
Bootstrap Confidence Intervals for Concentration Parameters 
in Dilution Assays 

Sabyasachi Basu and Rudy Guerra 
Department of Statistical Science 

Southern Methodist University 
Dallas, Texas 75275 

Robert Read 
Animal Resources Center 

University of Texas Southwestern Medical Center 
Dallas, Texas 75235 

Technical Report No. SMUDSITR-28 1 



Bootstrap Confidence Intervals for Concentration Parameters 

in Dilution Assays 

Sabyasachi Basu and Rudy Guerra 
Department of Statistical Science 

Southern Methodist University 
Dallas, Texas 75275 

Robert Read 
Animal Resources Center 

University of Texas Southwestern Medical Center 
Dallas, Texas 75235 

July 20, 1995 



Abstract 

Many quantitations in science are performed with tests that are capable of de- 

tecting at least one target entity in a sample preparation. In such cases, dilution 

assays can be conducted to estimate the concentration per unit volume of the target 

substance in the sample. Commonly used confidence intervals for the concentration 

parameter involve inverting a hypothesis test and have been tabulated for limited 

designs. Loss of data points, as often occurs in practice, or sample limitations make 

it difficult to adhere to those designs for which intervals are readily available. In 

addition, it may be a nontrivial task to implement the common interval methods to 

accommodate the realized data structure. The bootstrap is a flexible, easily imple- 

mented procedure for finding approximate confidence intervals. The bias-corrected 

version of the bootstrap percentile method is shown through simulations to provide 

good coverage with relatively short widths in a variety of designs. An application to 

AIDS research which motivated this work is also presented. 

Keywords: product binomial model; maximum likelihood; bias-correction; simula- 

tion; AIDS. 



1 Introduction 

Many quantitations in microbiology, medicine, and other sciences are performed with 

tests capable of detecting one or more target units (e.g., molecules, infectious units) 

in a sample preparation, but cannot differentiate readily between different numbers of 

units at this detection threshold. Such tests give binary data: negative (-), indicating 

the absence of target substance in the test sample, or positive (+), indicating the 

presence of at least one target entity in the test sample. For example, we see that 

one or more bacteria will produce evidence of growth in a culture tube. While one 

may attempt to estimate numbers in the original sample by comparing the rate of 

growth to known numbers of a standard bacteria, such an approach suffers from the 

assumption that all bacteria grow at the same rate. The same can be said for growth 

of viruses, particularly HIV and other lentiviruses (Myers et al., 1994) and detection 

imon et of single copies of genetic sequence with polymerase chain reaction (PCR) (S' 

al., 1990; Simmonds et al., 1993). 

When such a binary test is available, it is well known (Finney, 1978) that a dilution 

assay can be performed to estimate the concentration, C, per unit volume of the target 

substance in a sample preparation. Briefly, a portion of the sample preparation is 

diluted into D preparations, usually each with a different concentration of the original 

sample. At each dilution, nd replicate, unit volume samples are tested for the target 



unit resulting in as many binary responses. It is possible to estimate the concentration 

C by selecting appropriate dilution factors. For comprehensive discussion of dilution 

assays see, e.g., Finney (1978) or more recently Myers et al. (1994). 

Formal analyses of dilution assays have traditionally focussed on point estimation 

of C with early references dating back to McGrady (1915) and Fisher (1922). More 

recently, attention has focussed on other statistical aspects regarding the estimation 

of C. Strijbosch, Does, and Albers (1990) provide a good review with an emphasis 

on experimental design and quantification of statistical bias in certain.estimators of 

C. 

This work concerns confidence interval estimation for C, the concentration pa- 

rameter. Most intervals to date involve inverting a hypothesis test and have been 

tabulated for limited configurations of experimental design parameters and nominal 

confidence levels (e.g., Woodward, 1957; Marth, 1978; APHA; 1976). Different ex- 

perimental designs or confidence levels require different tables. Even if one follows an 

experimental design for which intervals are available, the loss of a single data point 

- which frequently occurs in practice - will require different tables. This is especially 

true when the sample size is small or it is unclear how to impute "missing" values. 

