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Summary 

Maximum likelihood estimators for model parameters in linear 

structural relationships having correlated measurement errors 

are presented. Comparisons are made between asymptotic mean squared 

errors of least squares and maximum likelihood estimators of the slope 

parameter. These comparisons indicate that the least squares estimator 

is only preferable to the maximum likelihood estimator when the slope 

parameter is sufficiently small relative to the ratio of error standard 

deviations: however, unlike structural relationships having independent 

measurement errors, the region of preference is not simply given by an 

upper bound on this scaled slope parameter. 
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1. Introduction 

Linear structural relationships are linear models Y = a + BX 

between two stochastic variates (Y,X) in which both variates are 

measured with error: 

If one assumes that X, u, and v are mutually independent with 

error variance ratio, is known then the maximum likelihood estimators 

of the intercept and slope parameters are (Kendall and Stuart 1977, 

CI - 
Chapter 29) a = y - Ex and 

where s , s and s are the sample variances and covariance, 
yy xx' x Y 

respectively. These estimators of a and $ are consistent and 

asymptotically normal. 

If $* is any estimator of B which is only a function of the sample 

variances and covariance, the variance of an intercept estimator of the 

- 
form a* = y - $*; is given by 

-1 2 2 -1 2 2 2 
var(a*) = n u ( $  + 1) + {n (uX+ uU) + px} var(8*) . 

U 
(1.3) 

Since equation (1.3) is a monotonic function of var($*), discussion of 

the asymptotic mean squared error properties of least squares and 

structural model estimators is usually confined to discussion of 

those properties for the slope estimators. 

Lakshminarayanan and Gunst (1984) derive the asymptotic variance 

of the structural model slope estimator (1.2): 

2 2 
var(2) = n-l{(B + A)Y + AY } 9 



2 2 where Y = oU/uX is the noise-to-signal ratio for the observable pre- 

dictor variable x. They compare the asymptotic mean squared errors of 

the least squares and the maximum likelihood estimators and show that 

for large sample sizes the maximum likelihood estimator has a smaller 

mean squared error than least squares unless the variance ratio is very 

small. The magnitude of reduction in mean squared error using the maxi- 

mum likelihood estimator increases with the magnitude of B for a fixed 

variance ratio. 

Simultaneous measurement of two or more physical quantities using 

a single measuring device can lead to structural relationships in which 

the measurement errors are correlated. For example, an engine analyzer 

may measure several automobile exhaust emissions simultaneously. The 

purpose of this paper is to investigate asymptotic properties of the 

maximum likelihood estimator of the slope parameter in structural 

models in which measurement errors are correlated. 

2. Correlated Measurement Errors 

Assuming that corr(ui ,vi) = 0 ,  i = 1,2, ..., n and that 
corr(u v.) = 0 for i f j, the maximum likelihood estimator of the 

i' J 
slope parameter is 

hr 2 3 B = s(X,e) + sign{u(e)){s (X,0) + t(X,e)) , 

where €I = rX3, 



When the measurement errors on y and x are correlated the variance of 

- 
an intercept estimator a* = y - B*; is still a monotonic function of 
var(B*), the only difference in equation (1.3) is the addition of the 

term -2BB to the expression in the first set of parentheses. Using 

statistical differentials (Serfling 1980, Chapter 61, the asymptotic 

- 2 
variance (to O(n ) )  of a first-order approximation to is 

2 2 ~-'Y{(B - 0) t (1 t Y)(L - 0 ) }  . (2.2) 

The estimator (2.1) is consistent so equation (2.2) also represents an 

w 

approximate asymptotic mean squared error of 8. 

Using the same technique, the asymptotic mean squared error of the 

least squares estimator '3 = s I s  of 8 can be shown to equal xy xx 
-1 2 
n 1 t ~ ~ ( 1  t 8 - 8 t (1 t Y)(I - e2)} . (2.3) 

Let R = var(i)/mse(h). Then 

R = (1 t 7)2{~ t (1 t 7)}/{(1 t ~Y)Y t (1 t Y)} , (2.4) 

2 2 where I = (8 - 8) /(X - 0 ). Note that the true slope parameter and 

the variance ratio only affect R through the parameter Y. One can 

rewrite I as 

where ( = Bx-' is the slope parameter scaled by a ratio of the error 

standard deviations. The inequality R > 1 leads to the following con- 

dition for which the asymptotic variance of the maximum likelihood esti- 

mator exceeds the asymptotic mean squared error of the .least squares 

estimator: 

Y < (1 t 7)(2 t ~)/(n - 2 - Y). 



