30377 | 30859 | 31107 | 31157 | 31231 | 31233 | 31625 | 31945 | 31977
371-380 | 31087 | 32041 | 32109 | 32559 | 32667 | 32721 | 32993 | 33033 | 33299 | 33465
381-390 | 34125 | 34285 | 34379 | 34453 | 34477 | 34515 | 34569 | 34901 | 34915 | 35079
391-400 | 35629 | 35679 | 35763 | 35913 | 35929 | 35975 | 36021 | 36209 | 36225 | 36599
401-410 | 36665 | 37059 | 37125 | 37151 | 37179 | 37575 | 37631 | 37083 | 38063 | 38609
411-420 | 38703 | 38833 | 39043 | 30125 | 39291 | 39529 | 40041 | 40135 | 40233 | 40315
421-430 | 40433 | 40513 | 40573 | 40641 | 40811 | 41161 | 41981 | 42023 | 42101 | 42275
431-440 | 42319 | 42393 | 42445 | 42561 | 42865 | 43185 | 43260 | 43369 | 43457 | 43493
441-450 | 43719 | 43811 | 44077 | 44209 | 44329 | 44357 | 44767 | 44807 | 44933 | 45149
451-460 | 45311 | 45329 | 45479 | 45623 | 45695 | 45909 | 46085 | 46501 | 46545 | 46633
A61-470 | 46969 | 47085 | 47111 | 47209 | 47685 | 47083 | 48091 | 48545 | 48795 | 48803
AT1-480 | 48907 | 49127 | 49259 | 49417 | 49513 | 49567 | 49593 | 49793 | 49929 | 50205
481-490 | 50295 | 50641 | 50669 | 50701 | 50985 | 51017 | 51407 | 51443 | 51495 | 51631
491-500 | 52199 | 52379 | 52389 | 52499 | 52513 | 52663 | 52749 | 52777 | 52981 | 53003
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