Moreover, to generate a new set of confidence intervals based on inverting a test 

may require an impractical amount of computer memory, even for moderately sized 



designs. In some situations it may be possible to analytically invert statistical tests 

to  yield the intervals. For example, a likelihood ratio (LR) based interval may be ob- 

tained - in simple cases - by using the fact that the LR test statistic usually follows an 

asymptotic chi-square distribution. This approach in the present situation, however, 

may lead to spurious conclusions since the sample sizes End with which we work 

are typically less than twenty. For general discussion on inverting statistical tests to 

obtain confidence intervals, especially using LR statistics, see Kalbfleisch (1985). 

A more efficient approach to the problem can be achieved by bootstrap methods 

(Efron, 1979; Efron and Tibshirani, 1993). These procedures can often be imple- 

mented with compact computer programs requiring relatively little memory and time 

to run. In this paper we propose parametric bootstrap intervals for C. Section 2 

reviews a standard product binomial model for dilution assay outcomes and discusses 

current methods of interval construction. The main contribution to the analysis of 

dilution experiments is made in section 3 where we propose parametric bootstrap 

confidence intervals based on the product binomial model. Sections 4 and 5 report 

results from simulation studies and a practical application to AIDS research which 

motivated this work, respectively. A summary of our findings is given in section 6. 



2 Overview of Confidence Intervals for Concen- 

tration C 

In this section we review a model commonly employed for dilution experiments and 

its role in finding confidence intervals for the concentration C. Consider an experiment 

with D dilutions, nd replicates at dilution d, d = 1,2, ... , D. Replicate, unit volume 

samples are taken at dilution d such that the following may reasonably be assumed: 

(1) the probability that no target molecules are detected in a unit volume sample 

from any given replicate is (approximately) qd = exp(-Cud) where ud is the dilution 

factor at dilution d; (2) the number Xd of positive replicates out of nd follows a 

binomial distribution with probability of "success" pd = 1 - qd, and (3) XI, ..., XD 

are independent random variables. The likelihood function over the D dilutions is 

therefore 

Several important experimental steps are required for the product binomial model to 

reasonably hold in practice. Myers et al. (1994) provide a good discussion of these 

issues, as well as a self-contained presentation of the model and model parameter 

estimation from first principles of probability and statistics. 

Using the product binomial model, several procedures for interval estimation of 



C have been proposed. Loyer and Hamilton (1984) provide a contemporary review 

and on the basis of minimal sufficiency, expected width, and detection of improbable 

outcomes, recommend Sterne-type intervals (Sterne, 1954; Blyth and Still, 1983) 

over traditionally used intervals proposed by Woodward (1957) and deMan (1977). 

Standard, normal based intervals &A Z ~ - ~ / ~ S E ( & )  motivated by maximum likelihood 

(ML) theory are considered by Strijbosch et al. (1990); z1-,/2 is the 100(1 - a/2) 

percentile of the Gaussian distribution. The estimate & is a bias-corrected version of 

the ML estimator and the standard error (SE) is calculated using either the jackknife 

or bootstrap. For large sample sizes, the standard interval using the jackknife for 

both bias-correction and SE provides reasonable coverage. 

More recently, Myers et al. (1994) have suggested inverting exact likelihood ratio 

tests to find confidence intervals. Although their work emphasizes a methodology for 

constructing the LR intervals, they do cite unpublished results indicating a preference 

for the LR method. In particular, they compared their proposed intervals to Sterne 

intervals and the LR method was found to be better based on expected width. 