3.  Asymptotic Comparisons and Simulation Results 

Figure 1 contains graphs of the mean squared error ratio (2.4) for 

a structural model having independent measurement errors. The mean 

squared error ratio is plotted as a function of the noise-to-signal 

ratio y for several (positive) values of the scaled slope parameter $ 

and for two sample sizes. Since p - 0, rl = $2 for these graphs. 

The mean squared error ratio is seen to be a monotonically decreasing 

function of 4, leading to preference for the maximum likelihood 

estimator for large 4, especially when the sample size is not small. 

Mandel (1984) describes conditions under which the least squares 

estimator should be preferred to an alternative estimator defined by 

the joint solution of his equations (10a) and (lob). The solution of 

these equations is the maximum likelihood estimator (2.1). One set of 

conditions that he cites for preference of the least squares estimator 

is: (i) the true model is linear, (ii) p = 0, and (iii) ($1 < <  1. 

Inequality (2.6) of the previous section quantifies Mandel's condition 

(iii) and it also shows that the upper bound on 4 is a function of both 

y and n. Thus preference for the least squares estimator depends on 

the values of the scaled slope parameter, the noise-to-signal ratio, 

and the sample size. In application this result suggests that the 

least squares estimator would only be preferable to the maximum like- 

lihood estimator when $ is close to zero and the sample size is not 

too large. 



Figure 2 contains graphs of the mean squared error ratio (2.4) for 

a structural model having correlated errors ( p  = . 5 ) .  The mean squared 

error ratio is again plotted as a function of the noise-to-signal ratio 

2 
Y for several values of +; however, since p # 0, '4 # + . Note that for 

these models the mean squared error ratio initially increases with 4 

and then decreases for $ sufficiently large. The region of preference 

for the maximum likelihood estimator is not a simple bounded function 

on $; it is a bounded function c(y, n) on Y ,  where the bound is given 

in inequality (2.6). 

A simulation similar to that reported in Lakshminarayanan and 

Gunst (1984) was conducted to assess the effects of correlation on the 

agreement between simulated mean squared errors and the asymptotic 

variance formula (2.2). Essentially the same model configurations were 

used in this simulation with the addition of several values of the 

correlation between the errors: 

Two hundred replications of each model configuration were simulated for 

samples of size 20, 50, 100, and 200. For samples of size 50 or 

greater there were only two instances where the relative error between 

U 

the average 8 and the true value of B exceeded 4%: n = 50, X = 10, 

Y = 1, and p = 0,.1 (relative error = 7%). Thus, a8 in the previous 

study, samples of size 50 or greater provide good agreement between 

estimates from equation (2.1) and the true value of B. This close an 



agreement was observed for all values of the correlation coefficient 

included in the simulation. 

U 2 
Ratios of simulated mean squared errors (Z(B - B )  1200) to the 

i 

asymptotic variance (2.2) indicate that much larger sample sizes are needed 

for the asymptotic variance formula to adequately represent the 

observed sample variability. With sample sizes of n = 200 the sample 

to asymptotic mean squared error ratios ranged between .83 and 1.15 for 

the smaller noise-to-signal ratio and between .83 and 1.31 for the 

larger one. Approximately half of the sample mean squared errors were 

within 5% of the asymptotic values for the smaller noise-to-signal 

ratio, compared to only about one-fourth for the larger noise-to-signal 

ratio. No consistent pattern with the correlation coefficient was 

observed for the ratios of sample to asymptotic mean squared error. 

This research was supported in part by the National Aeronautics 

and Space Administration and by the Office of Naval Research. 
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Fig. 1. Ra t io  of asympto t ic  mean squared e r r o r s ,  
p = 0,  ( a )  n = 50,  (b)  n = 200. 



Fig. 2. Ra t io  of asymptotic mean squared e r r o r s ,  
p = .5, (a )  n  = 50, (b) n  = 200. 