To date, comparative studies of confidence intervals in this context have em- 

phasized either expected length (e.g., Loyer and Hamilton, 1984) or coverage (e.g., 

Strijbosch et al., 1990). A simultaneous assessment of coverage and length is particu- 

larly important in this situation, however, because of the well known positive bias in 



the ML estimator of C (Thomas, 1942; Strijbosch et al., 1990). Intuitively, intervals 

based on estimators with a large positive bias can be expected to provide inadequate 

coverage relative to the nominal level or yield excessively long intervals. Therefore, 

it is of interest to understand how the bias affects both operating characteristics of 

any given interval technique. 

In this paper we present results on both coverage and length in a comparison 

among four types of intervals: two bootstrap methods, likelihood ratio, and normal 

based intervals. The latter intervals are discussed, as they should be in any compar- 

ative study, since they are widely used in practice. The LR intervals are also used a 

frame of reference since they have been reported to be the preferred technique (Myers 

et al., 1994). 

3 Bootstrap Confidence Intervals 

The bootstrap is a procedure whose main application is in estimating various measures 

of statistical uncertainty. One such standard application is estimating the standard 

error in an estimate of a parameter. The basic idea is to estimate the probability 

mechanism P generating the data by P ,  next use P to generate more data and in 

turn another observed value of the estimate, and finally assess the variability in the 

original estimate by that found in many values obtained from P. 

8 



To fix ideas, let XI, ...: x, be a random sample from an unknown probability distri- 

bution F, and suppose we wish to estimate the standard error in an estimate 8 of an 

unknown parameter 6; e.g., the median of F .  The standard nonparametric bootstrap 

estimates the standard error as follows. First estimate the probability mechanism F 

by F,, the empirical distribution function assigning mass l l n  at each observed x;. 

Second, obtain a bootstrap sample, x;, ..., x:, of n independent draws from F,; and 

third, estimate the parameter using the bootstrap sample, say e*. The second and 

third steps are repeated a large number (B) of times, obtaining bootstrap replicates 

of the parameter $, b = 1, ..., B. The sample standard deviation of the B bootstrap 

replicates is then an estimate of the standard error in 8. 

The bootstrap is not limited to the standard error as a measure of uncertainty, nor 

does it require the empirical distribution function as an estimate of the probability 

mechanism. Indeed, the present application involves confidence intervals as a measure 

of statistical accuracy and the probability mechanism is estimated by the product- 

binomial model using an estimate of C - the so-called parameteric bootstrap. We 

see, then, that the bootstrap can be viewed as a general technology for estimating 

sampling distributions of statistics. 

The product binomial model is a plausible probability mechanism for the out- 

comes in a dilution bioassay. Therefore, this model provides a means by which we 



can generate many dilution outcomes, and in turn, estimate the sampling distribu- 

tion of the ML estimate of the concentration parameter C. The desired confidence 

intervals are found by determining appropriate percentiles from the estimated sam- 

pling distribution of e. For example, an approximate 90% confidence interval for C 

is estimated as the interval defined by the 5th and 95th percentiles of the observed 

bootstrap versions of 6. This method yields what are known as bootstrap percentile 

intervals. 

Two problems arise in the above prescription. The first is that the product bino- 

mial model depends on an unknown parameter, namely, the concentration parameter 

which is precisely what we want to know. This problem can be overcome by sub- 

stituting the ML estimate based on the observed data; this step constitutes the first 

step in the bootstrap paradigm - estimating the probability mechanism. The second 

problem is due to the well known fact that the ML estimator of C is positively bi- 

ased. This manifests itself at two levels: the ML estimator 6 based on the observed 

data overestimates C, and the bootstrap replicates e* overestimate the concentra- 

tion "parameter" used to generate the bootstrap samples, namely 6. Applying the 

naive percentile method to the distribution of the 6; can therefore lead to intervals 

providing inaccurate coverage. 

A partial solution to the second problem is provided by an improved version of the 



naive percentile met hod, the bias-corrected and accelerated (BC,) percentile method 

(Efron, 1987; Efron and Tibshirani, 1993). Following Efron and Tibshirani (1993), 

let d*(") denote the 100-ath percentile of B bootstrap replicates dbf. The percentile 

method purporting to have a confidence level of 1 - 2a estimates the interval as 

The BC, intervals are also based on percentiles of the bootstrap replicates, but, to 

correct for certain problems of the naive percentile method, the percentiles are not 

necessarily those given by equation (2); they are defined as 

where 

and 

The numbers io and 2 are the bias-correction and acceleration constants, respec- 

tively; @ ( a )  is the standard normal distribution function; and z(") is the 100-ath 

percentile point of a standard normal distribution function. The number 20 roughly 

measures the discrepancy between the median of the dbf values and d:  



and is seen to be zero if half of the values of the 6';s are less than 6'. The bias 

in estimating C by d is effectively being estimated by the bias in estimating d by 

6';, and the BC, is thus seen to account for the bias in the ML estimate of C.  The 

acceleration constant B measures the rate of change of the standard error in 6' with 

respect to C and can be estimated in various ways. Since our main interest, however, 

is in correcting for the bias in the ML estimate of C ,  we refer to Efron and Tibshirani 

(1993) for estimating formulas for B. For the purposes of this application of the BC, 

method we set ii to zero. 

4 Small Sample Simulation Studies 

This section reports on simulation experiments designed to investigate actual coverage 

of various intervals based on sample sizes that are commonly found in the application 

below. 

Simulation Met hods 

We investigate actual coverage and mean length of four types of confidence inter- 

vals: LR, bootstrap percentile, bootstrap BC intervals, and standard normal based 

intervals. Each simulation experiment involved the generation of K sets of positivity 

outcomes following the product binomial model for fixed configurations of true con- 



centration, number of dilutions, number of replicates per dilution, confidence interval 

procedure, and confidence level. Actual coverage was calculated as the number of 

intervals including the true concentration divided by K .  The number of iterations 

per simulation run was K=500 and the number of bootstrap replicates was B=1000. 

The simulation runs can be categorized into four groups. The first group follows 

a design discussed by Myers et al. (1994) and is a six fivefold dilution experiment in 

duplicate. The second group of runs also involves six dilutions but with more repli- 

cates per dilution. The third group involves relatively fewer dilutions with different 

dilution factors and a moderate number of replicates. The last group follows the 

design presented in the application below. Each simulation experiment investigates 

the true concentration parameter at twelve levels: C = 10, 25(25)250, 500. 

The reported results do not include confidence intervals of infinite length. Specifi- 

cally, we ignore those cases where the number of positive outcomes equals the sample 

size End of the design, thereby leading to one-sided infinite intervals. In practice, 

such a situation would typically be followed by higher dilutions until a transition 

phase in positivity was found. At the other extreme, because the true concentration 

is bounded below by zero, it is possible and natural to construct finite, one-sided 

intervals when all outcomes are negative. More discussion on this issue is given by 

Strijbosch et al. (1990) and Loyer and Hamilton (1984) with the main focus being 



on the former extreme case. It suffices to say that the mean lengths of the intervals 

are highly sensitive to how one treats a result of all positive outcomes. In short, 

we have chosen to proceed in accordance with how the interval procedure is actually 

implemented in practice. 

Simulation Results 

Table 1 shows simulation results from a six fivefold dilution assay running six 

dilutions with dilution factors u i 1  = 1, 5, 25, 125, 625, and 3125. Four types of 

intervals are constructed at the nominal level: bootstrap percentile (BS-P) ; boots trap 

bias-correction (BS-BC); likelihood ratio (LR); and standard normal intervals where 

the SE is based on the parameteric bootstrap. When the nominal level is 95% and 

there are two replicates per dilution, Table la,  the two bootstrap intervals tend to 

undercover while the LR and normal intervals overcover relative to the nominal level. 

However, compared to the BS-BC intervals, the LR and BS-P coverages are at the cost 

of considerably longer intervals. The normal intervals were constructed as previously 

discussed and then truncated at zero to reflect the natural parameter space as is 

commonly done in practice. It is the coverage and length of the truncated intervals 

denoted by "T-Length" that are actually reported in Table l a  and elsewhere. The 

operating characteristics of this interval are similar to those of the LR, relatively long 

intervals exceeding the nominal level. In addition, they tend to be shorter than the 



LR intervals. 

A graphical analysis of the relationship between mean length and concentration 

shows that length is approximately proportional to concentration; equivalently, stan- 

dardized length defined by the ratio of mean length to C is approximately constant. 

As indicated in Table 1, however, the constant of proportionality need not be the 

same for each interval method. This fact allows for a comparison of the different 

methods with respect to a joint analysis of length and coverage with varying con- 

centration parameter values. The numerical results in Table l a  are thus graphically 

summarized in Figure l a  where the observed coverage is plotted against standardized 

length; the horizontal line indicates the nominal level. From the figure one can easily 

see the distinct operating characteristics of the different methods. In particular, note 

that none of the procedures provide coverage at the nominal level. 

Table l b  (Figure 2a) is similar to Table l a  (Figure l a )  except for the nominal 

level being reduced by 5%. The LR coverage in this case is in closer agreement with 

the nominal level than previously with no systematic overcoverage. Similarly, both 

bootstrap methods seemingly perform better in this situation. That this is the case, 

however, may be an artifact of the experimental design. Since there are two repli- 

cates per dilution, only a very limited number of (probable) ML estimators of C are 

obtained for a fixed true concentration. Therefore, over many bootstrap replications, 



each ML estimator will be repeated many times resulting in a highly discrete boot- 

strap distribution with few distinct percentiles points. Comparing BS-BC coverage of 

Table l a  with that of Table lb,  we see that for the most part, actual coverage levels 

are almost the same. This is reflecting the highly discrete bootstrap distribution for 

this sample size. For larger sample sizes, and consequently more distinct values of 

k* that are observed, this problem is lessened. The point is illustrated by comparing 

the BS-BC points in Figure l b  to those in Figure 2b where the results are based 

on a design with three replicates per dilution. Similarly, compare Figure l c  to 2c 

showing results based on four replicates per dilution level. In each case now, unlike 

that with two replicates per dilution, the BS-BC intervals appropriately reflect the 

nominal level while maintaining considerable gains in length. 

The LR intervals are not reported in Figures Ib,c and 2b,c because the implemen- 

tation as prescribed by Myers et al. (1994), and used for Table 1, was computationally 

impractical to apply in these cases. Nevertheless, the cited LR procedure does not 

suffer from the small sample problem discussed above since the method effectively 

considers a large continuous range of C values in constructing the intervals. In other 

words, Myers et al. (1994) invert an exact test to obtain the LR intervals. 

Designs involving duplicates, say at each of six fivefold dilutions as in Table 1, 

are suitable for roughly estimating C. Their main purpose, however, is exploratory, 



the results of which are then used to collect more data at and nearby the dilutions 

indicating a transition from a positive majority to a negative majority. This generally 

translates into subsequent experiments with relatively fewer dilutions and a higher 

degree of replication; thus providing more information in a "known" local neighbor- 

hood of the true parameter value. The designs underlying the results in Figures 1 

and 2, panels d and e, are such examples. Three dilutions (udl = 10, 100, 1000) 

with five replicates per dilution are considered in Figures Id  and 2d. As in the previ- 

ous cases, the LR interval coverage tends to hover above the nominal level while the 

bootstrap coverages hover below; and the BS-BC lengths are distinctly less than the 

others. Figures l e  and 2e show results based on four dilutions (ui1 = 10, 50, 250, 

1250) each with four replicates. The BC intervals provide good coverage and have 

relatively shortest length. Although the discrepancy in length between BC and the 

other intervals in this case is not as substantial as noted in Figures Id and 2d, it is 

still distinct and appreciable. 

Finally, we report on a simulation experiment, Figures If and 2f, following the 

actual design used in an AIDS application (see below). There are five dilutions 

(udl = 1, 10, 50: 250, 1250) and the design is unbalanced with replicate numbers 

23333 at the respective dilution levels. Knowing that the ML estimate, 6'=220, is 

positively biased, the range of C investigated is likely to include the true concentration 

associated with the data. The results previously discussed apply here as well. On 



balance, the bootstrap BC intervals are optimal in that they yield, as before, the 

shortest intervals and good coverage. 

5 Application: AIDS 

The domestic cat provides an important model for AIDS. The feline immunodeficiency 

virus (FIV) is an immunosuppressive lentivirus in the same family and with marked 

clinical and biological similarities to the human immunodeficiency virus (HIV). Provi- 

ral DNA and other HIV nucleic acids have been shown to increase with the progression 

of the disease and decrease in response to treatment (Aoki et al., 1990; Clark et al., 

1992; Oka et al., 1990; Oka et al., 1991; Pang et a1.,1990), thus a test which can 

reliably quantitate these nucleic acids might be useful to assess therapeutic efficacy 

or herald disease progression. In this case, a PCR assay which is sensitive to a single 

copy of DNA is employed with dilutional analysis to quantitate FIV provirus in cat 

blood (Read et al., 1995). In this section we report on an application of the bootstrap, 

LR, and standard normal interval methods to data arising from such an assay. 

A blood sample from a cat with AIDS was assayed according to a dilution experi- 

ment having five dilutions with dilution factors 1 (original concentration), 10,50, 250, 

and 1250, and 23333 replicate samples (5p1), respectively. The number of positive 

results were 23320, respectively. The ML estimate of C is 220.3 molecules per 5p1 

18 



or 44,060 molecules per ml of blood. In units of molecules per 5p1, the bootstrap 

percentile interval is (82.3, 750.4), the bootstrap bias-corrected interval (62.9, 479.7), 

the truncated normal interval (0, 668.73), and the LR interval (55.7, 762.7). The 

bootstrap BC interval is based on percentile points al=0.0041 and a2=0.8989 from 

equations (4) and (5) as opposed to the usual percentile points of 0.025 and 0.975. 

Note that the bias-corrected interval is considerably shorter and more closely cen- 

tered on the ML estimate. The former result was expected based on the simulation 

experiments. 

6 Summary 

Various methods have been proposed to find confidence intervals for concentration 

parameters from dilution assays. The most common intervals are based on inverting a 

hypothesis test and are readily available for relatively small, balanced (same number 

of replicates per dilution) experiments. In practice it is difficult to adhere to special 

designs for which intervals are available. For example, loss of data points or sample 

limitations frequently result in unbalanced data. In these situations, it is necessary 

to determine intervals specific to the realized design. This may entail a nontrivial im- 

plementation of the interval method; perhaps demanding a large amount of memory 

space or memory space manipulation. We depart from this tradition by proposing 



a flexible, easily implemented bootstrap procedure for finding (approximate) con- 

fidence intervals for C. Results reported here show that in general the bootstrap 

bias-corrected intervals provide good coverage with relatively short intervals. 

Unlike the traditional intervals, the bootstrap BC intervals explicitly account for 

the fact that the NIL estimate of C is biased. Adjusting for the bias results in shorter 

intervals. Some care, however, must be taken when dealing with small sample sizes 

as in Table 1. In this case the resulting bootstrap distribution of the MLE will be 

highly discrete possibly leading to unreliable results. Thus with small sample sizes it 

may be worth the effort to implement an alternative method. 
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Table 1: Coverage and expected widths of confidence intervals based on design with dilution factors 
udl = 1, 5, 25, 125, 625, 3125, and replicates 222222. Interval methods are bootstrap percentile 
(BS-P), bootstrap bias-correction (BS-BC), likelihood ratio (LR), and standard normal truncated 
on left at zero. The true concentration is denoted by C. 

(a) 95% nominal level 

C 
BS-P BS-BC LR Normal 

Coverage Length Coverage Length Coverage Length Coverage T-Lengt h 
10 91.8 67.09 88.0 33.81 97.2 54.04 98.6 51.59 
2 5 85.8 178.43 89.6 85.25 97.0 140.95 99.6 137.00 
5 0 89.8 367.55 88.2 178.87 96.6 300.79 98.8 277.91 
75 95.4 536.62 94.4 252.95 98.4 436.55 97.2 408.32 

100 89.8 763.57 84.2 365.84 96.8 603.59 98.8 568.82 
125 85.8 935.87 88.8 441.81 96.2 742.88 99.6 697.14 
150 95.6 1143.59 91.6 563.92 95.6 898.50 97.2 848.22 
175 93.8 1300.73 92.8 620.07 96.0 1032.24 98.2 953.79 
200 93.4 1430.84 92.0 658.49 97.4 1146.05 98.4 1037.82 
225 92.2 1631.50 85.2 794.13 97.8 1329.94 98.4 1205.43 
250 91.2 1714.81 88.0 820.40 97.0 1422.79 98.0 1241.30 
500 91.6 3008.38 86.2 1574.85 98.2 2831.90 99.0 2369.30 

(b) 90% nominal level 

C 
BS-P BS-BC LR Normal 

Coverage Length Coverage Length Coverage Length Coverage T-Lengt h 
10 90.8 52.92 87.6 28.45 91.6 42.24 95.6 45.56 
25 83.2 136.89 89.4 73.05 97.0 106.34 97.0 120.93 
50 86.2 289.88 87.6 151.34 89.2 218.47 96.6 245.17 
75 80.2 413.15 92.6 214.94 93.0 320.46 97.2 359.94 

100 86.8 583.06 84.2 294.27 90.2 454.27 97.4 501.57 
125 83.6 722.01 88.8 358.73 96.2 574.01 97.4 614.77 
150 81.2 911.40 70.4 450.15 90.2 703.15 95.8 748.60 
175 80.6 1005.62 74.8 506.20 90.2 819.05 98.0 842.09 
200 75.4 1090.81 77.4 524.49 91.0 924.96 98.4 916.32 
225 91.0 1255.05 85.2 626.70 91.0 1078.36 98.2 1066.03 
250 88.2 1373.86 88.0 661.04 90.2 1165.46 96.2 1096.79 
500 89.6 2571.98 85.6 1245.06 90.8 2337.07 97.2 2105.87 



Figure Legends: 

Figure 1: Coverage and mean length operating characteristics of various confidence 
interval procedures at 95% nominal level. Met hod labels: l=bootstrap percentile; 
2=bootstrap bias-corrected percentile; 3=likelihood ratio; 4=truncated normal. The 
sample size of each dilution assay design is indicated by the number of replicates per 
dilution fact or. Results based on 500 replications per simulation configuration; true 
parameter values ( C )  as shown in Table 1; dilution factors given in text. 

Figure 2: Coverage and mean length operating characteristics of various confidence 
interval procedures at 90% nominal level. Method labels: l=bootstrap percentile; 
2=bootstrap bias-corrected percentile; 3=likelihood ratio; 4=truncated normal. The 
sample size of each dilution assay design is indicated by the number of replicates per 
dilution factor. Results based on 500 replications per simulation configuration; true 
parameter values ( C )  as shown in Table 1; dilution factors given in text. 



Figure 1. Coverage Results from 500 simulations for the Nominal Level of 95% 

1 = BS-P; 2 = BS-BC; 3 = LR; 4 = Trunc-Normal 
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